Theory and Practice of Succinct Zero Knowledge Proofs

Lecture 09: SNARKs from Linear PCPs

Pratyush Mishra UPenn Fall 2023

Announcements

Next	assignment	due	Monday	10/09	midnigh

- Next discussion-oriented class 10/10
 - If you're presenting, reach out to me by this Friday 10/06!
- Project:
 - Project proposal deadline is 10/10!
 - Talk to me if you'd like to chat about project topics

PIOP + PC = SNARK

SNARKs So Far

PIOP	PC Scheme	Setup	P Time	V Time	Pf size
Marlin	KZG	Trusted	$O(n \log n)$	$O(\log n)$	~1 kB
Spartan	DL-based	Transparent	O(n)	$O(\operatorname{sqrt}(n))$	10 -100kB

How small can verifier time and proof size be?

New Recipe: LIPs 62 Linear Commitments

New Compiler

SNARK Comparison

PIOP	PC Scheme	Setup	P Time	V Time	Pf size
Marlin	KZG	Trusted	$O(n \log n)$	$O(\log n)$	~1 kB
Spartan	DL-based	Transparent	O(n)	$O(\operatorname{sqrt}(n))$	10 -100kB
LIP	LC Scheme	Setup	P Time	V Time	Pf size
Groth16	GGM	Circuit-specific trusted	$O(n \log n)$	<i>O</i> (1)	< 200B

Definition: Linear IP

Recall: PIOPs [GWC19, CHMMVW20, BFS20]

- **Completeness**: Whenever $(F, x, w) \in \mathcal{R}$, there is a strategy for P that outputs **only polynomials**, and which causes V to accept.
- Knowledge Soundness: Whenever ∇ accepts against a P that outputs only polynomials, then P "knows" w such that $(F, x, w) \in \mathcal{R}$.
- **Bounded-query ZK**: Whenever $(F, x, w) \in \mathcal{R}$, a V that makes up to b queries to polys learns nothing about w.

New: Linear IOPs [GGPR13, BCIOP13, SBVBPW13]

- **Completeness**: Whenever $(F, x, w) \in \mathcal{R}$, there is a strategy for P that outputs **only linear functions**, and which causes V to accept.
- Knowledge Soundness: Whenever V accepts against a P that outputs only linear functions, then P "knows" w such that $(F, x, w) \in \mathcal{R}$.
- **Bounded-query ZK**: Whenever $(F, x, w) \in \mathcal{R}$, a V that makes up to b queries to polys learns nothing about w.

Construction: Linear IP for R1CS

R1CS

An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

$$(F := (\mathbb{F}, n \in \mathbb{N}, A, B, C), x, w)$$

- Idea 1: Just a random vector: $\vec{r} := (1, r, r^2, ..., r^{n-1})$
 - $\langle z, \vec{r} \rangle$ doesn't seem that useful...

- Hint: Think of the lincheck PIOP!
- Idea 2: $\vec{r} \cdot M$ for each $M \in \{A, B, C\}$
 - What can we do with $\langle \vec{r}A, z \rangle, \langle \vec{r}B, z \rangle, \langle \vec{r}C, z \rangle$?

- Hint: Think of the lincheck PIOP!
- Idea 2: $\vec{r} \cdot M$ for each $M \in \{A, B, C\}$
 - What can we do with $\langle \vec{r}A, z \rangle, \langle \vec{r}B, z \rangle, \langle \vec{r}C, z \rangle$?

- Hint: Think of the lincheck PIOP!
- Idea 2: $\vec{r} \cdot M$ for each $M \in \{A, B, C\}$
 - How about checking the product?

Let's analyze this

$$\langle \vec{r}M, z \rangle = \langle \vec{r}, Mz \rangle$$

= $\sum_{i} r^{i} \langle m_{i}, z \rangle$

$$\left[M \right] = \left[\begin{array}{c} \leftarrow m_1 \rightarrow \\ \leftarrow m_n \rightarrow \end{array} \right]$$

Then we have that $\langle \vec{r}A, z \rangle \cdot \langle \vec{r}B, z \rangle$

$$= \left(\sum_{i} r^{i} \langle a_{i}, z \rangle\right) \cdot \left(\sum_{j} r^{j} \langle b_{j}, z \rangle\right)$$
$$= \sum_{i,j} r^{i+j} \cdot \langle a_{i}, z \rangle \cdot \langle b_{j}, z \rangle$$

Let's analyze this

$$= \sum_{i,j} r^{i+j} \cdot \langle a_i, z \rangle \cdot \langle b_j, z \rangle$$

$$= \sum_{i}^{i,j} r^{2i} \cdot \langle a_i, z \rangle \cdot \langle b_i, z \rangle + \sum_{i \neq j} r^{i+j} \cdot \langle a_i, z \rangle \cdot \langle b_j, z \rangle$$

$$= \langle \overrightarrow{r^2}, Cz \rangle + \text{junk}$$

Almost there! We just have to get rid of ... $O(n^2)$ junk terms \leq

Attempt #3: A Different Basis

We saw that, for each
$$M \in \{A, B, C\}$$
,
 $\langle \vec{r}M, z \rangle = \sum_{i} r^{i} \langle m_{i}, z \rangle$
This looks like a polynomial!

$$p_M(r) = \sum_i r^i \langle m_i, z \rangle$$

This is a polynomial in the *monomial basis*. Using this basis didn't work. What should we try next?

Attempt #3: Lagrange Basis!

- New idea: query for $\overrightarrow{L(r)} \cdot M := (L_1(r), L_2(r), \dots, L_n(r)) \cdot M$
 - $L_i(X)$ is *i*-th Lagrange basis poly for *n*-sized domain *H*

Let's analyze this

$$\langle \overrightarrow{L(X)}M, z \rangle = \sum_{i} L_{i}(X) \langle m_{i}, z \rangle$$

Then we have that
$$\langle \overrightarrow{L(X)}A, z \rangle \cdot \langle \overrightarrow{L(X)}B, z \rangle$$

$$\langle \overrightarrow{L(X)}A, z \rangle \cdot \langle \overrightarrow{L(X)}B, z \rangle$$

$$= \left(\sum_{i} L_{i}(X)\langle a_{i}, z\rangle\right) \cdot \left(\sum_{j} L_{j}(X)\langle b_{j}, z\rangle\right)$$
$$= \sum_{i,j} L_{i}(X)L_{j}(X) \cdot \langle a_{i}, z\rangle \cdot \langle b_{j}, z\rangle$$

Let's analyze this

$$= \sum_{i,j} L_i(X)L_j(X) \cdot \langle a_i, z \rangle \cdot \langle b_j, z \rangle$$

$$= \sum_{i}^{i,j} L_i(X)^2 \cdot \langle a_i, z \rangle \cdot \langle b_i, z \rangle + \sum_{i \neq j} L_i(X)L_j(X) \cdot \langle a_i, z \rangle \cdot \langle b_j, z \rangle$$

$$= \sum_{i}^{i} L_i(X)^2 \cdot \langle a_i, z \rangle \cdot \langle b_i, z \rangle + \text{junk}$$

Still stuck?!?! What are we doing wrong?

Idea: Remember Hadamard PIOP

What does this remind you of? $\langle \overrightarrow{L(X)}M, z \rangle = \sum_{i} L_{i}(X) \langle m_{i}, z \rangle$ This is the interpolation of Mz over H!

So after queries we have $\hat{z}_A(r), \hat{z}_B(r), \hat{z}_C(r)!$

Q: What did we do with these in Hadamard PIOP?

A: Check
$$\hat{z}_A(r) \cdot \hat{z}_B(r) - \hat{z}_C(r) = h(r) \cdot v_H(r)$$

Final Construction

Let's analyze this: Completeness

$$= \left(\sum_{i} L_{i}(X)\langle a_{i}, z \rangle\right) \cdot \left(\sum_{j} L_{j}(X)\langle b_{j}, z \rangle\right) - \sum_{j} L_{j}(X) \cdot \langle c_{j}, z \rangle$$
$$= \hat{z}_{A}(X) \cdot \hat{z}_{B}(X) - \hat{z}_{C}(X)$$
$$= h(X) \cdot v_{H}(X)$$

Let's analyze this: Soundness

$$\hat{z}_A(X) \cdot \hat{z}_B(X) - \hat{z}_C(X) \neq h(X) \cdot v_H(X),$$

then $\hat{z}_A(r) \cdot \hat{z}_B(r) - \hat{z}_C(r) = h(r) \cdot v_H(r)$
with negligible probability

Let's analyze this: Efficiency

- Number of oracles: 2
- Number of queries: 4
- Prover work: $O(n \log n)$ (due to poly mul)
- Number of rounds: 1
- Verifier checks: ~1 multiplication

Compiling LIPs to SNARKs

Q: What is verifier computation?

Can we do better?

Yes, via preprocessing!

Insight: all queries are independent of prover message

Problem: No soundness!

Idea: Encode in Exponent

Let m_i be the *i*-th column of M. Then $\hat{m}_i(X) := \langle \overrightarrow{L(X)}, m_i \rangle$ is its interpolation, and $\overrightarrow{L(X)} \cdot M := (\hat{m}_1(X), \dots, \hat{m}_n(X))$ • For each M, define $\mathsf{pk}_M := (g^{\hat{m}_1(r)}, \dots, g^{\hat{m}_n(r)})$ • Define $\mathsf{pk}_h := (g^{v_H(r)}, g^{r \cdot v_H(r)}, \dots, g^{r^{n-1}v_H(r)})$

Construction with encoded queries

Q: How to perform check in exponent?

Q: How to perform check in exponent?

We have

$$g_A := g^{\langle \overrightarrow{L(r)}A, z \rangle}$$

 $g_B := g^{\langle \overrightarrow{L(r)}B, z \rangle}$
 $g_C := g^{\langle \overrightarrow{L(r)}C, z \rangle}$
 $g_h := g^{h(r)v_H(r)}$

We need to check
$$\langle \overrightarrow{L(r)}A, z \rangle \cdot \langle \overrightarrow{L(r)}B, z \rangle - \langle \overrightarrow{L(r)}C, z \rangle \stackrel{?}{=} h(r)v_H(r)$$

Let's analyze this: Soundness

Assuming GGM, malicious prover can only compute linear combinations of pk

So it *must* provide a linear response to encoded queries

Additionally, DL ensures that prover learns nothing about query.

Summary

- Proof size: 4 group elements
- Setup work: $O(n \log n) \mathbb{F} + O(n) \mathbb{G}$
- Prover work: $O(n \log n) \mathbb{F} + O(n) \mathbb{G}$
- Verifier work: 3 pairings

Unresolved questions:

- What about public input?
- What if prover uses different oracles for *A*, *B*, *C*?
- What if prover's response is *affine*?