Theory and Practice of Succinct Zero Knowledge Proofs

Lecture 07:
Polynomial Commitments from
Discrete Logarithms

Announcements

Project:

- List of project ideas is up on Ed.
- Project proposal deadline is 10/10!

Presentations:

- First discussion-oriented class next week, 09/28.
- · Will put discussion questions on Canvas over the weekend.

Polynomial Commitments

Recall: Polynomial Commitments

- Completeness: Whenever p(z) = v, **R** accepts.
- **Extractability**: Whenever **R** accepts, **S**'s commitment **cm** "contains" a polynomial *p* of degree at most *D*.
- **Hiding**: cm and π reveal *no* information about p other than v

Cryptographic Groups

Group

A set G and an operation *

- 1. Closure: For all $a, b \in \mathbb{G}$, $a * b \in \mathbb{G}$
- 2. Associativity: For all $a, b, c \in \mathbb{G}$, (a * b) * c = a * (b * c)
- 3. Identity: There exists a unique element $e \in \mathbb{G}$ s.t. for every $a \in \mathbb{G}$, e * a = a * e = a.
- 4. Inverse: For each $a \in \mathbb{G}$, there exists $b \in \mathbb{G}$ s.t. a * b = b * a = e
- E.g.: integers $\{ ..., -2, -1, 0, 1, 2, ... \}$ under + positive integers mod prime $p : \{1, 2, ..., p-1\}$ under \times elliptic curves

Generator of a group

 An element g that generates all elements in the group by taking all powers of g

Examples:
$$\mathbb{F}_7^* := \{1,2,3,4,5,6\}$$

 $3^1 = 3; \quad 3^2 = 2; \quad 3^3 = 6$
 $3^4 = 4; \quad 3^5 = 5; \quad 3^6 = 1$ mod 7

Discrete logarithm assumption

- A group G has an alternative representation as the powers of the generator $g: \{g, g^2, g^3, ..., g^{p-1}\}$
- Discrete logarithm problem:

```
given y \in \mathbb{G}, find x s.t. g^x = y
```

- Example: Find x such that $3^x = 4 \mod 7$
- Discrete-log assumption: discrete-log problem is computationally hard

Prime-order groups

- We will use only *prime-order groups*, i.e. groups where | G | is a large prime.
- Main examples of such groups are elliptic curve groups.
- We will call the field \mathbb{F}_p the *scalar field* of the group.

Pedersen Commitment Scheme

Pedersen Commitments

$$\mathsf{Setup}(n \in \mathbb{N}) \to \mathsf{ck}$$

1. Sample random elements $g_1, ..., g_n, h \leftarrow \mathbb{G}$

$$Commit(ck, m \in \mathbb{F}_p^n; r \in \mathbb{F}_p) \to cm$$

1. Output **cm** := $g_1^{m_1}g_2^{m_2}...g_n^{m_n}h^r$

Binding

Goal: For all efficient adv. \mathscr{A} ,

$$\Pr\left[\mathsf{Commit}(m;r) = \mathsf{Commit}(m';r') : \frac{\mathsf{ck} \leftarrow \mathsf{Setup}(n)}{(m,r,m',r') \leftarrow \mathscr{A}(\mathsf{ck})}\right] \approx 0$$

Proof: We will reduce to hardness of DL. Assume that \mathscr{A} did indeed find breaking (m, r, m', r'). Let's construct \mathscr{B} that breaks DL. Assume that n = 1.

Key idea: Let $h = g^x$. Then

$$g^m h^r = g^{m'} h^{r'} \Longrightarrow g^{m+xr} = g^{m'+xr'}$$
Can recover $x = \frac{m - m'}{r' - r}$

$$\mathcal{B}(g,h)$$
1. $(m,r,m',r') \leftarrow \mathcal{A}(\mathsf{ck} = (g,h))$
2. Output $x = \frac{m-m'}{r'-r}$

Hiding

Goal: For all m, m', and all adv. \mathscr{A} , $\mathscr{A}(\mathsf{Commit}(m; r)) = \mathscr{A}(\mathsf{Commit}(m'; r'))$

Proof idea: Basically one-time pad!

Let cm := Commit(ck, m; r). Let $h = g^x$.

Then, for any m', there exists r' such that cm := Commit(ck, m'; r').

We could compute it, if we knew x: $r' = \frac{m - m'}{x} + r$

[Note: this doesn't break binding, because $\mathscr A$ doesn't know x

Additive Homomorphism

Let **cm** and **cm** be commitments to m and m' wrt r and r'. Then **cm** + **cm** is a commitment to m + m' wrt r + r'

cm :=
$$g_1^{m_1}...g_n^{m_n}h^r + \text{cm}' := g_1^{m'_1}...g_n^{m'_n}h^{r'}$$

= $g_1^{m_1+m'_1}...g_n^{m_n+m'_n}h^{r+r'}$
= Commit(ck, $m + m'$; $r + r'$)

PC from DL-hard groups

```
Setup(d \in \mathbb{N}) \to (\mathsf{ck}, \mathsf{rk})
1.
```

Commit(ck, $p \in \mathbb{F}_p^{d+1}$; $r \in \mathbb{F}_p$) \to cm

Open(ck,
$$p, z \in \mathbb{F}_p; r) \to (\pi, v)$$
1.

Check(rk, cm, z, v, π) $\rightarrow b \in \{0,1\}$

```
Setup(d \in \mathbb{N}) \to (\mathsf{ck}, \mathsf{rk})
1. \mathsf{ck} \leftarrow \mathsf{Ped} . \mathsf{Setup}(d+1) . \mathsf{Output} (\mathsf{ck}, \mathsf{rk}) = (\mathsf{ck}, \mathsf{ck}) .
```

Commit(ck,
$$p \in \mathbb{F}_p^{d+1}$$
; $r \in \mathbb{F}_p$) \to cm

Open(ck,
$$p, z \in \mathbb{F}_p; r) \to (\pi, v)$$
1.

Check(rk, cm,
$$z$$
, v , π) $\rightarrow b \in \{0,1\}$

```
Setup(d \in \mathbb{N}) \to (\mathsf{ck}, \mathsf{rk})
1. \mathsf{ck} \leftarrow \mathsf{Ped} . \mathsf{Setup}(d+1). Output (\mathsf{ck}, \mathsf{rk}) = (\mathsf{ck}, \mathsf{ck}).
```

Commit(ck, $p \in \mathbb{F}_p^{d+1}$; $r \in \mathbb{F}_p$) \to cm 1. Output cm := Ped . Commit(ck, p; r)

Open(ck,
$$p, z \in \mathbb{F}_p; r) \to (\pi, v)$$
1.

Check(rk, cm, z, v, π) $\rightarrow b \in \{0,1\}$ 1.

```
Setup(d \in \mathbb{N}) \to (\mathsf{ck}, \mathsf{rk})
1. \mathsf{ck} \leftarrow \mathsf{Ped} . \mathsf{Setup}(d+1). Output (\mathsf{ck}, \mathsf{rk}) = (\mathsf{ck}, \mathsf{ck}).
```

$$\mathsf{Commit}(\mathsf{ck}, p \in \mathbb{F}_p^{d+1}; r \in \mathbb{F}_p) \to \mathsf{cm}$$

1. Output $cm := Ped \cdot Commit(ck, p; r)$

Open(ck,
$$p, z \in \mathbb{F}_p; r) \to (\pi, v)$$

1. Output $(\pi := (p, r), v := p(z))$

Check(rk, cm,
$$z$$
, v , π) $\rightarrow b \in \{0,1\}$

Completeness

Follows from correctness of Pedersen: recomputing the commitment works.

Extractability

Follows from binding of Pedersen.

$$\mathscr{E}(\mathsf{ck},z)$$

- $\mathcal{E}(\mathsf{ck},z)$ 1. Invoke $\mathsf{cm} \leftarrow \mathcal{A}(\mathsf{ck})$ 2. Get $(\pi = (p;r),v) \leftarrow \mathcal{A}(z)$.
 3. Output p.

 \mathscr{E} outputs incorrect p if and only if \mathscr{A} can provide a different opening for cm

Hiding

Follows from hiding of Pedersen?

cm is perfectly hiding, but $\pi = (p, r)$ reveals polynomial!

Efficiency

cm is succinct (single \mathbb{G} element), but $\pi = (p, r)$ is O(d)!

Better PC from DL

Key idea: write polynomial as a $\sqrt{n} \times \sqrt{n}$ matrix, where n is num. coeffs

$$p = \begin{pmatrix} a_1 & \dots & a_m \\ a_{m+1} & \dots & a_{2m} \\ \vdots & & & \\ a_{m(m-1)} & \dots & a_{m^2} \end{pmatrix}$$

Q: How to evaluate at z in matrix form?

$$p(z) = (1, z^m, ..., z^{m(m-1)}) \begin{pmatrix} a_1 & ... & a_m \\ a_{m+1} & ... & a_{2m} \\ \vdots & & \vdots \\ a_{m(m-1)} & ... & a_{m^2} \end{pmatrix} \begin{pmatrix} 1 \\ z \\ \vdots \\ z^{m-1} \end{pmatrix}$$

```
Setup(d \in \mathbb{N}) \to (\mathsf{ck}, \mathsf{rk})
1. \mathsf{ck} \leftarrow \mathsf{Ped} \cdot \mathsf{Setup}(\sqrt{d+1}). Output (\mathsf{ck}, \mathsf{rk}) = (\mathsf{ck}, \mathsf{ck}).
```

Commit(ck,
$$p \in \mathbb{F}_p^{d+1}$$
) \to cm

 $\mathsf{Setup}(d \in \mathbb{N}) \to (\mathsf{ck}, \mathsf{rk})$

1. $ck \leftarrow Ped . Setup(d + 1)$. Output (ck, rk) = (ck, ck).

 $\mathsf{Commit}(\mathsf{ck}, p \in \mathbb{F}_p^{d+1}) \to \mathsf{cm}$

1. Write
$$p$$
 as matrix $p = \begin{pmatrix} a_1 & \dots & a_m \\ a_{m+1} & \dots & a_{2m} \\ \vdots & & & \\ a_{m(m-1)} & \dots & a_{m^2} \end{pmatrix}$

- 2. Use Pedersen to commit to rows, obtaining $cm_1, ..., cm_m$
- 3. Output $cm := \begin{pmatrix} cm_1 \\ \vdots \\ cm_m \end{pmatrix}$

Open(ck, $p, z \in \mathbb{F}_p; r) \to (\pi, v)$

- 1. Recompute $\mathbf{cm} := \begin{pmatrix} \mathbf{cm}_1 \\ \vdots \\ \mathbf{cm}_m \end{pmatrix}$ 2. Compute $\vec{z} := (1, z^m, ..., z^{m(m-1)})$
- 2. Compute z := (1, 2, ..., z)3. Compute $\vec{a} = (1, z^m, ..., z^{m(m-1)}) \begin{pmatrix} \vec{a}_1 \\ \vdots \\ \vec{a}_m \end{pmatrix}$
 - 4. Output $(\pi := \vec{a}, p(z))$

Check(ck, cm, z, v, π) $\rightarrow b$

1. Parse cm :=
$$\begin{pmatrix} cm_1 \\ \vdots \\ cm_m \end{pmatrix}$$
 and $\pi = (pf, \vec{a})$

- 2. Compute $\vec{z} := (1, z^m, ..., z^{m(m-1)})$
- 3. Compute $\mathbf{pf} = (1, z^m, ..., z^{m(m-1)}) \begin{pmatrix} \mathbf{cm}_1 \\ \vdots \\ \mathbf{cm}_m \end{pmatrix}$
- 4. Check $pf = Ped \cdot Commit(ck, \vec{a})$
- 5. Check $v = \langle \vec{a}, (1, z, ..., z^{m-1}) \rangle$

Completeness

Follows from homomorphism of Pedersen:

2. Then
$$\mathbf{pf} := (1, z^m, \dots, z^{m(m-1)}) \begin{pmatrix} \mathbf{cm}_1 \\ \vdots \\ \mathbf{cm}_m \end{pmatrix}$$
 commits to $\vec{a} = (1, z^m, \dots, z^{m(m-1)}) \begin{pmatrix} \vec{a}_1 \\ \vdots \\ \vec{a}_m \end{pmatrix}$

3. Additionally, by construction, $\vec{a}(z) = v$

Extractability

Follows from binding of Pedersen + rewinding

- 1. Extractor rewinds \mathcal{A} n times, each time obtaining an evaluation at different points.
- 2. This gives us n linear equations in n unknowns, which we can solve.
- 3. Each iteration will be valid unless \mathscr{A} breaks DL

Hiding

Follows from hiding of Pedersen?

cm is perfectly hiding, but $\pi = (\vec{a})$ reveals polynomial (but maybe less info?)

Efficiency

cm is \sqrt{d} \mathbb{G} elements, and π is \sqrt{d} \mathbb{F}_p elements. Additionally, Check does only $O(\sqrt{d})$ work!