Theory and Practice of Succinct Zero Knowledge Proofs

Lecture 06: Multilinear PIOP for R1CS

Summary of last lecture

We constructed a succinct-verifier PIOP for R1CS with the following properties:

- Prover time:
$O(n \log n)$
- Verifier time:
$O(\log n)$
- Number of rounds: $O(1)$

This lecture: linear prover time

We will construct a succinct-verifier PIOP for R1CS with the following properties:

- Prover time:
- Verifier time:
$O(n)$
$O(\log n)$
- Number of rounds: $O(\log n)$

Key tool:

 multilinear extensions
Key tool: Multilinear extensions

Multilinear Interpolation:

Given a function $f:\{0,1\}^{\ell} \rightarrow \mathbb{F}$, we can extend f to obtain a multilinear polynomial $p\left(X_{1}, \ldots, X_{\ell}\right)$ such that $p(x)=f(x)$ for all $x \in\{0,1\}^{\ell}$.

Multilinear means the polynomial has degree at most 1 in each variable.

Multilinear Lagrange Polynomial:

For each $i \in\{0,1\}^{\ell}, L^{i}(X)$ is 1 at i, and 0 for all $j \in\{0,1\}^{\ell}, j \neq i$.
Can write $L^{i}(X):=\prod_{j=1}^{\ell}\left(i_{j} \cdot X_{j}+\left(1-i_{j}\right)\left(1-X_{j}\right)\right)=>$ Can be evaluated in $O(\ell)$
Equiv, $L(i, X):=\prod_{j=1}^{\ell=1}\left(i_{j} \cdot X_{j}+\left(1-i_{j}\right)\left(1-X_{j}\right)\right)$ is a multilinear poly over 2ℓ vars

Common PIOPs

Recall: Univariate PIOP for Identity test

- Completeness: If $p=0$, then definitely $p(r)=0$.
- Soundness: If $p \neq 0$, then $p(r)=0 \Longrightarrow r$ is a root of p. But since r is $\frac{\operatorname{deg}(p)}{|\mathbb{F}|}$

Multilinear PIOP for Identity

- Completeness: If $p=0$, then definitely $p(r)=0$.
- Soundness: If $p \neq 0$, then $p(r)=0 \Longrightarrow r$ is a root of p.

How often does this happen?

Schwartz-Zippel-DeMillo-Lipton Lemma

Lemma: Let $p\left(X_{1}, \ldots, X_{\ell}\right) \in \mathbb{F}\left[X_{1}, \ldots, X_{\ell}\right]$ be an ℓ-variate degree d polynomial. Then $\underset{r_{1}, \ldots, r_{\ell} \leftarrow \mathbb{F}}{\operatorname{Pr}}\left[p\left(r_{1}, \ldots, r_{\ell}\right)=0\right]=\frac{d}{|\mathbb{F}|}$

Proof: Via induction on number of variables ℓ
Base case: $\ell=1$ follows from prior discussion Hypothesis: Assume holds for $\ell-1$ variables.
Then, we can write $p\left(X_{1}, \ldots, X_{\ell}\right):=\sum_{i=1}^{d} X_{1}^{i} p_{i}\left(X_{2}, \ldots, X_{\ell}\right)$
For random $r_{2}, \ldots, r_{\ell}, \operatorname{Pr}\left[p_{i}\left(r_{2}, \ldots, r_{\ell}\right)=0\right]=(d-i) /|\mathbb{F}|$.
Also, $\operatorname{Pr}\left[p\left(r_{1}, r_{2}, \ldots, r_{\ell}\right)=0 \mid p_{i}\left(r_{2}, \ldots, r_{\ell}\right) \neq 0\right]=i /|\mathbb{F}|$
Then, $\operatorname{Pr}\left[E_{\ell}\right]=\operatorname{Pr}\left[E_{\ell} \cap E_{\ell-1}\right]+\operatorname{Pr}\left[E_{\ell} \cap \overline{E_{\ell-1}}\right]$

$$
\begin{aligned}
& \leq \operatorname{Pr}\left[E_{\ell-1}\right]+i /|\mathbb{F}| \\
& =\frac{d}{|\mathbb{F}|}
\end{aligned}
$$

Multilinear PIOP for Identity

- Completeness: If $p=0$, then definitely $p(r)=0$.
- Soundness: If $p \neq 0$, then $p(r)=0 \Longrightarrow r$ is a root of p.

From SZDL lemma, happens wp $\frac{\ell}{|\mathbb{F}|}$

PIOP for ZeroCheck

Lemma: $\forall h \in H, p(h)=0$ if and only if $\exists q$ such that $p=q \cdot v_{H}$.

- Completeness: Follows from lemma, and completeness of previous PIOP.
- Soundness: The lemma means that we have to check only equality of polynomials via the previous PIOP, and so soundness reduces to that of the previous PIOP.

Multilinear PIOP for ZeroCheck

Lemma: $\forall x \in\{0,1\}^{\ell}, p(x)=0$ if and only if

$$
q(Y):=\sum_{x \in\{0,1\}^{\ell}} p(x) L(x, Y)=0
$$

Multilinear PIOP for ZeroCheck

Multivariate Sumcheck

(adapted from Justin Thaler's slides)

Sumcheck Protocol [LFKN90]

- Input: V given oracle access to a ℓ-variate polynomial g over field \mathbb{F}.
- Goal: compute the quantity:

Sumcheck Protocol [LFKN90]

- Start: P sends claimed answer C_{1}. The protocol must check:

$$
C=\sum_{b_{1} \in\{0,1\}} \ldots \sum_{b_{\ell} \in\{0,1\}} g\left(b_{1}, \ldots, b_{\ell}\right)
$$

- Round 1:
- P sends univariate polynomial $s_{1}\left(X_{1}\right)$ claimed to equal:

$$
H\left(X_{1}\right):=\sum_{b_{2} \in\{0,1\}} \ldots \sum_{b_{\ell} \in\{0,1\}} g\left(X_{1}, b_{2}, \ldots, b_{\ell}\right)
$$

- V checks that $C_{1}=s_{1}(0)+s_{1}(1)$.

Completeness: If $C_{1}=\sum_{b_{1} \in\{0,1\}} \ldots \sum_{b_{t} \in\{0,1\}} g\left(b_{1}, \ldots, b_{\ell}\right)$ then $C_{1}=s_{1}(0)+s_{1}(1)$
Soundness: How can \vee check that $s_{1}=H_{1}$?
Standard idea: Check that $s_{1}\left(r_{1}\right)=H_{1}\left(r_{1}\right)$ for random point r_{1}.
V can compute $s_{1}(r)$ directly from P's first message, but not $H_{1}\left(r_{1}\right)$.

Idea: Recursion!

$$
H\left(r_{1}\right):=\sum_{b_{2} \in\{0,1\}} \ldots \sum_{b_{\ell} \in\{0,1\}} g\left(r_{1}, b_{2}, \ldots, b_{\ell}\right)
$$

This is another sumcheck claim, over $\ell-1$ variables!

Recursive Sumcheck [LFKN90]

- Start: P sends claimed answer C_{1}. The protocol must check:

$$
C_{1}=\sum_{b_{1} \in\{0,1\}} \sum_{b_{2} \in\{0,1\}} \ldots \sum_{b_{\ell} \in\{0,1\}} g\left(b_{1}, \ldots, b_{\ell}\right) .
$$

- Round 1:
- P sends univariate polynomial $s_{1}\left(X_{1}\right)$ claimed to equal:

$$
H_{1}\left(X_{1}\right):=\sum_{b_{2} \in\{0,1\}} \ldots \sum_{b_{t} \in\{0,1\}} g\left(X_{1}, b_{2}, \ldots, b_{\ell}\right)
$$

- V checks that $C_{1}=s_{1}(0)+s_{1}(1)$ and sends $r_{1} \stackrel{\$}{\leftarrow}$.
- Round 2:
- P sends univariate polynomial $s_{2}\left(X_{2}\right)$ claimed to equal:

$$
H_{2}\left(X_{2}\right):=\sum_{b_{3} \in\{0,1\}} \ldots \sum_{b_{t} \in\{0,1\}} g\left(r_{1}, X_{2}, b_{3}, \ldots, b_{\ell}\right)
$$

Sumcheck protocol

Completeness

We already saw that if Prover is honest, then the checks in a given round will pass.

So if P is honest in all rounds, all checks will pass

Soundness

Claim:

If P does not send the prescribed messages, then V rejects with probability at least $1-\frac{\ell \cdot d}{|\mathbb{F}|}$ (d is the maximum degree of g)

Soundness

Proof is by induction on the number of variables ℓ.

Base case: $\ell=1$. In this case, P sends a single message $s_{1}\left(X_{1}\right)$ claimed to equal $g\left(X_{1}\right)$. V picks r_{1} at random, checks that $s_{1}\left(r_{1}\right)=g\left(r_{1}\right)$.

$$
\text { If } s_{1} \neq g \text {, then } \operatorname{Pr}_{r_{1} \in \mathbb{F}}\left[s_{1}\left(r_{1}\right)=g\left(r_{1}\right)\right] \leq \frac{d}{|\mathbb{F}|} \text {. }
$$

Soundness

Inductive case: $\ell>1$.

- Recall: P's first message $s_{1}\left(X_{1}\right)$ is claimed to equal

$$
H_{1}\left(X_{1}\right):=\sum_{b_{2} \in\{0,1\}} \ldots \sum_{b_{\ell} \in\{0,1\}} g\left(X_{1}, b_{2}, \ldots, b_{\ell}\right) .
$$

- Then V picks a random r_{1} and sends r_{1} to P . They (recursively) invoke sumcheck to confirm that $s_{1}\left(r_{1}\right)=H_{1}\left(r_{1}\right)$.
- If $s_{1} \neq H_{1}$, then $\operatorname{Pr}_{r_{1} \in \mathbb{F}}\left[s_{1}\left(r_{1}\right)=H_{1}\left(r_{1}\right)\right] \leq \frac{d}{|\mathbb{F}|}$.
- If $s_{1}\left(r_{1}\right) \neq H_{1}\left(r_{1}\right)$, P must prove a false claim in the recursive call.
- Claim is about $g\left(r_{1}, X_{2}, \ldots, X_{\ell}\right)$, which is $\ell-1$ variate.
- By induction, P convinces V in the recursive call with prob at most $\frac{d(\ell-1)}{|\mathbb{F}|}$.

Soundness analysis: wrap-up

Summary: if $s_{1} \neq H_{1}$, V accepts with probability at most:

$$
\begin{gathered}
\operatorname{Pr}_{r_{1} \in \mathbb{F}}\left[s_{1}\left(r_{1}\right)=H\left(r_{1}\right)\right] \\
+ \\
\operatorname{Pr}_{r_{2}, \ldots, r_{t} \in \mathbb{F}}\left[\mathrm{~V} \text { accepts } \mid s_{1}\left(r_{1}\right) \neq H\left(r_{1}\right)\right] \\
\leq \frac{d}{|\mathbb{F}|}+\frac{d(\ell-1)}{|\mathbb{F}|} \leq \frac{d \ell}{|\mathbb{F}|}
\end{gathered}
$$

Costs of the sumcheck protocol

- Total communication is $O(d \ell)$ field elements.
- P sends ℓ univariate polynomials of degree at most d.
- V sends $\ell-1$ messages, each consisting of one field element.
- V's runtime is: $O(d \ell+[$ time to evaluate g at random point $])$
- P's runtime is at most: $O\left(d 2^{\ell}+\right.$ [time to evaluate g at random point] $)$

Multilinear PIOP For R1CS

What checks do we need?

Step 1: Correct Hadamard product check that for each $i, z_{A}[i] \cdot z_{B}[i]=z_{C}[i]$

Step 2: Correct matrix-vector multiplication check that $M z=z_{M} \forall M \in\{A, B, C\}$

Multilinear PIOP for Rowcheck

$\operatorname{Prover}(F, x, w)$

1. Interpolate z_{A}, z_{B}, z_{C} to get $\hat{z}_{A}, \hat{z}_{B}, \hat{z}_{C}$.

Costs of Rowcheck PIOP

- Think of $\ell=\log _{2} n$
- Total communication is $O\left(\log _{2} n\right)$ field elements.
- V's runtime is: $O\left(\log _{2} n+[\right.$ time to evaluate g at random point $\left.]\right)$
- P's runtime is at most: $O(n+$ [time to evaluate g at random point] $)$

Multilinear PIOP for Lincheck

Prover(M, z)

1. Compute $z_{M}:=M z$
2. Interpolate z, z_{M} to get \hat{z}, \hat{z}_{M}
3. Interpolate $\left(\vec{r}, \vec{r}^{\top} M\right)$ to get $\left(\hat{r}, \hat{r}_{M}\right)$

$$
\hat{r} \cdot \hat{z}_{M}-\hat{r}_{M} \cdot \hat{z}
$$

$$
\text { To prove } \sum_{b_{1} \in\{0,1\}} \ldots \sum_{b_{\ell} \in\{0,1\}} \hat{r} \cdot \hat{z}_{M}-\hat{r}_{M} \cdot \hat{z}=0
$$

Costs of Lincheck PIOP

- Think of $\ell=\log _{2} n$
- Total communication is $O\left(\log _{2} n\right)$ field elements.
- V's runtime is:
$O\left(\log _{2} n+[\right.$ time to evaluate g at random point $\left.]\right)$
- P's runtime is at most: $O(n+$ [time to evaluate g at random point] $)$

