Theory and Practice of Succinct Zero Knowledge Proofs

Lecture 04: PIOP for R1CS

Pratyush Mishra UPenn Fall 2023

A simple PIOP

Background on polynomials

Polynomial over \mathbb{F} :

 $p(X) = a_0 + a_1 X + \ldots + a_d X^d$ where $a_i \in \mathbb{F}$ and X takes values in \mathbb{F} .

Polynomial Interpolation:

Given a list $A = (a_0, ..., a_d)$, and a set $H \subseteq \mathbb{F}$, we can interpolate A over H to obtain p(X) such that $p(h_i) = a_i$ where h_i is the *i*-th element of H.

Vanishing polynomial:

The vanishing polynomial for $H \subseteq \mathbb{F}$ is $v_H(X)$ such that $v_H(h) = 0 \quad \forall h \in H$

Warmup: PIOP for Equality

- Completeness: If $p_1 = p_2$, then definitely $p_1(r) = p_2(r)$.
- Soundness: If $p_1 \neq p_2$, then $p_1(r) = p_2(r) \implies r$ is a root of

 $q := p_1 - p_2$. But since *r* is random, this happens with probability $\frac{\deg(q)}{\log(q)}$

PIOP for ZeroCheck

Lemma: $\forall h \in H$, p(h) = 0 if and only if $\exists q$ such that $p = q \cdot v_{H}$.

- **Completeness**: Follows from lemma, and completeness of previous PIOP.
- **Soundness**: The lemma means that we have to check only equality of polynomials via the previous PIOP, and so soundness reduces to that of the previous PIOP.

Soundness

Strategy: Use adversary P_{ZC} against PIOP for ZeroCheck

to get adversary P_{EQ} against PIOP for Equality

• Soundness: If $p \neq q \cdot v_H$, but $p(r) = q(r) \cdot v_H(r)$, then \mathbf{P}_{EQ} breaks soundness of the PIOP for Equality. But this happens with negligible probability, so \mathbf{P}_{ZC} is successful with negl. Probability.

A PIOP for R1CS

R1CS

An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

$$(F := (\mathbb{F}, n \in \mathbb{N}, A, B, C), x, w)$$

Strawman 1

- Completeness and Soundness are trivial
- What about efficiency?

Strawman 1

• What about efficiency?

What checks do we need?

Step 1: Correct Hadamard product check that for each *i*, $z_A[i] \cdot z_B[i] = z_C[i]$

Step 2: Correct matrix multiplication check that $Mz = z_M \quad \forall M \in \{A, B, C\}$

PIOP for Hadamard Product

Completeness

Let $p = p_A \cdot p_B - p_C$

If p_A, p_B, p_C are interpolations of z_A, z_B, z_C over H, then $p_A(h_i) = z_A[i]$ for each i, we know that $p_B(h_i) = z_B[i]$. $p_C(h_i) = z_C[i]$ Since for each $z_A[i] \cdot z_B[i] = z_C[i]$, we know $p(h_i) = p_A(h_i) \cdot p_B(h_i) - p_C(h_i) = 0$

The rest follows from completeness of PIOP for ZeroCheck

Soundness

Strategy: Use adversary P_{HP} against PIOP for HP

to get adversary P_{ZC} against PIOP for ZeroCheck

If $\exists i$ such that $z_A[i] \cdot z_B[i] \neq z_C[i]$, then $p(h_i) \neq 0$, and so $p \neq q$ on H, which breaks soundness of the PIOP for ZeroCheck.

What checks do we need?

Step 1: Correct Hadamard product check that for each *i*, $z_A[i] \cdot z_B[i] = z_C[i]$

Step 2: Correct matrix multiplication check that $M_Z = z_M \quad \forall M \in \{A, B, C\}$

Starting point: IP for MV checks

• **Soundness**: If there exists *i* such that $z_M[i] \neq Mz[i]$, then $\langle \vec{r}, z_M \rangle = \langle \vec{r}^T M, z \rangle$ wp at most $1/|\mathbb{F}|$

Next point: PIOP for MV checks

How to compute inner products $\langle \hat{r}, \hat{z}_M \rangle, \langle \hat{r}_M, \hat{z} \rangle$?

New tool: univariate sum check

Sumcheck → Inner product check

For vectors, we have that
$$\langle \vec{a}, \vec{b} \rangle = \sum_{i=1}^{n} a_i b_i$$

What if (\vec{a}, \vec{b}) are represented as their interpolations (\hat{a}, \hat{b}) ?

Ans:
$$\sum_{i=1}^{n} a_i b_i = \sum_{h \in H} \hat{a}(h) \cdot \hat{b}(h)$$

Next point: PIOP for MV checks

Prover(M, z)1. Compute $z_M := Mz$ 2. Interpolate z_M over H to get \hat{z}_M

- 3. Interpolate $(\vec{r}, \vec{r}^{\mathsf{T}}M)$ to get (\hat{r}, \hat{r}_M)
- 4. Use sumcheck lemma to compute g, q such that

$$\hat{r}(X) \cdot \hat{z}_M(X) - \hat{r}_M(X) \cdot \hat{z}(X) = X \cdot g(X) + q(X)v_H(X)$$

