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A PIOP for R1CS



R1CS
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An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

[A] [B] [C][ ]x
w

z := ∘ =[]z []z []z
(F := (𝔽, n ∈ ℕ, A, B, C), x, w)



What checks do we need?
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Step 2: Correct matrix-vector multiplication 
check that Mz = zM ∀M ∈ {A, B, C}

Step 1: Correct Hadamard product 
check that for each ,  i zA[i] ⋅ zB[i] = zC[i]



PIOP for Hadamard Product
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Prover 

1. Let  be a set of size .

2. Interpolate  over  to get . 

3. Compute quotient . 

 

(F, x, w)
H ⊆ 𝔽 n

zA, zB, zC H pA, pB, pC

q =
pA ⋅ pB − pC

vH

Verifier  
 
 
 
 

(F, x)

pA
QUERYr

pB pC q

pA(r) ⋅ pB(r) − pC(r)

q(r) ⋅ vH(r)

?=



PIOP for Matrix-vector products
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Prover 

1. Compute 

2. Interpolate  over  to get  

 

3. Interpolate  to get  

4. Use sumcheck lemma to compute 

 such that  
 

(M, z)
zM := Mz
zM H ̂zM

( ⃗r, ⃗r⊤M ) ( ̂r, ̂rM)

g, q

Verifier 


1. 

2. 

3. Interpolate  to get  

 
 
 

4. Invoke PIOP for ZC!

(M)
r $← 𝔽

⃗r := (1,r, …, rn−1)
( ⃗r, ⃗r⊤M ) ( ̂r, ̂rM)

̂zMz

r

̂r(X ) ⋅ ̂zM(X ) − ̂rM(X ) ⋅ ̂z(X )
=

X ⋅ g(X ) + q(X )vH(X )

qg



New tool: univariate sum check 
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Why is the verifier slow?

8

Prover 

1. Compute 

2. Interpolate  over  to get  

 

3. Interpolate  to get  

4. Use sumcheck lemma to compute 

 such that  
 

(M, z)
zM := Mz
zM H ̂zM

( ⃗r, ⃗r⊤M ) ( ̂r, ̂rM)

g, q

Verifier 


1. 

2. 

3. Interpolate  to get  

 
 
 

4. Invoke PIOP for ZC!

(M)
r $← 𝔽

⃗r := (1,r, …, rn−1)
( ⃗r, ⃗r⊤M ) ( ̂r, ̂rM)

̂zMz

r

̂r(X ) ⋅ ̂zM(X ) − ̂rM(X ) ⋅ ̂z(X )
=

X ⋅ g(X ) + q(X )vH(X )

qg
To check this, it 
must evaluate 

 and ̂r(X ) ̂rM(X )

Must compute 
!⃗r⊤ ⋅ M



Key tool: Lagrange polynonmials
Lagrange polynomials for set :  
For each ,   is 1 at , and 0 for all 

H ⊆ 𝔽
i ∈ H Li

H(X ) i j ∈ H, j ≠ i

Polynomial Interpolation:  
Given a list , and a set , the interpolation of  over  is
A = (a0, …, ad) H ⊆ 𝔽 A H

̂a(X) := ∑
i∈H

ai ⋅ Li
H(X)

Relation to vanishing polynomial: Li
H(X ) := ci ⋅

vH(X )
X − i

9



Step 1: Efficient ̂r(X)
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Can write  as ̂r(X ) ∑
i∈H

ri ⋅ Li
H(X )

Efficiently evaluating this at a random point  
requires efficiently computing each  and 

β
ri Li

H(β)

Let’s interpret this as ∑
i∈H

Yi ⋅ Li
H(X )

Monomial basis Lagrange basis



Step 1: Efficient ̂r(X)
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1. Replace Monomial with Lagrange basis 

2. Can rewrite this as 

This can be evaluated in time !

∑
i∈H

Li
H(Y ) ⋅ Li

H(X )

vH(Y )X − vH(X )Y
|H | (X − Y )

O(log |H | )



Why is the verifier slow?
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Prover 

1. Compute 

2. Interpolate  over  to get  

 

3. Use sumcheck lemma to compute 
 such that  

 

(M, z)
zM := Mz
zM H ̂zM

g, q

Verifier 


1. 


2. ??? 
 
 
 

3. Invoke PIOP for ZC!

(M)
α $← 𝔽

̂zMz

α

̂r(α, X ) ⋅ ̂zM(X ) − ̂rM(α, X ) ⋅ ̂z(X )
=

X ⋅ g(X ) + q(X )vH(X )

qg
Must compute 

!Li
H(α)⊤ ⋅ M



How to use this?
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Recall: We have to show 
̂r(α, β) ⋅ ̂zM(β) − ̂rM(α, β) ⋅ ̂z(β)

=
β ⋅ g(β) + q(β)vH(β)

Let’s expand 


This is yet another sumcheck, so we engage in another sumcheck PIOP, which 
results in the following check: 


 
How to evaluate ?

̂rM(α, β) = ∑
i∈H

̂r(α, i) ⋅ M̂(i, β)

̂r(α, γ) ⋅ M̂(γ, β) = γ ⋅ g′￼(γ) + h′￼(γ)vH(γ)

M̂(γ, β)



Sublinear verification for 
PIOP-based SNARKs



Holographic PIOPs [CHMMVW20, COS20]
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Indexer Function F pF

Prover

 

 
 
 
 

(F, x, w)
Verifier


 
 
 
 
 

x
r1

…
QueryQ

Decisionb

rt

p1

pt

Introduce a new algorithm to preprocess the matrices

Verifier does not 
read F, and so 

can be sublinear!
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𝖵(𝖼𝗏𝗄, x) 
 
 
 
 
 

𝖯(𝖼𝗉𝗄, x, w)

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

PC.OPEN

pt
rt

PC.COMMIT

cm1

cmt

DECISION(π, [v])
PC.CHECK

Q

SETUP(1λ, N) 
 
 
 

max size S
(ck, vk)

PIOP(N) 

output universal parameters pp = (ck, vk) 

PC.SETUP(S) 

Holographic PIOPs + PC Schemes → Preprocessing SNARKs 

+ Fiat—Shamir to get non-interactivity

INDEX(pp, F) 
 
 
 
 

 oraclesF

cmF

PIOP.INDEXER(F)

prover key cpk = (ck, F) 
verifier key cvk = (vk, cmF)output circuit 

PC.COMMIT 

Prover answers queries to  oracles tooF



Verifier Complexity of Holographic PIOP-based SNARKs
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Holography enables sublinear verification for  
arbitrary circuits computations!

T(SNARK.V) = T(CHECK) + T(HIOP.V)

Now sublinear!



How to encode matrix?
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Polynomial Interpolation of Lists:  
Given a list , and a set , the interpolation of  over  is
A = (a0, …, ad) H ⊆ 𝔽 A H

̂a(X) := ∑
i∈H

ai ⋅ Li
H(X)

Polynomial Interpolation of Matrices?:  
Given a list , and a set , the bivariate interpolation of  over  is
M ∈ 𝔽n×n H ⊆ 𝔽 A H

M̂(X, Y ) := ∑
i∈H

∑
j∈H

Mij ⋅ Li
H(X) ⋅ Lj

H(Y )

Problem: computing this requires  workO( |H |2 )



Insight: The matrices are sparse!
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Polynomial Interpolation of Matrices?:  
Given a list , and a set , the bivariate interpolation of  over  is
M ∈ 𝔽n×n H ⊆ 𝔽 A H

M̂(X, Y ) := ∑
i∈H

∑
j∈H

Mij ⋅ Li
H(X) ⋅ Lj

H(Y )

Most  are zero!Mij

Can rewrite as ,  

Additionally, sum only over non-zero entries!

M̂(X, Y ) := ∑
i∈H

∑
j∈H

Mij ⋅
vH(X )
X − i

⋅
vH(Y )
Y − j



Final Matrix Encoding
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Let  be the number of non-zero entries, and  be a subset of size . 
Then, a sparse bivariate interpolation of  over  is


m K ⊂ 𝔽 m
A K

M̂(X, Y ) := ∑
k∈K

𝗏(k) ⋅
vH(X)

X − 𝗋(k)
⋅

vH(Y )
Y − 𝖼(k)

Value of -th non-
zero entry

k Row-index of -th 
non-zero entry

k Col-index of -th 
non-zero entry

kActually, we need polynomials, so we will replace  with their 
interpolations over , i.e. 


𝗋, 𝖼, 𝗏
K ̂𝗋, ̂𝖼, 𝗏̂

M̂(X, Y ) := ∑
k∈K

𝗏̂(k) ⋅
vH(X)

X − ̂𝗋(k)
⋅

vH(Y )
Y − ̂𝖼(k)


