Theory and Practice of Succinct Zero Knowledge Proofs

Lecture 03:
SNARKs from Polynomial Interactive Oracle Proofs

Succinct Non-Interactive Arguments (SNARGs)

SNARKs

- Completeness: $\forall(F, x, w) \in \mathscr{R}, \operatorname{Pr}[\mathbf{V}(\mathrm{vk}, x, \pi)=1: \underset{\pi \leftarrow \mathbf{P}(\mathrm{pk}, x, w)}{(\mathrm{pk}, \mathrm{vk}) \leftarrow \operatorname{Setup}(F)}]=1$.
- Knowledge Soundness: \forall efficient $\tilde{\mathbf{P}}, \exists$ extractor \mathbf{E} s.t.

$$
\operatorname{Pr}\left[\begin{array}{cc}
V(\mathrm{vk}, x, \pi)=1 & (\mathrm{pk}, \mathrm{vk}) \leftarrow \operatorname{Setup}(F) \\
\wedge & : \\
(F, x, w) \notin \mathscr{R} & \\
\hline \leftarrow \leftarrow \tilde{\mathbf{P}}_{\tilde{\mathbf{P}}}(\mathrm{pk}, x) \\
(\mathrm{pk}, x)
\end{array}\right] \approx 0
$$

- Zero Knowledge: \exists simulator Sim s.t. $\forall(F, x, w) \in \mathscr{R}$, and all $\tilde{\mathbf{V}}$,

$$
\operatorname{Pr}\left[\mathbf{V}(\mathrm{vk}, x, \pi): \begin{array}{c}
(\mathrm{pk}, \mathrm{vk}) \leftarrow \operatorname{Setup}(F) \\
\pi \leftarrow \operatorname{Sim}(\mathrm{pk}, x)
\end{array}\right]=\operatorname{Pr}\left[\mathbf{V}(\mathrm{vk}, x, \pi): \begin{array}{c}
(\mathrm{pk}, \mathrm{vk}) \leftarrow \operatorname{Setup}(F) \\
\pi \leftarrow \mathbf{P}(\mathrm{pk}, x, w)
\end{array}\right]
$$

- Succinctness: $|\pi|=O(\log |F|)$ and $\operatorname{Time}(\mathbf{V})=O(\log |F|,|x|)$

Constructing zkSNARKs

Blueprint

Which function to pick?

Polynomial commitments:

- $F_{z}(m)$: Interpret m as univariate poly $f(X)$ in $\mathbb{F}[X]$ and evaluate at z

$$
\text { Multilinear commitments: } \quad \text { e.g., } f\left(x_{1}, \ldots, x_{k}\right)=x_{1} x_{3}+x_{1} x_{4} x_{5}+x_{7}
$$

- $F_{\vec{z}}(m)$: Interpret m as multilinear poly $f(X)$ in $\mathbb{F}[\vec{X}]$ and evaluate at \vec{z}

Vector commitments:

- $F_{i}(m)$: Interpret m as vector v in \mathbb{F}^{n} and return v_{i}

Inner-product commitments:

- $F_{\vec{q}}(m)$: Interpret m as vector \vec{v} in \mathbb{F}^{n} and return $\langle\vec{v}, \vec{q}\rangle$

A: Polynomials!

Benedikt Bünz
@benediktbuenz
Replying to @Zac_Aztec
Reed - Solomon code: Polynomial
Zero-Knwoledge Proof Systems: Polynomials
Secret Sharing: Polynomial Evaluations
Identity Testing: Polynomials equal?
FFTs: Polynomials
FRI: FFTs-> Polynomials
SNARK: Polynomials
STARK: SNARK
Security Parameter: Polynomial
Lagrange: Polynomial
11:28 AM - Oct 25, 2021 - Twitter Web App

Let's pick polynomials

Polynomial Interactive Oracle Proofs

Polynomial IOPs ${ }_{[\text {Gwc } 19, \text { CHMMww20, вFs20] }}$

Prover
(F, x, w)

- Completeness: Whenever $(F, x, w) \in \mathscr{R}$, there is a strategy for P that outputs only polynomials, and which causes V to accept.
- Knowledge Soundness: Whenever V accepts against a P that outputs only polynomials, then P "knows" w such that $(F, x, w) \in \mathscr{R}$.
- Bounded-query ZK: Whenever $(F, x, w) \in \mathscr{R}$, a V that makes up to b queries to polys learns nothing about w.

Majority of innovation is in PIOPs

Sonic: Zero-Knowledge SNARKs from Linear-Size Universal and

Flookup: Fractional decomposition-based lookups in quasi-linear time independent of table size

```
Updatable Structured Reference Strings
Mary Maller
mary.maller.15@ucl.ac.uk
University College London
    Markulf Kohlweiss
    mkohlwei@ed.ac.uk
    University of Edinburgh
            IOHK
            Sean Bowe
                sean@z.cash
                    Electric Coin Company
                    Sarah Meiklejohn
                    s.meiklejohn@ucl.ac.uk
                            University College London
```

$\mathcal{P l o n K}$: Permutations over Lagrange-bases for
Oecumenical Noninteractive arguments of Knowledge

Ariel Gabizon Function Technologies

Dmitry Khovratovich Ethereum Foundation

Ariel Gabizon* Zachary J. Williamson Oana Ciobotaru

HyperPlonk: Plonk with Linear-Time Prover and High-Degree Custom Gates
Marlin:
Preprocessing zkSNARKs
with Universal and Updatable SRS
Spartan: Efficient and general-purpose zkSNARKs without trusted setup

$$
\begin{aligned}
& \text { Srinath Setty } \\
& \text { Microsoft Research }
\end{aligned}
$$

Binyi Chen Benedikt Bünz
Espresso Systems

Stanford University
Espresso Systems

Dan Boneh Stanford University

Zhenfei Zhang Espresso Systems

Lunar: a Toolbox for More Efficient
Universal and Updatable zkSNARKs and Commit-and-Prove Extensions

Matteo Campanelli ${ }^{1}$, Antonio Faonio ${ }^{2}$, Dario Fiore ${ }^{3}$, Anaïs Querol ${ }^{3,4}$, and Hadrián Rodríguez ${ }^{3}$
yuncong_hu@berkeley.edu mary.maller.15@ucl.ac.uk

Mary Maller
UCL
Nicholas Ward
npwardeberkeley.edu
UC Berkeley

Yuncong Hu
UC Berkeley
Psi Vesely psieucsd.edu UCL

Caulk: Lookup Arguments in Sublinear Time
Arantxa Zapico ${ }^{+1}$, Vitalik Buterin ${ }^{2}$, Dmitry Khovratovich ${ }^{2}$, Mary Maller ${ }^{2}$, Anca Nitulescu ${ }^{3}$, and Mark Simkin ${ }^{2}$
${ }^{1}$ Universitat Pompeu Fabra ${ }^{\dagger}$
${ }^{2}$ Ethereum Foundation ${ }^{2}$

Alessandro Chiesa alexcheberkeley.edu UC Berkeley

Pratyush Mishra ratyusheberkeley.edu UC Berkeley
${ }^{3}$ Protocol Labs ${ }^{\S}$
plookip: A simplified polynomial protocol for lookup tables
$\mathrm{q}:$: : Cached quotients for fast lookups
Baloo: Nearly Optimal Lookup Arguments

Ariel Gabizon	Zachary J. Williamson
Aztec	Aztec

Liam Eagen Blockstream

Dario Fiore
IMDEA software institute
Arantxa Zapico*, Ariel Gabizon ${ }^{3}$, Dmitry Khovratovich ${ }^{1}$, Mary Maller ${ }^{1}$, and Carla Ràfols ${ }^{2}$ Ariel Gabizon
Zeta Function Technologies

Polynomial Commitments

Polynomial Commitments

- Completeness: Whenever $p(\boldsymbol{z})=v, \mathbf{R}$ accepts.
- Extractability: Whenever \mathbf{R} accepts, \mathbf{S} 's commitment $\mathbf{c m}$ "contains" a polynomial p of degree at most D.
- Hiding: cm and π reveal no information about p other than v

Polynomial Commitments

For efficiency improvements, you need

- Batch commitment - Batch opening

A selection of constructions

In the last 10 years, several constructions with different

- Cryptographic assumptions
- Prover and verifier efficiency and proof sizes
- Homomorphism and batching properties

KZG10	PST13	IPA	Hyrax	Dory	BFS20	
crypto	Pairings	Pairings	DLog +RO	$\mathrm{DLog}+\mathrm{RO}$	Pairing + RO	$\mathrm{GUO}+\mathrm{RO}$
\# variables	1	m	1	m	1	1
setup type	Private	Private	Public	Public	Public	Public
commitment size	$O(1) \mathrm{G}$	$O(1) \mathrm{G}$	$O(1) \mathrm{G}$	$O\left(2^{m / 2}\right) \mathrm{G}$	$O(1) \mathrm{G}$	$O(1) \mathrm{G}$
proof size	$O(1) \mathrm{G}$	$O(m) \mathrm{G}$	$O(\log d) \mathrm{G}$	$O\left(2^{m / 2}\right) \mathrm{G}$	$O(\log d) \mathrm{G}$	$O(\log d) \mathrm{G}$
verifier time	$O(1) \mathrm{G}$	$O(m) \mathrm{G}$	$O(d) \mathrm{G}$	$O\left(2^{m / 2}\right) \mathrm{G}$	$O(\log d) \mathrm{G}$	$O(\log d) \mathrm{G}$

PIOP + PC = SNARK

PIOPs + PC Schemes \rightarrow SNARK

+ Fiat—Shamir to get non-interactivity

Properties

- Completeness: Follows from completeness of PC and AHP.
- Proof of Knowledge: Whenever V accepts but $C(\mathbb{X}, \mathbb{W})=0$, we can construct either an adversarial prover against PIOP, or an adversary that breaks extractability of PC.
- Zero Knowledge: Follows from hiding of PC and bounded-query ZK of AHP.
- Verifier efficiency:
$T($ ARG.VERIFY $)=T($ PIOP.VERIFY $)+T($ PC.Снеск $)$

Verifier Complexity of PIOP-based SNARKs

$$
T(\mathrm{SNARK} . \mathrm{V})=T(\mathrm{CHECK})+T(\mathrm{PIOP} . \mathrm{V})
$$

Can make this sublinear (eg: KZG)
What about this?

PIOP Verifier has to at least read (F, x)

- When size of $F \ll$ size of computation (eg machine computations), TIME(V) is sublinear.
- When size of $F=$ size of computation (eg circuit computations), TIME(v) is linear!

A simple PIOP

Background on polynomials

Polynomial over \mathbb{F} :

$p(X)=a_{0}+a_{1} X+\ldots+a_{d} X^{d}$ where $a_{i} \in \mathbb{F}$ and X takes values in \mathbb{F}.

Polynomial Interpolation:

Given a list $A=\left(a_{0}, \ldots, a_{d}\right)$, and a set $H \subseteq \mathbb{F}$, we can interpolate A over H to obtain $p(X)$ such that $p\left(h_{i}\right)=a_{i}$ where h_{i} is the i-th element of H.

Vanishing polynomial:
The vanishing polynomial for $H \subseteq \mathbb{F}$ is $v_{H}(X)$ such that $v_{H}(h)=0 \quad \forall h \in H$

Warmup: PIOP for Equality

- Completeness: If $p_{1}=p_{2}$, then definitely $p_{1}(r)=p_{2}(r)$.
- Soundness: If $p_{1} \neq p_{2}$, then $p_{1}(r)=p_{2}(r) \Longrightarrow r$ is a root of
$q:=p_{1}-p_{2}$. But since r is random, this happens with probability $\frac{\operatorname{deg}(q)}{|\mathbb{F}|}$

Warmup: PIOP for Equality over Domain

- Completeness: If $p_{1}=p_{2}$, then definitely $p_{1}(r)=p_{2}(r)$.
- Soundness: Define $q:=p_{1}-p_{2}$. Then $\forall h \in H, p_{1}(h)=p_{2}(h)$ if and only if $q=s \cdot v_{H}$. But we can check this via the previous PIOP.

