Theory and Practice of Succinct Zero Knowledge Proofs

Lecture 08:
Polynomial Commitments from Bilinear Groups

Announcements

- First assignment due Wednesday 9/27 midnight (tomorrow!)
- First discussion-oriented class 9/28
- Project:
- List of project ideas is up on Ed.
- Project proposal deadline is $10 / 10$!
- Talk to me if you're having difficulty choosing a project topic

Polynomial Commitments

Recall: Polynomial Commitments

- Completeness: Whenever $p(\boldsymbol{z})=v, \mathbf{R}$ accepts.
- Extractability: Whenever \mathbf{R} accepts, S's commitment cm "contains" a polynomial p of degree at most D.
- Hiding: cm and π reveal no information about p other than v

Recall: Cryptographic Groups

Cyclic Group

A set $\mathbb{G}:=\left\{1, g, g^{2}, \ldots, g^{p-2}\right\}$

- g is the generator of \mathbb{G}
- p is the order of \mathbb{G}
- DL: Given an arbitrary $h=g^{x}$, it is difficult to compute x

Warmup:

 Improved Pedersen-based Commitment Scheme
Recall: Pedersen Commitments

Setup $(n \in \mathbb{N}) \rightarrow c k$

1. Sample random elements $g_{1}, \ldots, g_{n}, h \leftarrow \mathbb{G}$

Commit(ck, $\left.m \in \mathbb{F}_{p}^{n}, r \in \mathbb{F}_{p}\right) \rightarrow \mathrm{cm}$

1. Output $\mathrm{cm}:=g_{1}^{m_{1}} g_{2}^{m_{2}} \ldots g_{n}^{m_{n}} h^{r}$

Binding: from DL
Hiding: output is uniformly distributed
Additive: given comms to m_{1}, m_{2}, can get comm to $\alpha m_{1}+\beta m_{2}$

Recall: PC scheme from Pedersen Comms

$\operatorname{Setup}(d \in \mathbb{N}) \rightarrow(c k, r k)$

1. $\mathrm{ck} \leftarrow \operatorname{Ped} . \operatorname{Setup}(d+1)$. Output $(c k, r k)=(c k, c k)$.

Commit(ck, $\left.p \in \mathbb{F}_{p}^{d+1} ; r \in \mathbb{F}_{p}\right) \rightarrow \mathrm{cm}$

1. Output $\mathrm{cm}:=$ Ped. Commit(ck, $p ; r$)

Open $\left(\mathrm{ck}, p, z \in \mathbb{F}_{p} ; r\right) \rightarrow(\pi, v)$

1. Output $(\pi:=(p, r), v:=p(z))$

Check(rk, cm, $z, v, \pi) \rightarrow b \in\{0,1\}$

1. Check $\mathrm{cm}=$ Ped. Commit(ck, $p ; r)$ and $p(z)=v$.

Better PC scheme from Pedersen Comms?

$\operatorname{Setup}(d \in \mathbb{N}) \rightarrow(\mathrm{ck}, \mathrm{rk})$

1. $\mathrm{ck} \leftarrow \operatorname{Ped} . \operatorname{Setup}(d+1)$. Output $(\mathrm{ck}, \mathrm{rk})=(\mathrm{ck}, \mathrm{ck})$.

Commit(ck, $\left.p \in \mathbb{F}_{p}^{d+1} ; r \in \mathbb{F}_{p}\right) \rightarrow \mathrm{cm}$

1. Output $\mathrm{cm}:=$ Ped. Commit(ck, $p ; r$)

Open $\left(\mathrm{ck}, p, z \in \mathbb{F}_{p} ; r\right) \rightarrow(\pi, v)$

1. ???

Check(rk, cm, $z, v, \pi) \rightarrow b \in\{0,1\}$

1. ???

Can we use PIOPs to design PC schemes?

Goal: Want to prove evaluation of $f(X)$ at point z

- We want to show that $f(z)=v$.
- Equivalently, $f(z)-v=0$
- Does this remind you of something?

Recall: ZeroCheck PIOP

Key Idea: Committed ZeroCheck

$$
p(X):=f(X)-v
$$

$$
\forall z \in\{z\}, p(z)=0
$$

We set $H:=\{z\}$. Vanishing poly $v_{H}(X)=X-z$.

Are we done?

No! We're actually worse off: we need to give evaluation proofs for f and q !

Idea: What if we hid τ in the exponent?

Warmup 2: Trusted-Setup Pedersen-based PC

Trusted Setup Pedersen Commitments

$\operatorname{Setup}(n \in \mathbb{N}) \rightarrow c k$

1. Sample random elements $g_{0}, \ldots, g_{n}, h \leftarrow \mathbb{G}$
2. Sample $\tau \leftarrow \mathbb{F}_{p}$. Output $\mathrm{ck}:=\left(g, g^{\tau}, g^{\tau^{2}}, \ldots, g^{\tau^{n-1}}, h\right)$

Commit(ck, $\left.m \in \mathbb{F}_{p}^{n} ; r \in \mathbb{F}_{p}\right) \rightarrow \mathrm{cm}$

1. Output $\mathrm{cm}:=g^{m_{1}} g^{\tau \cdot m_{2}} \ldots g^{\tau^{n-1} \cdot m_{n}} h^{r}$

Binding: from DL
Hiding: output is uniformly distributed
Additive: given comms to m_{1}, m_{2}, can get comm to $\alpha m_{1}+\beta m_{2}$

Trusted Setup Pedersen PC

$\operatorname{Setup}(d \in \mathbb{N}) \rightarrow(\mathrm{ck}, \mathrm{rk})$

1. $\mathrm{ck} \leftarrow \operatorname{Ped} . \operatorname{Setup}(d+1)$. Output $(c k, r k)=(c k, c k)$.

Commit(ck, $\left.p \in \mathbb{F}_{p}^{d+1} ; r \in \mathbb{F}_{p}\right) \rightarrow \mathrm{cm}$

1. Output $\mathrm{cm}:=$ Ped. Commit $(\mathrm{ck}, p ; r)=g^{p(\tau)} h^{r}$

Open $\left(\mathrm{ck}, p, z \in \mathbb{F}_{p} ; r\right) \rightarrow(\pi, v)$

1. ???

Check(rk, cm, $z, v, \pi) \rightarrow b \in\{0,1\}$

1. ???

Key Idea: Committed ZeroCheck

We have evaluations at τ in the exponent. Need to check $f(\tau)-z=q(\tau) \cdot v_{H}(\tau)$.
How to multiply evaluations and check equality?

Groups allow addition in the exponent

$$
g^{x} \cdot g^{y}=g^{x+y}
$$

How to get multiplication?

We want operation op such that

$$
\mathrm{op}\left(g^{x}, g^{y}\right)=g^{x y}
$$

Unfortunately we don't know of any such group + operation combinations

Bilinear Groups/
 Pairing-friendly Groups

Bilinear groups

- $\left(p, \mathbb{G}_{1}, g, \mathbb{G}_{T}, e\right)$
- \mathbb{G} is called the base group
- \mathbb{G}_{T} is called the target group
- These are different groups!
- $\mathbb{G}, \mathbb{G}_{T}$ are both multiplicative cyclic groups of order p,
- g is the generator of \mathbb{G}.
- $e\left(g^{x}, g^{y}\right): \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{T}$ is called a pairing
- Bilinear: $e\left(g^{x}, g^{y}\right)=e\left(g, g^{x y}\right)=e\left(g^{x y}, g\right)=e(g, g)^{x y}$

Kate-Zaverucha-Goldberg Commitment Scheme

KZG Polynomial Commitment

$\operatorname{Setup}(d \in \mathbb{N}) \rightarrow(\mathrm{ck}, \mathrm{rk})$

1. $\mathrm{ck} \leftarrow \operatorname{Ped} . \operatorname{Setup}(d+1)$. Output $(\mathrm{ck}, \mathrm{rk})=\left(\mathrm{ck},\left(g, g^{\tau}\right)\right)$.

Commit(ck, $\left.f \in \mathbb{F}_{p}^{d+1}\right) \rightarrow \mathrm{cm}$

1. Output $\mathrm{cm}:=$ Ped. Commit(ck, $f)=g^{f(\tau)}$
$\operatorname{Open}\left(\mathrm{ck}, f, z \in \mathbb{F}_{p}\right) \rightarrow(\pi, v)$
2. Output $(\pi, v):=\left(\right.$ Ped. Commit $\left(\mathrm{ck}, q(X):=\frac{f(X)}{X-z}\right)=g^{q(\tau)}$

Check(rk, cm, $z, v, \pi) \rightarrow b \in\{0,1\}$

1. ???

KZG Polynomial Commitment

$\operatorname{Setup}(d \in \mathbb{N}) \rightarrow(\mathrm{ck}, \mathrm{rk})$

1. $\mathrm{ck} \leftarrow \operatorname{Ped} . \operatorname{Setup}(d+1)$. Output $(\mathrm{ck}, \mathrm{rk})=\left(\mathrm{ck},\left(g, g^{\tau}\right)\right)$.

Commit(ck, $\left.f \in \mathbb{F}_{p}^{d+1}\right) \rightarrow \mathrm{cm}$

1. Output $\mathrm{cm}:=$ Ped. Commit(ck, $f)=g^{f(\tau)}$
$\operatorname{Open}\left(\mathrm{ck}, f, z \in \mathbb{F}_{p}\right) \rightarrow(\pi, v)$
2. Output $(\pi, v):=\left(\right.$ Ped. Commit $\left(\mathrm{ck}, q(X):=\frac{f(X)}{X-z}\right)=g^{q(\tau)}$

Check(rk, cm, $z, v, \pi) \rightarrow b \in\{0,1\}$

1. Check $e\left(\mathrm{~cm} \cdot g^{-v}, g\right) \stackrel{?}{=} e\left(\pi, g^{\tau-z}\right)$

Completeness

Check(rk, cm, $z, v, \pi) \rightarrow b \in\{0,1\}$

1. Check $e\left(\mathrm{~cm} \cdot g^{-v}, g\right) \stackrel{?}{=} e\left(\pi, g^{\tau-z}\right)$

If Sender is honest, then we can rewrite the check as follows:

$$
\begin{aligned}
e\left(\mathrm{~cm} \cdot g^{-v}, g\right) & \stackrel{?}{=} e\left(\pi, g^{\tau-z}\right) \\
e\left(g^{f(\tau)-v}, g\right) & \stackrel{?}{=} e\left(g^{q(\tau)}, g^{\tau-z}\right) \\
e(g, g)^{f(\tau)-v} & \stackrel{?}{=} e(g, g)^{q(\tau) \cdot(\tau-z)} \\
e(g, g)^{f(\tau)-v} & \stackrel{?}{=} e(g, g)^{\frac{f(\tau)-v}{\tau-z} \cdot(\tau-z)} \\
e(g, g)^{f(\tau)-v} & \stackrel{?}{=} e(g, g)^{f(\tau)-v}
\end{aligned}
$$

Knowledge Soundness

- Goal: We want adv. sender \mathscr{A} to be able to produce a valid proof only if it knows f such that cm_{f}.
- Intuition:
- Assume $f(z) \neq v$.
- Then $q(X)=\frac{f(X)-v}{X-z}$ is a rational function, and not a polynomial.
- Remember that \mathbb{G} only allows additions in the exponent, not multiplications or divisions (without pairing)
- So \mathscr{A} can't produce commitment to $q(X)$
- Formalized via a proof in the Generic Group Model
- GGM says that whenever \mathscr{A} produces a group element, it must provide an explanation in terms of linear combination of previous group elements.

KZG Demo

"Type-3" Bilinear groups

- $\left(p, \mathbb{G}_{1}, g, \mathbb{G}_{2}, h, \mathbb{G}_{T}, e\right)$
- \mathbb{G}_{1} and \mathbb{G}_{2} are called the base groups
- \mathbb{G}_{T} is called the target group
- $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}$ are all multiplicative cyclic groups of order p,
- g is the generator of \mathbb{G}_{1}, h is the generator of \mathbb{G}_{2}.
- $e\left(g^{x}, h^{y}\right): \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$ is called a pairing
- Bilinear: $e\left(g^{x}, h^{y}\right)=e\left(g, h^{x y}\right)=e\left(g^{x y}, h\right)=e(g, h)^{x y}$

