
Pratyush Mishra
UPenn
Fall 2023

Theory and Practice of Succinct
Zero Knowledge Proofs

Lecture 09:  
SNARKs from Linear PCPs

Announcements

• Next assignment due Monday 10/09 midnight

• Next discussion-oriented class 10/10

• If you’re presenting, reach out to me by this Friday 10/06!

• Project:

• Project proposal deadline is 10/10!

• Talk to me if you’d like to chat about project topics

2

Recap

PIOP + PC = SNARK

4

Polynomial IOPs

Polynomial
Commitment

Compiler zkSNARK

ZKP MOOC

SNARKs So Far

5

PIOP PC Scheme Setup P Time V Time Pf size
Marlin KZG Trusted O(n log n) O(log n) ~1 kB

Spartan DL-based Transparent O(n) O(sqrt(n)) 10 -100kB

How small can verifier time and proof size be?

New Recipe:
LIPs
+
Linear Commitments

New Compiler

7

Linear IPs

Linear
Commitment

Compiler zkSNARK

ZKP MOOC

SNARK Comparison

8

PIOP PC Scheme Setup P Time V Time Pf size
Marlin KZG Trusted O(n log n) O(log n) ~1 kB

Spartan DL-based Transparent O(n) O(sqrt(n)) 10 -100kB

LIP LC Scheme Setup P Time V Time Pf size
Groth16 GGM Circuit-specific

trusted O(n log n) O(1) < 200B

Definition:
Linear IP

Recall: PIOPs [GWC19, CHMMVW20, BFS20]

Prover
(F, x, w)

Verifier

(F, x)

p1
r1

…

QUERYQ

DECISIONb

• Completeness: Whenever , there is a strategy for P that
outputs only polynomials, and which causes V to accept.

• Knowledge Soundness: Whenever V accepts against a P that
outputs only polynomials, then P “knows” such that .

• Bounded-query ZK: Whenever , a V that makes up to b
queries to polys learns nothing about w.

(F, x, w) ∈ ℛ

w (F, x, w) ∈ ℛ
(F, x, w) ∈ ℛ

pt
rt

Verifier queries are
evaluation points

10

New: Linear IOPs [GGPR13, BCIOP13, SBVBPW13]

Prover
(F, x, w)

Verifier

(F, x)

L1
r1

…

QUERYQ

DECISIONb

• Completeness: Whenever , there is a strategy for P that
outputs only linear functions, and which causes V to accept.

• Knowledge Soundness: Whenever V accepts against a P that
outputs only linear functions, then P “knows” such that .

• Bounded-query ZK: Whenever , a V that makes up to b
queries to polys learns nothing about w.

(F, x, w) ∈ ℛ

w (F, x, w) ∈ ℛ
(F, x, w) ∈ ℛ

Lt
rt

Verifier queries are
vectors

11

Prover messages are
linear functions

Construction:
Linear IP for R1CS

R1CS

13

An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

[A] [B] [C][]x
w

z := ∘ =[]z []z []z
(F := (𝔽, n ∈ ℕ, A, B, C), x, w)

Attempt #1

14

Prover
(F, x, w)

Verifier
(F, x)

z = (x, w)

QUERYQ

DECISIONb

What can we put
here?

• Idea 1: Just a random vector:
• doesn’t seem that useful…

⃗r := (1,r, r2, …, rn−1)
⟨z, ⃗r⟩

Attempt #2

15

Prover
(F, x, w)

Verifier
(F, x)

z = (x, w)

QUERYQ

DECISIONb

⃗rA, ⃗rB, ⃗rC

• Hint: Think of the lincheck PIOP!
• Idea 2: for each

• What can we do with ?
⃗r ⋅ M M ∈ {A, B, C}

⟨ ⃗rA, z⟩, ⟨ ⃗rB, z⟩, ⟨ ⃗rC, z⟩

What can we put
here?

Attempt #2

16

Prover
(F, x, w)

Verifier
(F, x)

z = (x, w)

QUERYQ

DECISIONb

⃗rA, ⃗rB, ⃗rC

• Hint: Think of the lincheck PIOP!
• Idea 2: for each

• What can we do with ?
⃗r ⋅ M M ∈ {A, B, C}

⟨ ⃗rA, z⟩, ⟨ ⃗rB, z⟩, ⟨ ⃗rC, z⟩

Attempt #2

17

Prover
(F, x, w)

Verifier
(F, x)

z = (x, w)

QUERYQ

DECISIONb

⃗rA, ⃗rB, ⃗rC

• Hint: Think of the lincheck PIOP!
• Idea 2: for each

• How about checking the product?
⃗r ⋅ M M ∈ {A, B, C}

⟨ ⃗rA, z⟩ ⋅ ⟨ ⃗rB, z⟩ ?= ⟨ ⃗rC, z⟩

Let’s analyze this

18

Then we have that

⟨ ⃗rM, z⟩ = ⟨ ⃗r, Mz⟩

= ∑
i

ri⟨mi, z⟩

⟨ ⃗rA, z⟩ ⋅ ⟨ ⃗rB, z⟩

= (∑
i

ri⟨ai, z⟩) ⋅ (∑
j

r j⟨bj, z⟩)
= ∑

i, j

ri+j ⋅ ⟨ai, z⟩ ⋅ ⟨bj, z⟩

[M] []← m1 →

← mn →
=

Let’s analyze this

19

 = ∑
i, j

ri+j ⋅ ⟨ai, z⟩ ⋅ ⟨bj, z⟩

= ∑
i

r2i ⋅ ⟨ai, z⟩ ⋅ ⟨bi, z⟩ + ∑
i≠j

ri+j ⋅ ⟨ai, z⟩ ⋅ ⟨bj, z⟩

= ⟨ ⃗r2, Cz⟩ + junk

Almost there!
We just have to get rid of … junk terms 😞O(n2)

Attempt #3: A Different Basis

20

 We saw that, for each ,

This looks like a polynomial!

M ∈ {A, B, C}
⟨ ⃗rM, z⟩ = ∑

i

ri⟨mi, z⟩

pM(r) = ∑
i

ri⟨mi, z⟩

This is a polynomial in the monomial basis.
Using this basis didn’t work.
What should we try next?

Attempt #3: Lagrange Basis!

21

Prover
(F, x, w)

Verifier
(F, x)

z = (x, w)

QUERYQ

DECISIONb

⃗L(r) ⋅ M
⟨ ⃗L(r)A, z⟩ ⋅ ⟨ ⃗L(r)B, z⟩ ?= ⟨ ⃗L(r)C, z⟩

• New idea: query for
• is -th Lagrange basis poly for -sized domain

⃗L(r) ⋅ M := (L1(r), L2(r), …, Ln(r)) ⋅ M
Li(X) i n H

Let’s analyze this

22

Then we have that

⟨ ⃗L(X)M, z⟩ = ∑
i

Li(X)⟨mi, z⟩

⟨ ⃗L(X)A, z⟩ ⋅ ⟨ ⃗L(X)B, z⟩

= (∑
i

Li(X)⟨ai, z⟩) ⋅ (∑
j

Lj(X)⟨bj, z⟩)
= ∑

i, j

Li(X)Lj(X) ⋅ ⟨ai, z⟩ ⋅ ⟨bj, z⟩

23

= ∑
i, j

Li(X)Lj(X) ⋅ ⟨ai, z⟩ ⋅ ⟨bj, z⟩

= ∑
i

Li(X)2 ⋅ ⟨ai, z⟩ ⋅ ⟨bi, z⟩ + ∑
i≠j

Li(X)Lj(X) ⋅ ⟨ai, z⟩ ⋅ ⟨bj, z⟩

= ∑
i

Li(X)2 ⋅ ⟨ai, z⟩ ⋅ ⟨bi, z⟩ + junk

Let’s analyze this

Still stuck?!?!
What are we doing wrong?

Idea: Remember Hadamard PIOP

24

What does this remind you of?

This is the interpolation of over !

So after queries we have !

Q: What did we do with these in Hadamard PIOP?

A: Check

⟨ ⃗L(X)M, z⟩ = ∑
i

Li(X)⟨mi, z⟩

Mz H

̂zA(r), ̂zB(r), ̂zC(r)

̂zA(r) ⋅ ̂zB(r) − ̂zC(r) = h(r) ⋅ vH(r)

Final Construction

25

Prover
 (F, x, w)

h :=
̂zA ⋅ ̂zB − ̂zC

vH

Verifier
(F, x)

z = (x, w)

QUERYQ

DECISIONb

⃗L(r) ⋅ M ∀M

⟨ ⃗L(r)A, z⟩ ⋅ ⟨ ⃗L(r)B, z⟩ − ⟨ ⃗L(r)C, z⟩
?=

⟨h, vH(r) ⋅ ⃗r ⟩

h

vH(r) ⋅ (1,r, …, rn−1)

26

= (∑
i

Li(X)⟨ai, z⟩) ⋅ (∑
j

Lj(X)⟨bj, z⟩) − ∑
j

Lj(X) ⋅ ⟨cj, z⟩

= ̂zA(X) ⋅ ̂zB(X) − ̂zC(X)
= h(X) ⋅ vH(X)

Let’s analyze this: Completeness

27

,
then
with negligible probability

̂zA(X) ⋅ ̂zB(X) − ̂zC(X) ≠ h(X) ⋅ vH(X)
̂zA(r) ⋅ ̂zB(r) − ̂zC(r) = h(r) ⋅ vH(r)

Let’s analyze this: Soundness

28

• Number of oracles: 2
• Number of queries: 4
• Prover work: (due to poly mul)
• Number of rounds: 1
• Verifier checks: ~1 multiplication

O(n log n)

Let’s analyze this: Efficiency

Compiling LIPs to SNARKs

Q: What is verifier computation?

30

Prover
 (F, x, w)

h :=
̂zA ⋅ ̂zB − ̂zC

vH

Verifier
(F, x)

z = (x, w)

QUERYQ

DECISIONb

⃗L(r) ⋅ M ∀M

⟨ ⃗L(r)A, z⟩ ⋅ ⟨ ⃗L(r)B, z⟩ − ⟨ ⃗L(r)C, z⟩
?=

⟨h, vH(r) ⋅ ⃗r ⟩

h

vH(r) ⋅ (1,r, …, rn−1)

A: !O(n)

31

Prover
 (F, x, w)

h :=
̂zA ⋅ ̂zB − ̂zC

vH

Verifier
(F, x)

z = (x, w)

QUERYQ

DECISIONb

⃗L(r) ⋅ M ∀M

⟨ ⃗L(r)A, z⟩ ⋅ ⟨ ⃗L(r)B, z⟩ − ⟨ ⃗L(r)C, z⟩
?=

⟨h, vH(r) ⋅ ⃗r ⟩

h

vH(r) ⋅ (1,r, …, rn−1)

Can we do better?

32

Yes, via preprocessing!

Insight: all queries are independent of prover message

33

Prover
 (F, x, w)

h :=
̂zA ⋅ ̂zB − ̂zC

vH

Setup(F)

⟨ ⃗L(r)M, z⟩ ∀M

h(r)vH(r)

Verifier(x)

QUERYQ

DECISIONb

• Problem: No soundness!

Idea: Encode in Exponent

34

Setup(F)

QUERYQ

Let be the -th column of .

Then is its interpolation, and

• For each , define

• Define

mi i M
m̂i(X) := ⟨ ⃗L(X) , mi⟩⃗L(X) ⋅ M := (m̂1(X), …, m̂n(X))

M 𝗉𝗄M := (gm̂1(r), …, gm̂n(r))
𝗉𝗄h := (gvH(r), gr⋅vH(r), …, grn−1vH(r))

Construction with encoded queries

35

Prover
 (F, x, w)

h :=
̂zA ⋅ ̂zB − ̂zC

vH

Setup(F)

g⟨ ⃗L(r)M,z⟩ ∀M

gh(r)vH(r)

Verifier(x)

QUERYQ

DECISIONb

Q: How to perform check in exponent?

Q: How to perform check in exponent?

36

We have

We need to check

gA := g⟨ ⃗L(r)A,z⟩

gB := g⟨ ⃗L(r)B,z⟩

gC := g⟨ ⃗L(r)C,z⟩

gh := gh(r)vH(r)

⟨ ⃗L(r)A, z⟩ ⋅ ⟨ ⃗L(r)B, z⟩ − ⟨ ⃗L(r)C, z⟩ ?= h(r)vH(r)

Decision via pairing

37

Prover
 (F, x, w)

h :=
̂zA ⋅ ̂zB − ̂zC

vH

Setup(F)

gA, gB, gC, gh Verifier(x)

QUERYQ

DECISIONb

e(gA, gB) − e(gC, g)
?=

e(gh, g)

38

Assuming GGM, malicious prover can
only compute linear combinations of pk

So it must provide a linear response to
encoded queries

Additionally, DL ensures that prover
learns nothing about query.

Let’s analyze this: Soundness

Summary

39

Unresolved questions:
• What about public input?
• What if prover uses different oracles for ?
• What if prover’s response is affine?

A, B, C

• Proof size: 4 group elements
• Setup work:
• Prover work:
• Verifier work: 3 pairings

O(n log n) 𝔽 + O(n) 𝔾
O(n log n) 𝔽 + O(n) 𝔾

