Theory and Practice of Succinct Zero Knowledge Proofs

Lecture 05: Holographic PIOP for R1CS

A PIOP for R1CS

R1CS

An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

$$
\begin{aligned}
& (F:=(\mathbb{F}, n \in \mathbb{N}, A, B, C), x, w)
\end{aligned}
$$

What checks do we need?

Step 1: Correct Hadamard product check that for each $i, z_{A}[i] \cdot z_{B}[i]=z_{C}[i]$

Step 2: Correct matrix-vector multiplication check that $M z=z_{M} \forall M \in\{A, B, C\}$

PIOP for Hadamard Product

$\operatorname{Prover}(F, x, w)$

1. Let $H \subseteq \mathbb{F}$ be a set of size n.
2. Interpolate z_{A}, z_{B}, z_{C} over H to get p_{A}, p_{B}, p_{C}.
3. Compute quotient $q=\frac{p_{A} \cdot p_{B}-p_{C}}{v_{H}}$.

PIOP for Matrix-vector products

Prover (M, z)

1. Compute $z_{M}:=M z$
2. Interpolate z_{M} over H to get \hat{z}_{M}
3. Interpolate $\left(\vec{r}, \vec{r}^{\top} M\right)$ to get $\left(\hat{r}, \hat{r}_{M}\right)$
4. Use sumcheck lemma to compute g, q such that

$$
\begin{gathered}
\hat{r}(X) \cdot \hat{z}_{M}(X)-\hat{r}_{M}(X) \cdot \hat{z}(X) \\
= \\
X \cdot g(X)+q(X) v_{H}(X)
\end{gathered}
$$

Verifier (M)

1. $r \stackrel{\$ \mathbb{F}}{\&}$
2. $\vec{r}:=\left(1, r, \ldots, r^{n-1}\right)$
3. Interpolate $\left(\vec{r}, \vec{r}^{\top} M\right)$ to get $\left(\hat{r}, \hat{r}_{M}\right)$

New tool: univariate sum check
Lemma:

$$
\left.\begin{array}{c}
\sum_{h \in H} p(n)=\sigma \\
\text { 介 } \\
\exists q, g \text { st. } \\
p(x)=x g(x)+\frac{\sigma}{|+1|}+q(x) \cdot v_{M}(x)
\end{array}\right\} \begin{gathered}
\text { Reduce sumunedt } \\
\text { to zeroed. }
\end{gathered}
$$

Why is the verifier slow?

$\operatorname{Prover}(M, z)$

1. Compute $z_{M}:=M z$
2. Interpolate z_{M} over H to get \hat{z}_{M}
3. Interpolate $\left(\vec{r}, \vec{r}^{\top} M\right)$ to get $\left(\hat{r}, \hat{r}_{M}\right)$
4. Use sumcheck lemma to compute
g, q such that

$$
\begin{gathered}
\hat{r}(X) \cdot \hat{z}_{M}(X)-\hat{r}_{M}(X) \cdot \hat{z}(X) \\
= \\
X \cdot g(X)+q(X) v_{H}(X)
\end{gathered}
$$

Key tool: Lagrange polynonmials

Lagrange polynomials for set $H \subseteq \mathbb{F}$:
For each $i \in H, L_{H}^{i}(X)$ is 1 at i, and 0 for all $j \in H, j \neq i$

Polynomial Interpolation:

Given a list $A=\left(a_{0}, \ldots, a_{d}\right)$, and a set $H \subseteq \mathbb{F}$, the interpolation of A over H is

$$
\hat{a}(X):=\sum_{i \in H} a_{i} \cdot L_{H}^{i}(X)
$$

Relation to vanishing polynomial: $L_{H}^{i}(X):=c_{i} \cdot \frac{v_{H}(X)}{X-i}$

Step 1: Efficient $\hat{r}(X)$

$$
\text { Can write } \hat{r}(X) \text { as } \sum_{i \in H} r^{i} \cdot L_{H}^{i}(X)
$$

Efficiently evaluating this at a random point β requires efficiently computing each r^{i} and $L_{H}^{i}(\beta)$

Step 1: Efficient $\hat{r}(X)$

1. Replace Monomial with Lagrange basis $\sum_{i \in H} L_{H}^{i}(Y) \cdot L_{H}^{i}(X)$
2. Can rewrite this as $\frac{v_{H}(Y) X-v_{H}(X) Y}{|H|(X-Y)}$

This can be evaluated in time $O(\log |H|)$!

Why is the verifier slow?

Prover (M, z)

1. Compute $z_{M}:=M z$
2. Interpolate z_{M} over H to get \hat{z}_{M}
3. Use sumcheck lemma to compute g, q such that

$$
\begin{gathered}
\hat{r}(\alpha, X) \cdot \hat{z}_{M}(X)-\hat{r}_{M}(\alpha, X) \cdot \hat{z}(X) \\
= \\
X \cdot g(X)+q(X) v_{H}(X)
\end{gathered}
$$

Verifier(M)

1. $\alpha \stackrel{\&}{\&}$

Must compute $\mathbf{L}_{H}^{i}(\alpha)^{\top} \cdot M!$
3. Invoke PIOP for ZC!

How to use this?

$$
\hat{r}(\alpha, \beta) \cdot \hat{z}_{M}(\beta)-\hat{r}_{M}(\alpha, \beta) \cdot \hat{z}(\beta)
$$

Recall: We have to show

$$
\beta \cdot g(\beta)+q(\beta) v_{H}(\beta)
$$

Let's expand $\hat{r}_{M}(\alpha, \beta)=\sum_{i \in H} \hat{r}(\alpha, i) \cdot \hat{M}(i, \beta)$
This is yet another sumcheck, so we engage in another sumcheck PIOP, which results in the following check: $\hat{r}(\alpha, \gamma) \cdot \hat{M}(\gamma, \beta)=\gamma \cdot g^{\prime}(\gamma)+h^{\prime}(\gamma) v_{H}(\gamma)$

How to evaluate $\hat{M}(\gamma, \beta)$?

Sublinear verification for PIOP-based SNARKs

Holographic PIOPs [ctumwwea, coszo]

Introduce a new algorithm to preprocess the matrices

Holographic PIOPs + PC Schemes \rightarrow Preprocessing SNARKs

Verifier Complexity of Holographic PIOP-based SNARKs

Holography enables sublinear verification for arbitrary circuits computations!

How to encode matrix?

Polynomial Interpolation of Lists:

Given a list $A=\left(a_{0}, \ldots, a_{d}\right)$, and a set $H \subseteq \mathbb{F}$, the interpolation of A over H is

$$
\hat{a}(X):=\sum_{i \in H} a_{i} \cdot L_{H}^{i}(X)
$$

Polynomial Interpolation of Matrices?:

Given a list $M \in \mathbb{F}^{n \times n}$, and a set $H \subseteq \mathbb{F}$, the bivariate interpolation of A over H is

$$
\hat{M}(X, Y):=\sum_{i \in H} \sum_{j \in H} M_{i j} \cdot \underbrace{L_{H}^{i}(X) \cdot L_{H}^{j}(Y)}
$$

Problem: computing this requires $O\left(|H|^{2}\right)$ work

Insight: The matrices are sparse!

Polynomial Interpolation of Matrices?:

Given a list $M \in \mathbb{F}^{n \times n}$, and a set $H \subseteq \mathbb{F}$, the bivariate interpolation of A over H is

$$
\begin{aligned}
\hat{M}(X, Y):= & \sum_{i \in H} \sum_{j \in H} M_{i j} \cdot L_{H}^{i}(X) \cdot L_{H}^{j}(Y) \\
& {\text { Most } M_{i j} \text { are zero! }}^{\text {ren }}
\end{aligned}
$$

Can rewrite as $\hat{M}(X, Y):=\sum_{i \in H} \sum_{j \in H} M_{i j} \cdot \frac{v_{H}(X)}{X-i} \cdot \frac{v_{H}(Y)}{Y-j}$,
Additionally, sum only over non-zero entries!

Final Matrix Encoding

Let m be the number of non-zero entries, and $K \subset \mathbb{F}$ be a subset of size m. Then, a sparse bivariate interpolation of A over K is

