
Pratyush Mishra 
UPenn 
Fall 2023

Theory and Practice of Succinct 
Zero Knowledge Proofs

Lecture 03:  
SNARKs from Polynomial  
Interactive Oracle Proofs



2

Succinct Non-Interactive Arguments (SNARGs)

O(log(F))

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Õ(F)

I know w s.t. F(x, w) = 1

[                   ]Mic94, Groth10, GGPR13, Groth16…
…, GWC19, CHMMVW20, …

F function
Setup

pk vk



3

SNARKs
• Completeness: , . 

• Knowledge Soundness:  efficient ,  extractor  s.t. 

 

• Zero Knowledge:  simulator  s.t. , and all , 

 

• Succinctness:  and 

∀ (F, x, w) ∈ ℛ Pr [V(𝗏𝗄, x, π) = 1 :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F )

π ← P(𝗉𝗄, x, w) ] = 1

∀ P̃ ∃ E

Pr
V(𝗏𝗄, x, π) = 1

∧
(F, x, w) ∉ ℛ

:
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F )

π ← P̃(𝗉𝗄, x)
w ← EP̃(𝗉𝗄, x)

≈ 0

∃ 𝖲𝗂𝗆 ∀ (F, x, w) ∈ ℛ Ṽ

Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F )

π ← 𝖲𝗂𝗆(𝗉𝗄, x) ] = Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F )

π ← P(𝗉𝗄, x, w) ]
|π | = O(log |F | ) 𝖳𝗂𝗆𝖾(V) = O(log |F | , |x | )



Constructing zkSNARKs



Blueprint

5

Functional 
Proof System

“Functional” 
Commitment

Compiler zkSNARK



Which function to pick?

6

Polynomial commitments:  
▪ : Interpret  as univariate poly   in  and evaluate at  

Multilinear commitments:  
▪ : Interpret  as multilinear poly   in  and evaluate at     

Vector commitments:  
▪ : Interpret  as vector   in  and return  

Inner-product commitments:  
▪ : Interpret  as vector   in  and return 

Fz(m) m f(X ) 𝔽[X ] z

F ⃗z(m) m f(X ) 𝔽[ ⃗X ] ⃗z

Fi(m) m v 𝔽 n vi

F ⃗q(m) m ⃗v 𝔽 n ⟨ ⃗v, ⃗q⟩

e.g.,   𝑓(𝑥1, …, 𝑥𝑘) = 𝑥1𝑥3 + 𝑥1𝑥4𝑥5 + 𝑥7

Which to pick?



7

A: Polynomials!



Let’s pick polynomials

8

???

Polynomial 
Commitment

Compiler zkSNARK



Polynomial  
Interactive 
Oracle 
Proofs



Polynomial IOPs [GWC19, CHMMVW20, BFS20]

Prover 
(F, x, w)

Verifier 
 

 
 
 
 
 

(F, x)

p1
r1

…

QUERYQ

DECISIONb

• Completeness: Whenever , there is a strategy for P that  
outputs only polynomials, and which causes V to accept. 

• Knowledge Soundness: Whenever V accepts against a P that  
outputs only polynomials, then P “knows”  such that . 

• Bounded-query ZK: Whenever , a V that makes up to b 
queries to polys learns nothing about w.

(F, x, w) ∈ ℛ

w (F, x, w) ∈ ℛ
(F, x, w) ∈ ℛ

pt
rt

Verifier queries are 
evaluation points

10



11

Majority of innovation is in PIOPs



Polynomial 
Commitments



Polynomial Commitments

SENDER 
 
 
 

RECEIVER 
 
 
 

cm
z

SETUP Maximum 
degree D

Committer key ck 
      Verifier key vk

1.cm ← COMMIT(ck, p)

(v, π)
2. v ← p(z)

3.π ← OPEN(ck, cm, p, z) CHECK(vk, cm, z, v, π)

• Completeness: Whenever p(z) = v, R accepts. 
• Extractability: Whenever R accepts, S’s commitment cm 

“contains” a polynomial p of degree at most D.


• Hiding: cm and π reveal no information about p other than v
13



RECEIVER 
 
 
 CHECK(vk, [cm], Q, [v], [d], π)

SENDER 
 
 
 

2. [v] ← [p](Q) z
3.π ← OPEN(pk, [p], [d], Q)

Q

1. [cm] ← COMMIT(pk, [p], [d]) cm[cm]

Polynomial Commitments
SETUP Maximum 

degree D
Committer key ck 
Verifier key       vk

(v, π)

For efficiency improvements, you need

• Batch commitment • Batch opening

([v], π)

14



15

A selection of constructions

KZG10 PST13 IPA Hyrax Dory BFS20

crypto Pairings Pairings DLog + RO DLog + RO Pairing + RO GUO + RO

# variables 1 m 1 m 1 1

setup type Private Private Public Public Public Public

commitment 
size O(1) G O(1) G O(1) G              G O(1) G O(1) G

proof size O(1) G O(m) G O(log d) G              G O(log d) G O(log d) G

verifier time O(1) G O(m) G O(d) G              G O(log d) G O(log d) G

O(2m /2)

O(2m /2)

O(2m /2)

In the last 10 years, several constructions with different 

• Cryptographic assumptions 

• Prover and verifier efficiency and proof sizes 

• Homomorphism and batching properties



PIOP + PC = SNARK



 
 
 
 
 
 

𝖵(𝗏𝗄, F, x) 
 
 
 
 
 

𝖯(𝗉𝗄, F, x, w)

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

PC.OPEN

pt
rt

PC.COMMIT

cm1

cmt

DECISION(π, [v])
PC.CHECK

17

Q

SETUP(1λ, N) 
 
 
 

max degree D
(ck, vk)

PIOP(N) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP(D) 

PIOPs + PC Schemes → SNARK 

+ Fiat—Shamir to get non-interactivity



ZKP MOOC 18

Properties

• Completeness: Follows from completeness of PC and AHP. 

• Proof of Knowledge: Whenever V accepts but  
 C(𝕩, 𝕨) = 0, we can construct either an adversarial prover against 
PIOP, or an adversary that breaks extractability of PC. 

• Zero Knowledge: Follows from hiding of PC and bounded-query ZK 
of AHP.  

• Verifier efficiency: 
       T(ARG.VERIFY) = T(PIOP.VERIFY) + T(PC.CHECK)



Verifier Complexity of PIOP-based SNARKs

19

Prover 
(F, x, w)

Verifier 
 

 
 
 
 

(F, x)
p1

r1

…

QUERYQ

DECISIONb

pn
rn

PIOP Verifier has to at least read  
• When size of F ≪ size of computation (eg machine computations), TIME(V) is sublinear. 

• When size of F =  size of computation (eg circuit computations),     TIME(V) is linear!

(F, x)

T(SNARK.V) = T(CHECK) + T(PIOP.V)

Can make this sublinear (eg: KZG) What about this?



A simple PIOP



Background on polynomials

Polynomial over  :  
  where  and  takes values in .

𝔽
p(X ) = a0 + a1X + … + adXd ai ∈ 𝔽 X 𝔽

Polynomial Interpolation:  
Given a list , and a set , we can interpolate  over  
to obtain  such that  where  is the -th element of .

A = (a0, …, ad) H ⊆ 𝔽 A H
p(X ) p(hi) = ai hi i H

Vanishing polynomial:  
The vanishing polynomial for  is  such that H ⊆ 𝔽 vH(X ) vH(h) = 0 ∀ h ∈ H

21



Warmup: PIOP for Equality

22

Prover 
(p1, p2)

Verifier 
 
 

p1

p1 = p2

p2

• Completeness: If , then definitely . 

• Soundness: If , then  is a root of 

. But since  is random, this happens with probability 

p1 = p2 p1(r) = p2(r)
p1 ≠ p2 p1(r) = p2(r) ⟹ r

q := p1 − p2 r
deg(q)

|𝔽 |

r ← 𝔽

p1(r) ?= p2(r)



Warmup: PIOP for Equality over Domain 

23

Prover(p1, p2) Verifier  
 
 

(A)p1

∀ h ∈ H, p1(h) = p2(h)

p2

• Completeness: If , then definitely . 

• Soundness: Define . Then  if and only if  
. But we can check this via the previous PIOP.

p1 = p2 p1(r) = p2(r)
q := p1 − p2 ∀ h ∈ H, p1(h) = p2(h)

q = s ⋅ vH

r ← 𝔽

p1(r) − p2(r) = s(r)vH(r)

s


