Theory and Practice of Succinct
Zero Knowledge Proofs

Lecture 07:
Polynomial Commitments from
Discrete Logarithms

Pratyush Mishra

UPenn
Fall 2023

Announcements

* Project:
» List of project ideas is up on Ed.
* Project proposal deadline is 10/10!
* Presentations:
* First discussion-oriented class next week, 09/28.
« Will put discussion questions on Canvas over the weekend.

Polynomial Commitments

Recall: Polynomial Commitments

Maximum
degree D

.

SENDER

1.cm « CoMMIT(cK, p)

2.v + p(z)

3.m < OPEN(ck, cm, p, z)

SETUP

Committer key ck
Verifier key vk

cm

\ 4

3

(v, m)

J

e Completeness: \Whenever p(z) = v, R accepts.

\4

RECEIVER

CHECK(vk, cm, z, v,)

e Extractability: \Whenever R accepts, S8’s commitment cm

“contains” a polynomial p of degree at most D.

® Hiding: cm and 7 reveal no information about p other than v

Cryptographic Groups

Group

A set G and an operation *

1.

Closure: Foralla, be G,a « be G
Associativity: For all a, b,c € G, (a * b)* ¢ = a * (b * ¢)

ldentity: There exists a unigue element e € G s.t. for every a € G,
exa=axe=d.

Inverse: Foreacha e G, thereexists be G st.axb=bxa=c¢e

integers { ..., —2, —1,0,1,2,...} under +

positive integers mod prime p : {1,2,...,p — 1} under x
elliptic curves

Generator of a group

= An element g that generates all elements in the
group by taking all powers of g

Examples: Fx := {1,2,3,4,5,6}
1 _ 1. 2 _ N. 3 _
3'=3; 3=2; 3°=6 od 7
3*=4; 3=5; 3°=1

Discrete logarithm assumption

A group G has an alternative representahon as the
powers of the generator g: {g, g% ¢°,..., g’}

Discrete logarithm problem:
givenye G, findx s.t. gt=y
Example: Find x such that 3* = 4 mod 7

Discrete-log assumption: discrete-log problem is
computationally hard

Prime-order groups

= We will use only prime-order groups,
.e. groups where |G| is a large prime.

= Main examples of such groups are elliptic curve groups.
= We will call the field I]:p the scalar field of the group.

Pedersen
Commitment
Scheme

Pedersen Commitments

Setup(n € N) — ck
1. Sample random elements g, ..., &,, 1 < G

Commit(ck,m € F;r €) — cm

1. Outputcm := g "g 2. .. g, "h'

Binding
Goal: For all efficient adv. <,
ck « Setup(n) -0
(m,r,m’,r") « d(ck) ~
Proof: We will reduce to hardness of DL. Assume that & did

indeed find breaking (m, r,m’, r’). Let's construct &% that breaks
DL. Assume thatn = 1.

Pr |Commit(m; r) = Commit(m’; r’) :

Key idea: Let h = g*. Then - P N
gmhl’ — gm hr — gm+xi” — gm +xr 1) (m, 7, m/, r/) — le(Ck — (g, h))
m—m' 2. Out utx—m_m/
Can recover x = — U =
r —r

\ J

Hiding
Goal: For all m, m’, and all adv. &,
A (Commit(m;r)) = A (Commit(m’; r'))

Proof idea: Basically one-time pad!
Let cm := Commit(ck, m;r).Leth = g*.
Then, for any m’, there exists r’ such that cm := Commit(ck, m’; r’) .

m—m'

We could compute it, if we knew x: r' = +r

X

[Note: this doesn'’t break binding, because & doesn’t know X

13

Additive Homomorphism

Let cm and cm’ be commitments to m and m’ wrt r and 7.
Thencm 4+ cm’is a commitmenttom +m’ wrt r + r’

cm:=g"...g,"h" +cm' :=g".. g "h"

m1+mi mn+mr’lh r+r’

=g g,
= Commit(ck,m +m'; r + r’)

14

PC from DL-hard groups

PC scheme from Pedersen Comms

Setup(d € N) — (ck, rk)
1.

Commit(ck,p € F;*';r € F,) — cm
1.

Open(ck,p,z € F;7) = (7, V)
1.

Check(rk,cm, z,v,7) - b € {0,1}
1.

PC scheme from Pedersen Comms

Setup(d € N) — (ck, rk)
1. ck « Ped. Setup(d + 1). Output (ck, rk) = (ck, ck).

PC scheme from Pedersen Comms

Setup(d € N) — (ck, rk)
1. ck « Ped. Setup(d + 1). Output (ck, rk) = (ck, ck).

Commit(ck, p € I]:g“; relF)—cm
1. Output cm := Ped . Commit(ck, p; r)

PC scheme from Pedersen Comms

Setup(d € N) — (ck, rk)
1. ck « Ped. Setup(d + 1). Output (ck, rk) = (ck, ck).

Commit(ck, p € I]:g“; relF)—cm
1. Output cm := Ped . Commit(ck, p; r)

Open(Ck,p,Z = H:p, 7") — (ﬂa V)
1. Output (7 := (p, 1), v := p(z))

Completeness

Follows from correctness of Pedersen:
recomputing the commitment works.

20

Extractability

Follows from binding of Pedersen.

g &(ck, z) A

1. Invoke cm « /(ck)

2. Get(r = (p;r),v) « d(2).
3. Output p.

_ W,

& outputs incorrect p if and only if & can provide a different opening for cm

Hiding

Follows from hiding of Pedersen?

cm is perfectly hiding, but 7 = (p, r) reveals polynomial!

22

Efficiency

cm is succinct (single GG element), but 7 = (p, r) is O(d)!

Better PC from DL

PC scheme from [BCGGP16]

Key idea: write polynomial as a \/ﬁ X \/E matrix, where n is num. coeffs

([a, e Q)
| e oy

P = :
\am(m_l) e Clm2)

Q: How to evaluate at z in matrix form?

(Cll .o am \ (1 \
p(Z) — (1, Zm, o Zm(m_l)) Ayt 1 vee Aoy Z
\am(m_l) oo am2) \Zm_lj

PC scheme from [BCGGP16]

Setup(d € N) — (ck, rk)
1. ¢k « Ped.Setup(/d + 1). Output (ck, rk) = (ck, ck).

PC scheme from [BCGGP16]

Setup(d € N) — (ck, rk)
1. ck « Ped.Setup(d + 1). Output (ck, rk) = (ck, ck).

Commit(ck, p € [Fg“) —cm

(a, ce Q)
a a
: : +1 2
1. Write p as matrix p = " "
\am(m_l) .o am2)
2. Use Pedersen to commit to rows, obtaining cmy, ..., cm,,

cmy
3. Outputcm = :
cm,, .

PC scheme from [BCGGP16]

Open(ck,p,z € F; 1) — (7,v)

cmy
1. Recompute cm := :
cm,,

2. Compute 7 := (1,27, ..., z™"=1)
(=)

3. Compute d = (1,2, ..., 7" 1)

I ...

Q

\ ")
4. Output (7 := a, p(z))

PC scheme from [BCGGP16]

Check(ck,cm,z,v,7) = b

cmy
1. Parse cm := < : > and 7 = (pf,a)

cm,,
2. Compute 7 := (1,77, ..., z™m=D)

cmj
3. Compute pf = (1,7, ...,Zm(m_l))< : >

cm,),
4. Check pf = Ped.Commit(ck,a)
5. Checkv ={(d,(l,z,...,2™" "))

Completeness

Follows from homomorphism of Pedersen:

(cmp = Ped . Commit(Cka 6_1)1) \

1. Ifcm =

\cm,; = Ped. Commit(ck, Eim))

cmy (C_il\
2. Then pf := (1,7, ...,zm(m_l))< > commitsto @ = (1,27, ...,z)|
cm,, \C_im)

3. Additionally, by construction, a(z) = v

30

Extractability

Follows from binding of Pedersen + rewinding

. Extractor rewinds & n times, each time obtaining an evaluation at different
points.

. This gives us n linear equations in n unknowns, which we can solve.
. Each iteration will be valid unless & breaks DL

31

Hiding

Follows from hiding of Pedersen?

cm is perfectly hiding, but 7 = (a)
reveals polynomial (but maybe less info?)

32

Efficiency

cm is \/c_i G elements, and 7 is \/;l |, elements.
Additionally, Check does only O(\/c_l’) work!

33

