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Summary of last lecture

We constructed a succinct-verifier PIOP
for R1CS with the following properties:

e Prover time: O(nlogn)
e Verifier time: O(logn)
e Number of rounds: O(1)



This lecture: linear prover time

We will construct a succinct-verifier PIOP
for R1CS with the following properties:

e Prover time:
e Verifier time: O(logn)
e Number of rounds: O(log n)



Key tool:
multilinear extensions



Key tool: Multilinear extensions

Multilinear Interpolation:

Given a function £ : {0,1}¢ — [ we can extend fto obtain a multiinear
polynomial p(X;, ..., X,) such that p(x) = f(x) for all x € {0,1}".

Multilinear means the polynomial has degree at most 1 in each variable.

Multilinear Lagrange Polynomial:
Foreachi e {0,1}%, Li(X) is 1 ati,and O forallj € {0,1}%,] +# i.
4

Can write L'(X) == [ ] G- X;+ (1 = i)(1 — X;)) => Can be evaluated in O(¢)
j=1

4
Equiv, L, X) = H(ij - X; + (1 - i)(1 — X)) is a multilinear poly over 2¢ vars
=1



Common PIOPs



Recall: Univariate PIOP for Identity test

| =

4 I
Prover _m ) Verifier
p r —IF
?
p(r)=0
\_

e Completeness: If p = 0, then definitely p(r) = 0.

e Soundness: If p # 0, then p(r) = 0 = risaroot of p. But since r is
deg(p)

random, this happens with probability



Multilinear PIOP for Identity

| =

4 I
Prover > ) Verifier
p r« [
?
p(r)=0

e Completeness: If p = 0, then definitely p(r) = 0.
e Soundness: If p # 0, then p(r) =0 = risaroot of p.

How often does this happen?



Schwartz-Zippel-DeMillo-Lipton Lemma

Lemma: Let p(X, ..., X,) € F[X|, ..., X/] be an £-variate
d
degree d polynomial. Then  Pr  [p(r{,...,1,) = 0] = —

Fise. o b pe=lF | [Fl



Proof: Via induction on number of variables £
Base case: ¢ = 1 follows from prior discussion
Hypothesis: Assume holds for £ — 1 variables. iieg(pi) sd—i

d
Then, we can write p(Xy, ..., X,) 1= Z X{pi(Xz, s X))
i=1

For random r,, ..., 1., PrlpJ(ry, ...,r,) = 0] = (d = i)/ | F]|.
Also, Pr[p(r|, 1y, ...,72) =0 | p{ry, ..., 1,) #0] =i/|F]

Then, Pr[Ef] = PI‘[ELp N Ef—l] + PI‘[Ef N Ef—l]
< Pr[E,_{]+i/|[F]
_d
| F|
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Multilinear PIOP for Identity

| =

4 I
Prover > ) Verifier
p r« [
?
p(r)=0

e Completeness: If p = 0, then definitely p(r) = 0.
e Soundness: If p # 0, then p(r) =0 = risaroot of p.
4

From SZDL lemma, happens wp ﬁ
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PIOP for ZeroCheck

J VheH ph)=0

- -y
- -,
-

~5

-~ Verifier(A)

r—[F

Prover(

1P H4—

p(r) = q(r)vy(r)

. J

Lemma:Vh € H, p(h) = 0ifandonly if 3g suchthatp = q - vy.

e Completeness: Follows from lemma, and completeness of previous PIOP.

® Soundness: The lemma means that we have to check only equality of polynomials
via the previous PIOP, and so soundness reduces to that of the previous PIOP.
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Multilinear PIOP for ZeroCheck

J Vxe{0,1}, px)=0

---------- - - )
Prover( > ;‘ . Verifier(A)
r<— [

p(r) = q(r)vy(r)

_ \ y,
I\

What is vy here??

Lemma:V x € {0,1}/, p(x) = 0if and only if
g(¥):= ) p@L(xY)=0

x€{0,1}¢



Multilinear PIOP for ZeroCheck

J Vxe{0,1}, px)=0

— 7\ e ieemeeel ( _ N
Prover( > g |- Verifier(A)
r— [F¢
PIOP for
q(¥Y)=0
g _J g J

/\

Internally requires

gr) =Y pEL(x,r)
x€{0,1}7

We need protocol for multivariate sumcheck!




Multivariate
Sumcheck

(adapted from Justin Thaler’s slides)



Sumcheck Protocol [LFKN9O]

Input: V given oracle access to a 7-variate
polynomial g over field [.

Goal: compute the quantity:

2 2 2 g(by,....b,).

b,€{0,1} b,&{0,1} b,€10,1}
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Sumcheck Protocol [LFKN9O]

- Start: P sends claimed answer C,. The protocol must check:

C= Y ... > gb...b)

b,e{0,1} b,€{0,1}
* Round 1:

P sends univariate polynomial s,(X;) claimed to equal:

HX,) = 2 Z ¢(X,, by, ..., b,)

b,e{0,1} b,€{0,1}
¢ \/ checks that C, = 5,(0) + s;(1).

Completeness: If C;= ) ... Y g(by.....b,) then C; = 5,(0) + 5,(1)
b,e(01)  be(0,1)

Soundness: How can V check that s; = H,?

Standard idea: Check that s,(r;) = H,(ry) for random point r,.

V can compute s,(r) directly from P’s first message, but not H,(r)). v



|ldea: Recursion!

H(r)) := Z Z g(ri, by, ...,by)

b,e{0,1} b,€{0,1}

This is another sumcheck claim, over £ — 1 variables!
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Recursive Sumcheck [LFKN9O]

- Start: P sends claimed answer C,. The protocol must check:

=Y Y Y b

b,€{0.,1} b,€{0,1} b,€{0,1}
* Round 1:

- P sends univariate polynomial s,(X;) claimed to equal:
HX):= ) ... Y 8X.by...b)
b,e{0,1}  be(0,1)
¢ \/ checks that C; = s5,(0) + s;,(1) and sends r; <$— [F.
- Round 2:
P sends univariate polynomial s,(X,) claimed to equal:

Hz(Xz) = 2 cen Z g(rl,Xz, b3, ...,bf)
b,e{0,1} b,€{0,1} §
e V checks that s,(r) = 5,(0) + s,(1) and sends r, < [.
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Sumcheck protocol

x€{0,1} x,€{0,1}

L Z Z Z g(xp, %y, ..., xp) = C

[

\
Prover
g

~

x,€{0,1}
P >
Sl(Xl) >
< r
SZ(Xz) >
< 7
Sf(Xf) >

Verifier

5,(0) + 5,(1) = C,

5,(0) + 5,(1) = s1(r)

$¢(0) + s.(1) = Sy_1(ry_y)

J
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Completeness

We already saw that if Prover is honest, then the
checks in a given round will pass.

So if P is honest in all rounds, all checks will pass
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Soundness

Claim:

It P does not send the prescribed messages,

. . " £-d
then V rejects with probability at least 1 — TE

(d is the maximum degree of g)
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Soundness

Proof is by induction on the number of variables Z.
Base case: 7 = 1. In this case, P sends a single message

si(X,) claimed to equal g(X,). V picks r, at random,
checks that s,(r,) = g(r)).

d
It s, # g, then Prrle[F[Sl<”1) = g(rp] < ﬁ
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Soundness

Inductive case: 7 > 1.
e Recall: P’s first message sl(X Is claimed to equal
Hi(X)= Y ... ) &Xy.b....b).
b,e{0,1} b,e{0,1}
e Then V picks a random r,; and sends r, to P. They (recursively) invoke
sumcheck to confirm that s,(r,) = H,(r,).

d
o I 51 # Hy, then Prefls (r) = Hy(r)] < I
o If 5,(ry) # H,(ry), P must prove a false claim in the recursive call.
o Claim is about g(r;, X5, ..., X,), which is £-1 variate.
. diz — 1
» BY induction, P convinces V in the recursive call with prob at most g
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Soundness analysis: wrap-up

Summary: if s, # H,, V accepts with probability at most:

Pt eels (r1) = H(r))]
_|_

Pr,, rerlV accepts|s (r) # H(r)]

d d(¢-1) ar
<—+ <
GRS
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Costs of the sumcheck protocol

= Total communication is O(d?) field elements.
» P sends Z univariate polynomials of degree at most d.
= V sends £ — 1 messages, each consisting of one field element.

= \/'s runtime Is: O(d¢ + [time to evaluate g at random point])

= P’s runtime is at most: O(d2? + [time to evaluate g at random point])
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Multilinear PIOP
For R1CS



What checks do we need?

Step 1: Correct Hadamard product
check that for each i, z,[i] - zgli] = z.[i]

Step 2: Correct matrix-vector multiplication
check that Mz =z, VM € {A,B,C}
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Multilinear PIOP for Rowcheck

1.

Prover(F, x, w)

Interpolate z,, 2z, 7o 10 g€t 24, 25, 2

2s

( Verifier(F, x) \

1 2 [l Zc

¢

ZeroCheck
PIOP for

EA-EB—fc

>
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Costs of Rowcheck PIOP

« Think of £ = log, n
= Jotal communication is O(log, n) field elements.

= \V's runtime Is: O(log, n + [time to evaluate g at random point])

= P's runtime is at most: O(n + [time to evaluate g at random point])
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Multilinear PIOP for Lincheck

r ) ( )

Prover(M, z) Verifier(M)
1. Compute zy; := Mz 1 rdF
2y —R. 7= (1,r,...,r" Y

3. Interpolate (7, 7' M) to get (7, 7y,)

A\ )

2. Interpolate z, 7, to get Z, fM |

< r

3. Interpolate (7, 7' M) to get (7, 7
P ( ) to.get (7 7i) Sumcheokfon

N J \ g
ZM_rM Z

To prove Z Z

b,e{0,1} b,e{0,1}

N)
\)
!\1)
Il
)
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Costs of Lincheck PIOP

« Think of £ = log, n
= Jotal communication is O(log, n) field elements.

= \V's runtime Is: O(log, n + [time to evaluate g at random point])

= P's runtime is at most: O(n + [time to evaluate g at random point])
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