Theory and Practice of Succinct Zero Knowledge Proofs

Lecture 06: Multilinear PIOP for R1CS

Pratyush Mishra UPenn Fall 2023

Summary of last lecture

We constructed a succinct-verifier PIOP for R1CS with the following properties:

- Prover time: $O(n \log n)$
- Verifier time: $O(\log n)$
- Number of rounds: O(1)

This lecture: linear prover time

We will construct a succinct-verifier PIOP for R1CS with the following properties:

- Prover time: O(n)
- Verifier time: $O(\log n)$
- Number of rounds: $O(\log n)$

Key tool: multilinear extensions

Key tool: Multilinear extensions

Multilinear Interpolation:

Given a function $f: \{0,1\}^{\ell} \to \mathbb{F}$, we can **extend** f to obtain a *multilinear* polynomial $p(X_1, ..., X_{\ell})$ such that p(x) = f(x) for all $x \in \{0,1\}^{\ell}$.

Multilinear means the polynomial has degree at most 1 in each variable.

Multilinear Lagrange Polynomial: For each $i \in \{0,1\}^{\ell}$, $L^{i}(X)$ is 1 at i, and 0 for all $j \in \{0,1\}^{\ell}$, $j \neq i$. Can write $L^{i}(X) := \prod_{j=1}^{\ell} (i_{j} \cdot X_{j} + (1 - i_{j})(1 - X_{j})) =>$ Can be evaluated in $O(\ell)$ Equiv, $L(i, X) := \prod_{j=1}^{\ell} (i_{j} \cdot X_{j} + (1 - i_{j})(1 - X_{j}))$ is a multilinear poly over $2\ell'$ vars

Common PIOPs

Recall: Univariate PIOP for Identity test

- Completeness: If p = 0, then definitely p(r) = 0.
- Soundness: If $p \neq 0$, then $p(r) = 0 \implies r$ is a root of p. But since r is random, this happens with probability $\frac{\deg(p)}{|\mathbb{F}|}$

Multilinear PIOP for Identity

- Completeness: If p = 0, then definitely p(r) = 0.
- **Soundness**: If $p \neq 0$, then $p(r) = 0 \implies r$ is a root of p.

How often does this happen?

Schwartz-Zippel-DeMillo-Lipton Lemma

Lemma: Let
$$p(X_1, ..., X_{\ell}) \in \mathbb{F}[X_1, ..., X_{\ell}]$$
 be an ℓ -variate degree d polynomial. Then $\Pr_{r_1, ..., r_{\ell} \leftarrow \mathbb{F}} [p(r_1, ..., r_{\ell}) = 0] = \frac{d}{|\mathbb{F}|}$

Proof: Via induction on number of variables ℓ *Base case:* $\ell = 1$ follows from prior discussion $\deg(p_i) \le d - i$ *Hypothesis:* Assume holds for $\ell - 1$ variables. Then, we can write $p(X_1, \ldots, X_\ell) := \sum X_1^i p_i(X_2, \ldots, X_\ell)$ For random $r_2, ..., r_{\ell}$, $\Pr[p_i(r_2, ..., r_{\ell}) = 0] = (d - i)/|\mathbb{F}|$. Also, $\Pr[p(r_1, r_2, ..., r_{\ell}) = 0 \mid p_i(r_2, ..., r_{\ell}) \neq 0] = i/|\mathbb{F}|$ Then, $\Pr[E_{\ell}] = \Pr[E_{\ell} \cap E_{\ell-1}] + \Pr[E_{\ell} \cap \overline{E_{\ell-1}}]$ $\leq \Pr[E_{\ell-1}] + i/|\mathbb{F}|$ FI

Multilinear PIOP for Identity

- Completeness: If p = 0, then definitely p(r) = 0.
- Soundness: If $p \neq 0$, then $p(r) = 0 \implies r$ is a root of p.

From SZDL lemma, happens wp
$$\frac{\ell}{|\mathbb{F}|}$$

PIOP for ZeroCheck

Lemma: $\forall h \in H$, p(h) = 0 if and only if $\exists q$ such that $p = q \cdot v_{H}$.

- **Completeness**: Follows from lemma, and completeness of previous PIOP.
- **Soundness**: The lemma means that we have to check only equality of polynomials via the previous PIOP, and so soundness reduces to that of the previous PIOP.

Multilinear PIOP for ZeroCheck

$$q(Y) := \sum_{x \in \{0,1\}^{\ell}} p(x)L(x,Y) = 0$$

Multilinear PIOP for ZeroCheck

Multivariate Sumcheck

(adapted from Justin Thaler's slides)

Sumcheck Protocol [LFKN90]

- Input: V given oracle access to a ℓ -variate polynomial g over field F.
- Goal: compute the quantity:

$$\sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_{\ell} \in \{0,1\}} g(b_1, \dots, b_{\ell}).$$

Sumcheck Protocol [LFKN90]

• **Start**: P sends claimed answer C_1 . The protocol must check:

$$C = \sum_{b_1 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell)$$

- Round 1:
 - P sends **univariate** polynomial $s_1(X_1)$ claimed to equal:

$$H(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

• V checks that $C_1 = s_1(0) + s_1(1)$.

Completeness: If
$$C_1 = \sum_{b_1 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell)$$
 then $C_1 = s_1(0) + s_1(1)$

Soundness: How can V check that $s_1 = H_1$?

Standard idea: Check that $s_1(r_1) = H_1(r_1)$ for random point r_1 . V can compute $s_1(r)$ directly from P's first message, but not $H_1(r_1)$.

Idea: Recursion!

$$H(r_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(r_1, b_2, \dots, b_\ell)$$

This is another sumcheck claim, over $\ell - 1$ variables!

Recursive Sumcheck [LFKN90]

• **Start**: P sends claimed answer C_1 . The protocol must check:

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_{\ell} \in \{0,1\}} g(b_1, \dots, b_{\ell}).$$

- Round 1:
 - P sends **univariate** polynomial $s_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$
• V checks that $C_1 = s_1(0) + s_1(1)$ and sends $r_1 \stackrel{\$}{\leftarrow} \mathbb{F}$.

- Round 2:
 - P sends **univariate** polynomial $s_2(X_2)$ claimed to equal:

$$H_2(X_2) := \sum_{b_3 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(r_1, X_2, b_3, \dots, b_\ell)$$
• V checks that $s_1(r_1) = s_2(0) + s_2(1)$ and sends $r_2 \stackrel{\$}{\leftarrow} \mathbb{F}$.

Completeness

We already saw that if Prover is honest, then the checks in a given round will pass.

So if P is honest in all rounds, all checks will pass

Soundness

Claim:

If P does not send the prescribed messages, then V rejects with probability at least $1 - \frac{\ell \cdot d}{|\mathbb{F}|}$ (*d* is the maximum degree of *g*)

Soundness

Proof is by induction on the number of variables ℓ .

Base case: $\ell = 1$. In this case, P sends a single message $s_1(X_1)$ claimed to equal $g(X_1)$. V picks r_1 at random, checks that $s_1(r_1) = g(r_1)$.

If
$$s_1 \neq g$$
, then $\Pr_{r_1 \in \mathbb{F}}[s_1(r_1) = g(r_1)] \leq \frac{d}{|\mathbb{F}|}$.

Soundness

Inductive case: $\ell > 1$.

• Recall: P's first message $s_1(X_1)$ is claimed to equal

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_{\ell} \in \{0,1\}} g(X_1, b_2, \dots, b_{\ell}).$$

• Then V picks a random r_1 and sends r_1 to P. They (recursively) invoke sumcheck to confirm that $s_1(r_1) = H_1(r_1)$.

• If
$$s_1 \neq H_1$$
, then $\Pr_{r_1 \in \mathbb{F}}[s_1(r_1) = H_1(r_1)] \leq \frac{d}{|\mathbb{F}|}$.

- If $s_1(r_1) \neq H_1(r_1)$, P must prove a *false* claim in the recursive call.
 - Claim is about $g(r_1, X_2, ..., X_{\ell})$, which is ℓ -1 variate.

• By induction, P convinces V in the recursive call with prob at most $\frac{d(\ell-1)}{|\mathbf{F}|}$.

Soundness analysis: wrap-up

Summary: if $s_1 \neq H_1$, V accepts with probability at most:

$$\Pr_{r_1 \in \mathbb{F}}[s_1(r_1) = H(r_1)] +$$

$$\Pr_{r_2, \dots, r_\ell \in \mathbb{F}}[\mathbb{V} \text{ accepts } | s_1(r_1) \neq H(r_1)]$$

$$\leq \frac{d}{|\mathbb{F}|} + \frac{d(\ell - 1)}{|\mathbb{F}|} \leq \frac{d\ell}{|\mathbb{F}|}$$

Costs of the sumcheck protocol

- Total communication is $O(d\ell)$ field elements.
 - P sends ℓ univariate polynomials of degree at most d.
 - V sends ℓ 1 messages, each consisting of one field element.

- V's runtime is: $O(d\ell + [\text{time to evaluate } g \text{ at random point}])$
- P's runtime is at most: $O(d2^{\ell} + [\text{time to evaluate } g \text{ at random point}])$

Multilinear PIOP For R1CS

What checks do we need?

Step 1: Correct Hadamard product

check that for each *i*, $z_A[i] \cdot z_B[i] = z_C[i]$

Step 2: Correct matrix-vector multiplication check that $M_Z = z_M \quad \forall M \in \{A, B, C\}$

Multilinear PIOP for Rowcheck

Costs of Rowcheck PIOP

- Think of $\ell = \log_2 n$
- Total communication is $O(\log_2 n)$ field elements.

- V's runtime is: $O(\log_2 n + [\text{time to evaluate } g \text{ at random point}])$
- P's runtime is at most: O(n + [time to evaluate g at random point])

Multilinear PIOP for Lincheck

Costs of Lincheck PIOP

- Think of $\ell = \log_2 n$
- Total communication is $O(\log_2 n)$ field elements.

- V's runtime is: $O(\log_2 n + [\text{time to evaluate } g \text{ at random point}])$
- P's runtime is at most: O(n + [time to evaluate g at random point])