Theory and Practice of Succinct Zero Knowledge Proofs

Lecture 04: PIOP for R1CS

A simple PIOP

Background on polynomials

Polynomial over \mathbb{F} :

$p(X)=a_{0}+a_{1} X+\ldots+a_{d} X^{d}$ where $a_{i} \in \mathbb{F}$ and X takes values in \mathbb{F}.

Polynomial Interpolation:

Given a list $A=\left(a_{0}, \ldots, a_{d}\right)$, and a set $H \subseteq \mathbb{F}$, we can interpolate A over H to obtain $p(X)$ such that $p\left(h_{i}\right)=a_{i}$ where h_{i} is the i-th element of H.

Vanishing polynomial:
The vanishing polynomial for $H \subseteq \mathbb{F}$ is $v_{H}(X)$ such that $v_{H}(h)=0 \quad \forall h \in H$

Warmup: PIOP for Equality

- Completeness: If $p_{1}=p_{2}$, then definitely $p_{1}(r)=p_{2}(r)$.
- Soundness: If $p_{1} \neq p_{2}$, then $p_{1}(r)=p_{2}(r) \Longrightarrow r$ is a root of
$q:=p_{1}-p_{2}$. But since r is random, this happens with probability $\frac{\operatorname{deg}(q)}{|\mathbb{F}|}$

PIOP for ZeroCheck

Lemma: $\forall h \in H, p(h)=0$ if and only if $\exists q$ such that $p=q \cdot v_{H}$.

- Completeness: Follows from lemma, and completeness of previous PIOP.
- Soundness: The lemma means that we have to check only equality of polynomials via the previous PIOP, and so soundness reduces to that of the previous PIOP.

Soundness

Strategy: Use adversary $\mathrm{P}_{\text {zc }}$ against PIOP for ZeroCheck to get adversary P_{EQ} against PIOP for Equality

- Soundness: If $p \neq q \cdot v_{H}$, but $p(r)=q(r) \cdot v_{H}(r)$, then $\mathrm{P}_{\text {EQ }}$ breaks soundness of the PIOP for Equality. But this happens with negligible probability, so P_{zc} is successful with negl. Probability.

A PIOP for R1CS

R1CS

An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

$$
\begin{aligned}
& (F:=(\mathbb{F}, n \in \mathbb{N}, A, B, C), x, w)
\end{aligned}
$$

Strawman 1

- Completeness and Soundness are trivial
- What about efficiency?

Strawman 1

- What about efficiency?

What checks do we need?

Step 1: Correct Hadamard product check that for each $i, z_{A}[i] \cdot z_{B}[i]=z_{C}[i]$

Step 2: Correct matrix multiplication check that $M z=z_{M} \forall M \in\{A, B, C\}$

PIOP for Hadamard Product

$\operatorname{Prover}(F, x, w)$

1. Let $H \subseteq \mathbb{F}$ be a set of size n.
2. Interpolate z_{A}, z_{B}, z_{C} over H to get p_{A}, p_{B}, p_{C}.
3. Compute quotient $q=\frac{p_{A} \cdot p_{B}-p_{C}}{v_{H}}$.

Completeness

Let $p=p_{A} \cdot p_{B}-p_{C}$
If p_{A}, p_{B}, p_{C} are interpolations of z_{A}, z_{B}, z_{C} over H, then

$$
p_{A}\left(h_{i}\right)=z_{A}[i]
$$

for each i, we know that $p_{B}\left(h_{i}\right)=z_{B}[i]$.

$$
p_{C}\left(h_{i}\right)=z_{C}[i]
$$

Since for each $z_{A}[i] \cdot z_{B}[i]=z_{C}[i]$, we know $p\left(h_{i}\right)=p_{A}\left(h_{i}\right) \cdot p_{B}\left(h_{i}\right)-p_{C}\left(h_{i}\right)=0$

The rest follows from completeness of PIOP for ZeroCheck

Soundness

Strategy: Use adversary $\mathrm{P}_{\text {HP }}$ against PIOP for HP
to get adversary $\mathrm{P}_{\text {zc }}$ against PIOP for ZeroCheck

If $\exists i$ such that $z_{A}[i] \cdot z_{B}[i] \neq z_{C}[i]$, then $p\left(h_{i}\right) \neq 0$, and so $p \neq q$ on H, which breaks soundness of the PIOP for ZeroCheck.

What checks do we need?

Step 1: Correct Hadamard product check that for each $i, z_{A}[i] \cdot z_{B}[i]=z_{C}[i]$

Step 2: Correct matrix multiplication check that $M z=z_{M} \forall M \in\{A, B, C\}$

Starting point: IP for MV checks

$$
\operatorname{Prover}(M, z)
$$

1. Compute $z_{M}:=M z$

- Soundness: If there exists i such that $z_{M}[i] \neq M z[i]$, then $\left\langle\vec{r}, z_{M}\right\rangle=\left\langle\vec{r}^{\top} M, z\right\rangle$ wp at most $1 /|\mathbb{F}|$

Next point: PIOP for MV checks

Prover (M, z)

1. Compute $z_{M}:=M z$
2. Interpolate z_{M} over H to get \hat{z}_{M}

How to compute inner products $\left\langle\hat{r}, \hat{z}_{M}\right\rangle,\left\langle\hat{r}_{M}, \hat{z}\right\rangle$?

New tool: univariate sum check
Lemma:

$$
\left.\begin{array}{l}
\sum_{h \in H} p(n)=\sigma \\
\text { II } \\
\exists q, g \text { s.t. }
\end{array}\right\} \begin{gathered}
\text { Reduce sumcredt } \\
\text { to zero ached. } \\
p(x)=x g(x)+\frac{\sigma}{|+1|}+q(x) \cdot v_{M}(x)
\end{gathered}
$$

Sumcheck \rightarrow Inner product check

For vectors, we have that $\langle\vec{a}, \vec{b}\rangle=\sum_{i=1}^{n} a_{i} b_{i}$

What if (\vec{a}, \vec{b}) are represented as their interpolations (\hat{a}, \hat{b}) ?

$$
\text { Ans: } \sum_{i=1}^{n} a_{i} b_{i}=\sum_{h \in H} \hat{a}(h) \cdot \hat{b}(h)
$$

Next point: PIOP for MV checks

Prover(M, z)

1. Compute $z_{M}:=M z$
2. Interpolate z_{M} over H to get \hat{z}_{M}
3. Interpolate $\left(\vec{r}, \vec{r}^{\top} M\right)$ to get $\left(\hat{r}, \hat{r}_{M}\right)$
4. Use sumcheck lemma to compute g, q such that

$$
\begin{gathered}
\hat{r}(X) \cdot \hat{z}_{M}(X)-\hat{r}_{M}(X) \cdot \hat{z}(X) \\
= \\
X \cdot g(X)+q(X) v_{H}(X)
\end{gathered}
$$

Verifier(M)

1. $r \stackrel{\&}{ }{ }^{\&}$
2. $\vec{r}:=\left(1, r, \ldots, r^{n-1}\right)$
3. Interpolate $\left(\vec{r}, \vec{r}^{\top} M\right)$ to get $\left(\hat{r}, \hat{r}_{M}\right)$

4. Invoke PIOP for ZC!
