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Announcements

• Next assignment due Monday 10/09 midnight

• Next discussion-oriented class 10/10 

• If you’re presenting, reach out to me by this Friday 10/06!

• Project: 


• Project proposal deadline is 10/10!

• Talk to me if you’d like to chat about project topics
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Recap



PIOP + PC = SNARK
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Polynomial IOPs

Polynomial 
Commitment

Compiler zkSNARK



ZKP MOOC

SNARKs So Far
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PIOP PC Scheme Setup P Time V Time Pf size
Marlin KZG Trusted O(n log n) O(log n) ~1 kB

Spartan DL-based Transparent O(n) O(sqrt(n)) 10 -100kB

How small can verifier time and proof size be?



New Recipe: 
LIPs  
+  
Linear Commitments



New Compiler
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Linear IPs

Linear 
Commitment

Compiler zkSNARK



ZKP MOOC

SNARK Comparison
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PIOP PC Scheme Setup P Time V Time Pf size
Marlin KZG Trusted O(n log n) O(log n) ~1 kB

Spartan DL-based Transparent O(n) O(sqrt(n)) 10 -100kB

LIP LC Scheme Setup P Time V Time Pf size
Groth16 GGM Circuit-specific 

trusted O(n log n) O(1) < 200B



Definition:  
Linear IP



Recall: PIOPs [GWC19, CHMMVW20, BFS20]

Prover 
(F, x, w)

Verifier 
 

 
 
 
 
 

(F, x)

p1
r1

…

QUERYQ

DECISIONb

• Completeness: Whenever , there is a strategy for P that  
outputs only polynomials, and which causes V to accept. 

• Knowledge Soundness: Whenever V accepts against a P that  
outputs only polynomials, then P “knows”  such that . 

• Bounded-query ZK: Whenever , a V that makes up to b 
queries to polys learns nothing about w.

(F, x, w) ∈ ℛ

w (F, x, w) ∈ ℛ
(F, x, w) ∈ ℛ

pt
rt

Verifier queries are 
evaluation points
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New: Linear IOPs [GGPR13, BCIOP13, SBVBPW13]

Prover 
(F, x, w)

Verifier 
 

 
 
 
 
 

(F, x)

L1
r1

…

QUERYQ

DECISIONb

• Completeness: Whenever , there is a strategy for P that  
outputs only linear functions, and which causes V to accept. 

• Knowledge Soundness: Whenever V accepts against a P that  
outputs only linear functions, then P “knows”  such that . 

• Bounded-query ZK: Whenever , a V that makes up to b 
queries to polys learns nothing about w.

(F, x, w) ∈ ℛ

w (F, x, w) ∈ ℛ
(F, x, w) ∈ ℛ

Lt
rt

Verifier queries are 
vectors
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Prover messages are 
linear functions



Construction:  
Linear IP for R1CS



R1CS
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An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

[A] [B] [C][ ]x
w

z := ∘ =[]z []z []z
(F := (𝔽, n ∈ ℕ, A, B, C), x, w)



Attempt #1
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Prover 
(F, x, w)

Verifier 
(F, x)

z = (x, w)

QUERYQ

DECISIONb

What can we put 
here?

• Idea 1: Just a random vector: 
•  doesn’t seem that useful…

⃗r := (1,r, r2, …, rn−1)
⟨z, ⃗r⟩



Attempt #2
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Prover 
(F, x, w)

Verifier 
(F, x)

z = (x, w)

QUERYQ

DECISIONb

⃗rA, ⃗rB, ⃗rC

• Hint: Think of the lincheck PIOP!
• Idea 2:  for each 

• What can we do with ?
⃗r ⋅ M M ∈ {A, B, C}

⟨ ⃗rA, z⟩, ⟨ ⃗rB, z⟩, ⟨ ⃗rC, z⟩

What can we put 
here?



Attempt #2
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Prover 
(F, x, w)

Verifier 
(F, x)

z = (x, w)

QUERYQ

DECISIONb

⃗rA, ⃗rB, ⃗rC

• Hint: Think of the lincheck PIOP!
• Idea 2:  for each 

• What can we do with ?
⃗r ⋅ M M ∈ {A, B, C}

⟨ ⃗rA, z⟩, ⟨ ⃗rB, z⟩, ⟨ ⃗rC, z⟩



Attempt #2
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Prover 
(F, x, w)

Verifier 
(F, x)

z = (x, w)

QUERYQ

DECISIONb

⃗rA, ⃗rB, ⃗rC

• Hint: Think of the lincheck PIOP!
• Idea 2:  for each 

• How about checking the product?
⃗r ⋅ M M ∈ {A, B, C}

⟨ ⃗rA, z⟩ ⋅ ⟨ ⃗rB, z⟩ ?= ⟨ ⃗rC, z⟩



Let’s analyze this

18

Then we have that
       

 

 

⟨ ⃗rM, z⟩ = ⟨ ⃗r, Mz⟩

= ∑
i

ri⟨mi, z⟩

⟨ ⃗rA, z⟩ ⋅ ⟨ ⃗rB, z⟩

= (∑
i

ri⟨ai, z⟩) ⋅ (∑
j

r j⟨bj, z⟩)
= ∑

i, j

ri+j ⋅ ⟨ai, z⟩ ⋅ ⟨bj, z⟩

[M] [    ]← m1 →

← mn →
=



Let’s analyze this
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 = ∑
i, j

ri+j ⋅ ⟨ai, z⟩ ⋅ ⟨bj, z⟩

= ∑
i

r2i ⋅ ⟨ai, z⟩ ⋅ ⟨bi, z⟩ + ∑
i≠j

ri+j ⋅ ⟨ai, z⟩ ⋅ ⟨bj, z⟩

= ⟨ ⃗r2, Cz⟩ + junk

Almost there!
We just have to get rid of …  junk terms 😞O(n2)



Attempt #3: A Different Basis
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 We saw that, for each ,

This looks like a polynomial!

M ∈ {A, B, C}
⟨ ⃗rM, z⟩ = ∑

i

ri⟨mi, z⟩

pM(r) = ∑
i

ri⟨mi, z⟩

This is a polynomial in the monomial basis.
Using this basis didn’t work.
What should we try next?



Attempt #3: Lagrange Basis!
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Prover 
(F, x, w)

Verifier 
(F, x)

z = (x, w)

QUERYQ

DECISIONb

⃗L(r) ⋅ M
⟨ ⃗L(r)A, z⟩ ⋅ ⟨ ⃗L(r)B, z⟩ ?= ⟨ ⃗L(r)C, z⟩

• New idea: query for 
•  is -th Lagrange basis poly for -sized domain 

⃗L(r) ⋅ M := (L1(r), L2(r), …, Ln(r)) ⋅ M
Li(X) i n H



Let’s analyze this
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Then we have that
       

 

 

⟨ ⃗L(X)M, z⟩ = ∑
i

Li(X)⟨mi, z⟩

⟨ ⃗L(X)A, z⟩ ⋅ ⟨ ⃗L(X)B, z⟩

= (∑
i

Li(X)⟨ai, z⟩) ⋅ (∑
j

Lj(X)⟨bj, z⟩)
= ∑

i, j

Li(X)Lj(X) ⋅ ⟨ai, z⟩ ⋅ ⟨bj, z⟩
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= ∑
i, j

Li(X)Lj(X) ⋅ ⟨ai, z⟩ ⋅ ⟨bj, z⟩

= ∑
i

Li(X)2 ⋅ ⟨ai, z⟩ ⋅ ⟨bi, z⟩ + ∑
i≠j

Li(X)Lj(X) ⋅ ⟨ai, z⟩ ⋅ ⟨bj, z⟩

= ∑
i

Li(X)2 ⋅ ⟨ai, z⟩ ⋅ ⟨bi, z⟩ + junk

Let’s analyze this

Still stuck?!?!
What are we doing wrong?



Idea: Remember Hadamard PIOP
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What does this remind you of?

This is the interpolation of  over !

So after queries we have !

Q: What did we do with these in Hadamard PIOP?

A: Check 

⟨ ⃗L(X)M, z⟩ = ∑
i

Li(X)⟨mi, z⟩

Mz H

̂zA(r), ̂zB(r), ̂zC(r)

̂zA(r) ⋅ ̂zB(r) − ̂zC(r) = h(r) ⋅ vH(r)



Final Construction
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Prover 
 (F, x, w)

h :=
̂zA ⋅ ̂zB − ̂zC

vH

Verifier 
(F, x)

z = (x, w)

QUERYQ

DECISIONb

⃗L(r) ⋅ M ∀M

 
 

⟨ ⃗L(r)A, z⟩ ⋅ ⟨ ⃗L(r)B, z⟩ − ⟨ ⃗L(r)C, z⟩
?=

⟨h, vH(r) ⋅ ⃗r ⟩

h

vH(r) ⋅ (1,r, …, rn−1)
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= (∑
i

Li(X)⟨ai, z⟩) ⋅ (∑
j

Lj(X)⟨bj, z⟩) − ∑
j

Lj(X) ⋅ ⟨cj, z⟩

= ̂zA(X) ⋅ ̂zB(X) − ̂zC(X)
= h(X) ⋅ vH(X)

Let’s analyze this: Completeness
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, 
then 
with negligible probability

̂zA(X) ⋅ ̂zB(X) − ̂zC(X) ≠ h(X) ⋅ vH(X)
̂zA(r) ⋅ ̂zB(r) − ̂zC(r) = h(r) ⋅ vH(r)

Let’s analyze this: Soundness
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• Number of oracles: 2
• Number of queries: 4
• Prover work:  (due to poly mul)
• Number of rounds: 1
• Verifier checks: ~1 multiplication

O(n log n)

Let’s analyze this: Efficiency



Compiling LIPs to SNARKs



Q: What is verifier computation?
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Prover 
 (F, x, w)

h :=
̂zA ⋅ ̂zB − ̂zC

vH

Verifier 
(F, x)

z = (x, w)

QUERYQ

DECISIONb

⃗L(r) ⋅ M ∀M

 
 

⟨ ⃗L(r)A, z⟩ ⋅ ⟨ ⃗L(r)B, z⟩ − ⟨ ⃗L(r)C, z⟩
?=

⟨h, vH(r) ⋅ ⃗r ⟩

h

vH(r) ⋅ (1,r, …, rn−1)



A: !O(n)

31

Prover 
 (F, x, w)

h :=
̂zA ⋅ ̂zB − ̂zC

vH

Verifier 
(F, x)

z = (x, w)

QUERYQ

DECISIONb

⃗L(r) ⋅ M ∀M

 
 

⟨ ⃗L(r)A, z⟩ ⋅ ⟨ ⃗L(r)B, z⟩ − ⟨ ⃗L(r)C, z⟩
?=

⟨h, vH(r) ⋅ ⃗r ⟩

h

vH(r) ⋅ (1,r, …, rn−1)



Can we do better?

32

Yes, via preprocessing!



Insight: all queries are independent of prover message
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Prover 
 (F, x, w)

h :=
̂zA ⋅ ̂zB − ̂zC

vH

Setup(F)

⟨ ⃗L(r)M, z⟩ ∀M

h(r)vH(r)

Verifier(x)

QUERYQ

DECISIONb

• Problem: No soundness!



Idea: Encode in Exponent
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Setup(F)

QUERYQ

Let  be the -th column of . 

Then  is its interpolation, and 




• For each , define 


• Define 

mi i M
m̂i(X) := ⟨ ⃗L(X) , mi⟩⃗L(X) ⋅ M := (m̂1(X), …, m̂n(X))

M 𝗉𝗄M := (gm̂1(r), …, gm̂n(r))
𝗉𝗄h := (gvH(r), gr⋅vH(r), …, grn−1vH(r))



Construction with encoded queries
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Prover 
 (F, x, w)

h :=
̂zA ⋅ ̂zB − ̂zC

vH

Setup(F)

g⟨ ⃗L(r)M,z⟩ ∀M

gh(r)vH(r)

Verifier(x)

QUERYQ

DECISIONb

Q: How to perform check in exponent?



Q: How to perform check in exponent?
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We have 

We need to check 

gA := g⟨ ⃗L(r)A,z⟩

gB := g⟨ ⃗L(r)B,z⟩

gC := g⟨ ⃗L(r)C,z⟩

gh := gh(r)vH(r)

⟨ ⃗L(r)A, z⟩ ⋅ ⟨ ⃗L(r)B, z⟩ − ⟨ ⃗L(r)C, z⟩ ?= h(r)vH(r)



Decision via pairing
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Prover 
 (F, x, w)

h :=
̂zA ⋅ ̂zB − ̂zC

vH

Setup(F)

gA, gB, gC, gh Verifier(x)

QUERYQ

DECISIONb

 
 

e(gA, gB) − e(gC, g)
?=

e(gh, g)
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Assuming GGM, malicious prover can 
only compute linear combinations of pk

So it must provide a linear response to 
encoded queries

Additionally, DL ensures that prover 
learns nothing about query.

Let’s analyze this: Soundness



Summary
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Unresolved questions:
• What about public input?
• What if prover uses different oracles for ?
• What if prover’s response is affine?

A, B, C

• Proof size: 4 group elements
• Setup work: 
• Prover work: 
• Verifier work: 3 pairings

O(n log n) 𝔽 + O(n) 𝔾
O(n log n) 𝔽 + O(n) 𝔾


