Theory and Practice of Succinct
Zero Knowledge Proofs

Lecture 08:
Polynomial Commitments
from Bilinear Groups

Pratyush Mishra

UPenn
Fall 2023

Announcements

* First assignment due Wednesday 9/27 midnight (tomorrow!)
 First discussion-oriented class 9/28
* Project:

 List of project ideas is up on Ed.

* Project proposal deadline is 10/10!

» Talk to me if you’re having difficulty choosing a project topic

Polynomial Commitments

Recall: Polynomial Commitments

Maximum
degree D

.

SENDER

1.cm « CoMMIT(cK, p)

2.v + p(z)

3.m < OPEN(ck, cm, p, z)

SETUP

Committer key ck
Verifier key vk

cm

\ 4

3

(v, m)

J

e Completeness: \Whenever p(z) = v, R accepts.

\4

RECEIVER

CHECK(vk, cm, z, v,)

e Extractability: \Whenever R accepts, S8’s commitment cm

“contains” a polynomial p of degree at most D.

® Hiding: cm and 7 reveal no information about p other than v

Recall:
Cryptographic Groups

Cyclic Group

AsetG = {1,8,8% ...,8" %}
e g is the generator of G
e pis the order of (3

e DL: Given an arbitrary h = g%, it is difficult to compute x

Warmup:
Improved Pedersen-based
Commitment Scheme

Recall: Pedersen Commitments

Setup(n € N) — ck
1. Sample random elements g, ..., &,, 1 < G

Commit(ck,m € F; r € [Fp) — cm

1. Output cm := g"ig ... g, ""h"

Binding: from DL
Hiding: output is uniformly distributed
Additive: given comms to m,, m,, can get comm to am; + pm,

Recall: PC scheme from Pedersen Comms

Setup(d € N) — (ck, rk)
1. ck « Ped. Setup(d + 1). Output (ck, rk) = (ck, ck).

Commit(ck, p € I]:g“; relF)—cm
1. Output cm := Ped . Commit(ck, p; r)

Open(ck,p,z € F,; 1) = (7, v)
1. Output (7 := (p, 1), v := p(z))

Check(rk,cm, z,v,7) — b € {0,1}
1. Check cm = Ped . Commit(ck, p; r) and p(z) = v.

Better PC scheme from Pedersen Comms?

Setup(d € N) — (ck, rk)
1. ck « Ped. Setup(d + 1). Output (ck, rk) = (ck, ck).

Commit(ck, p € I]:g“; relF)—cm
1. Output cm := Ped . Commit(ck, p; r)

Open(ck,p,z € [Fp; r) — (7, V)
1. 777

Check(rk,cm, z,v,7) —» b € {0,1}
1. 777

10

Can we use PIOPs to design PC schemes?

Goal: Want to prove evaluation of /(X)) at point
e We want to show that f(z) = v.
e Equivalently, f(z) —v =10
e Does this remind you of something?

11

Recall: ZeroCheck PIOP

J VheH p(h)=0

(..)
Prover([Verifier(A)
_p > . 7« F
g=— qPH4r—
" p(t) = q(0)vy(7)

_ J

Key Idea: Committed ZeroCheck

J

pX) =fX)—-v
Vze{z},p(@)=0

-

.

J

Sender(f) | =
X)—v| %
gx) =" (X)_ — | —fems

Receiver

bl
-
-
-
-

r—[F

J(@) —v=q@vy(D)

We set H := {z}. Vanishing poly vy(X) = X —z.

Are we done?

No! We’re actually worse off:
we need to give evaluation proofs for f and q!

13

ldea: What if we hid 7 in
the exponent?

Warmup 2:
Trusted-Setup
Pedersen-based PC

Trusted Setup Pedersen Commitments

Setup(n € N) — ck
1. Sample random elements gy ..., ¢, It — &
n—1

1.Sample 7 < [, Output ck := (g, g", gfz, .20 L h)

Commit(ck,m € [F; r € [Fp) — cm

.8

n—1,

T'm2 T

1. Qutputcm = g'g Tl
Binding: from DL
Hiding: output is uniformly distributed
Additive: given comms to m,, m,, can get comm to am; + pm,

16

Trusted Setup Pedersen PC

Setup(d € N) — (ck, rk)
1. ck « Ped. Setup(d + 1). Output (ck, rk) = (ck, ck).

Commit(ck, p € I]:g“; relF)—cm
1. Output cm := Ped . Commit(ck, p; r) = g?Oh’

Open(ck,p,z € [Fp; r) — (7, V)
1. 777

Check(rk,cm, z,v,7) — b € {0,1}
1. 777

17

Key Idea: Committed ZeroCheck

pX) =fX)—-v
Vze{z},plx) =0

r ~ N
Sender(f) Receiver
cmf >]
) z L| 1. cm, :=cm,- Commit(—z)
o =L0"V e : _ gl
_ X — <
2.cm, = g4®
3.cm,, =g
N\ Y,

We have evaluations at 7 in the exponent.
Need to check f(7) — z = q(7) - vy(7).
How to multiply evaluations and check equality?

18

Groups allow addition in the exponent
g -g=g"
How to get multiplication?

We want operation
op such that

op(g*,g’) = g"

Unfortunately we don’t know of any
such group + operation combinations

Bilinear Groups/
Pairing-friendly Groups

Bilinear groups

(pa Gla 8> GTa 6)

« (3 is called the base group

» (57 is called the target group

= These are different groups!

» G, G, are both multiplicative cyclic groups of order p,

= g is the generator of G.
» e(g",g”): GX G — G is called a pairing
= Bilinear: e(g", 8”) = e(g,8™) = e(g™,8) = e(g,8)"

Kate-Zaverucha-Goldberg
Commitment Scheme

KZG Polynomial Commitment
Setup(d € N) — (ck, rk)
1. ck « Ped.Setup(d + 1). Output (ck, rk) = (ck, (g, g%)).

Commit(ck, f € Fi*!) — cm
1. Output cm := Ped . Commit(ck,) = g/

Open(ck, f,z € F,) = (%, v)

1. Output (x,v) := (Ped . Commit(ck, g(X) := JX)) = gd®

—Z

Check(rk,cm, z,v,7) —» b € {0,1}
1. 777

23

KZG Polynomial Commitment
Setup(d € N) — (ck, rk)
1. ck « Ped.Setup(d + 1). Output (ck, rk) = (ck, (g, g%)).

Commit(ck, f € Fi*!) — cm
1. Output cm := Ped . Commit(ck,) = g/

Open(ck, f,z € F,) = (%, v)

1. Output (x,v) := (Ped . Commit(ck, g(X) := JX)) = gd®

—Z

Check(rk,cm, z,v,7) —» b € {0,1}
1. Checke(cm:-g7", g) < e(r,g")

24

Completeness

Check(rk,cm,z,v,7) - b € {0,1}
1. Checke(cm:-g7", g) = e(r,g"™%)

If Sender is honest, then we can rewrite the check as follows:

e(cm-g7", g) Z e(m,g"%)

? e
e(g/97, g) = e(g1®, g7%)

(0)—v (7)-(7—2)

e(g,8) @ = e(g, g)"

f(T) v (T Z)

e(g,) = e(g, g)
e(g, g}/ = e(g, g/

25

Knowledge Soundness

e Goal: We want adv. sender & to be able to produce a valid proof only if
it knows f such that cmy.

¢ |Intuition:
e Assume f(2) # V.
e 1NEN g(X) = J&) v Is a rational function, and not a polynomial.

—Z
e Remember that GG only allows additions in the exponent, not
multiplications or divisions (without pairing)
e So & can't produce commitment to g(X)
e Formalized via a proof in the Generic Group Model

e GGM says that whenever & produces a group element, it must
provide an explanation in terms of linear combination of previous
group elements.

26

KZG Demo

“Type-3” Bilinear groups

(P, Gy, 8, Gy, 1, Gy, e)

» G, and G, are called the base groups

« (57 is called the target group

» Gy, G,, Gy are all multiplicative cyclic groups of order p,

= g is the generator of (3, &1 is the generator of (3,.
= e(gh,h): Gy X G, = Gyis called a pairing
= Bilinear: e(g*, h’) = e(g,h’) = e(g*, h) = e(g, h)"

