
Pratyush Mishra
UPenn
Fall 2023

Theory and Practice of Succinct
Zero Knowledge Proofs

Lecture 05:  
Holographic PIOP for R1CS

A PIOP for R1CS

R1CS

3

An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

[A] [B] [C][]x
w

z := ∘ =[]z []z []z
(F := (𝔽, n ∈ ℕ, A, B, C), x, w)

What checks do we need?

4

Step 2: Correct matrix-vector multiplication 
check that Mz = zM ∀M ∈ {A, B, C}

Step 1: Correct Hadamard product 
check that for each , i zA[i] ⋅ zB[i] = zC[i]

PIOP for Hadamard Product

5

Prover

1. Let be a set of size .

2. Interpolate over to get . 

3. Compute quotient . 

 

(F, x, w)
H ⊆ 𝔽 n

zA, zB, zC H pA, pB, pC

q =
pA ⋅ pB − pC

vH

Verifier  
 
 
 
 

(F, x)

pA
QUERYr

pB pC q

pA(r) ⋅ pB(r) − pC(r)

q(r) ⋅ vH(r)

?=

PIOP for Matrix-vector products

6

Prover

1. Compute

2. Interpolate over to get  

 

3. Interpolate to get

4. Use sumcheck lemma to compute

 such that  
 

(M, z)
zM := Mz
zM H ̂zM

(⃗r, ⃗r⊤M) (̂r, ̂rM)

g, q

Verifier

1.

2.

3. Interpolate to get  

 
 
 

4. Invoke PIOP for ZC!

(M)
r $← 𝔽

⃗r := (1,r, …, rn−1)
(⃗r, ⃗r⊤M) (̂r, ̂rM)

̂zMz

r

̂r(X) ⋅ ̂zM(X) − ̂rM(X) ⋅ ̂z(X)
=

X ⋅ g(X) + q(X)vH(X)

qg

New tool: univariate sum check

7

Why is the verifier slow?

8

Prover

1. Compute

2. Interpolate over to get  

 

3. Interpolate to get

4. Use sumcheck lemma to compute

 such that  
 

(M, z)
zM := Mz
zM H ̂zM

(⃗r, ⃗r⊤M) (̂r, ̂rM)

g, q

Verifier

1.

2.

3. Interpolate to get  

 
 
 

4. Invoke PIOP for ZC!

(M)
r $← 𝔽

⃗r := (1,r, …, rn−1)
(⃗r, ⃗r⊤M) (̂r, ̂rM)

̂zMz

r

̂r(X) ⋅ ̂zM(X) − ̂rM(X) ⋅ ̂z(X)
=

X ⋅ g(X) + q(X)vH(X)

qg
To check this, it
must evaluate

 and ̂r(X) ̂rM(X)

Must compute
!⃗r⊤ ⋅ M

Key tool: Lagrange polynonmials
Lagrange polynomials for set :  
For each , is 1 at , and 0 for all

H ⊆ 𝔽
i ∈ H Li

H(X) i j ∈ H, j ≠ i

Polynomial Interpolation:  
Given a list , and a set , the interpolation of over is
A = (a0, …, ad) H ⊆ 𝔽 A H

̂a(X) := ∑
i∈H

ai ⋅ Li
H(X)

Relation to vanishing polynomial: Li
H(X) := ci ⋅

vH(X)
X − i

9

Step 1: Efficient ̂r(X)

10

Can write as ̂r(X) ∑
i∈H

ri ⋅ Li
H(X)

Efficiently evaluating this at a random point
requires efficiently computing each and

β
ri Li

H(β)

Let’s interpret this as ∑
i∈H

Yi ⋅ Li
H(X)

Monomial basis Lagrange basis

Step 1: Efficient ̂r(X)

11

1. Replace Monomial with Lagrange basis

2. Can rewrite this as

This can be evaluated in time !

∑
i∈H

Li
H(Y) ⋅ Li

H(X)

vH(Y)X − vH(X)Y
|H | (X − Y)

O(log |H |)

Why is the verifier slow?

12

Prover

1. Compute

2. Interpolate over to get  

 

3. Use sumcheck lemma to compute
 such that  

 

(M, z)
zM := Mz
zM H ̂zM

g, q

Verifier

1.

2. ??? 
 
 
 

3. Invoke PIOP for ZC!

(M)
α $← 𝔽

̂zMz

α

̂r(α, X) ⋅ ̂zM(X) − ̂rM(α, X) ⋅ ̂z(X)
=

X ⋅ g(X) + q(X)vH(X)

qg
Must compute

!Li
H(α)⊤ ⋅ M

How to use this?

13

Recall: We have to show
̂r(α, β) ⋅ ̂zM(β) − ̂rM(α, β) ⋅ ̂z(β)

=
β ⋅ g(β) + q(β)vH(β)

Let’s expand

This is yet another sumcheck, so we engage in another sumcheck PIOP, which
results in the following check:

 
How to evaluate ?

̂rM(α, β) = ∑
i∈H

̂r(α, i) ⋅ M̂(i, β)

̂r(α, γ) ⋅ M̂(γ, β) = γ ⋅ g′￼(γ) + h′￼(γ)vH(γ)

M̂(γ, β)

Sublinear verification for
PIOP-based SNARKs

Holographic PIOPs [CHMMVW20, COS20]

15

Indexer Function F pF

Prover

 

 
 
 
 

(F, x, w)
Verifier

 
 
 
 
 

x
r1

…
QueryQ

Decisionb

rt

p1

pt

Introduce a new algorithm to preprocess the matrices

Verifier does not
read F, and so

can be sublinear!

16

𝖵(𝖼𝗏𝗄, x) 
 
 
 
 
 

𝖯(𝖼𝗉𝗄, x, w)

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

PC.OPEN

pt
rt

PC.COMMIT

cm1

cmt

DECISION(π, [v])
PC.CHECK

Q

SETUP(1λ, N) 
 
 
 

max size S
(ck, vk)

PIOP(N) 

output universal parameters pp = (ck, vk)

PC.SETUP(S) 

Holographic PIOPs + PC Schemes → Preprocessing SNARKs

+ Fiat—Shamir to get non-interactivity

INDEX(pp, F) 
 
 
 
 

 oraclesF

cmF

PIOP.INDEXER(F)

prover key cpk = (ck, F) 
verifier key cvk = (vk, cmF)output circuit

PC.COMMIT 

Prover answers queries to oracles tooF

Verifier Complexity of Holographic PIOP-based SNARKs

17

Holography enables sublinear verification for  
arbitrary circuits computations!

T(SNARK.V) = T(CHECK) + T(HIOP.V)

Now sublinear!

How to encode matrix?

18

Polynomial Interpolation of Lists:  
Given a list , and a set , the interpolation of over is
A = (a0, …, ad) H ⊆ 𝔽 A H

̂a(X) := ∑
i∈H

ai ⋅ Li
H(X)

Polynomial Interpolation of Matrices?:  
Given a list , and a set , the bivariate interpolation of over is
M ∈ 𝔽n×n H ⊆ 𝔽 A H

M̂(X, Y) := ∑
i∈H

∑
j∈H

Mij ⋅ Li
H(X) ⋅ Lj

H(Y)

Problem: computing this requires workO(|H |2)

Insight: The matrices are sparse!

19

Polynomial Interpolation of Matrices?:  
Given a list , and a set , the bivariate interpolation of over is
M ∈ 𝔽n×n H ⊆ 𝔽 A H

M̂(X, Y) := ∑
i∈H

∑
j∈H

Mij ⋅ Li
H(X) ⋅ Lj

H(Y)

Most are zero!Mij

Can rewrite as ,  

Additionally, sum only over non-zero entries!

M̂(X, Y) := ∑
i∈H

∑
j∈H

Mij ⋅
vH(X)
X − i

⋅
vH(Y)
Y − j

Final Matrix Encoding

20

Let be the number of non-zero entries, and be a subset of size .
Then, a sparse bivariate interpolation of over is

m K ⊂ 𝔽 m
A K

M̂(X, Y) := ∑
k∈K

𝗏(k) ⋅
vH(X)

X − 𝗋(k)
⋅

vH(Y)
Y − 𝖼(k)

Value of -th non-
zero entry

k Row-index of -th
non-zero entry

k Col-index of -th
non-zero entry

kActually, we need polynomials, so we will replace with their
interpolations over , i.e.

𝗋, 𝖼, 𝗏
K ̂𝗋, ̂𝖼, 𝗏̂

M̂(X, Y) := ∑
k∈K

𝗏̂(k) ⋅
vH(X)

X − ̂𝗋(k)
⋅

vH(Y)
Y − ̂𝖼(k)

