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Succinct Non-Interactive Arguments (SNARGs)

O(log(F))

pk proving key
x public input
w private witness

Prover

vk verifying key
x public input

Verifier

Õ(F)

I know w s.t. F(x, w) = 1

[                   ]Mic94, Groth10, GGPR13, Groth16…
…, GWC19, CHMMVW20, …

F function
Setup

pk vk
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Succinct Non-Interactive Arguments (SNARGs)

• Completeness: If , 

 . 

• Soundness: If , for all efficient provers  

 

• Succinctness: 

(F, x, w) ∈ ℛ
Pr [V(#$, x, π) = 1 : (%$, #$) ← '()*%(F)

π ← P(%$, x, w) ] = 1

(F, x, w) ∉ ℛ P̃
Pr [V(#$, x, π) = 1 :

(%$, #$) ← '()*%(F)
π ← P̃(%$, x) ] ≈ 0

|π | = O(log |F | )
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What if there’s always a witness?

•  : there is always a preimage! 

•  :  if pk is a 
valid public key, there is always a valid signature! 

• Generally many examples where witness always exists!

F(x, w) := '-./(w) ?= x

F((m, %$), σ) := 0(1234'2567)*1((%$, m, σ) ?= 1

Soundness: If , then for all efficient provers  (F, x, w) ∉ ℛ P̃
Pr [V(#$, x, π) = 1 :

(%$, #$) ← '()*%(F)
π ← P̃(%$, x) ] ≈ 0
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SNARGs of Knowledge (SNARKs)
• Completeness: For all , 

 . 

• Knowledge Soundness: If , then   
“knows”  such that  

 

• Succinctness: 

(F, x, w) ∈ ℛ
Pr [V(#$, x, π) = 1 : (%$, #$) ← '()*%(F)

π ← P(%$, x, w) ] = 1

V(#$, x, π) = 1 P̃
w (F, x, w) ∈ ℛ

Pr
V(#$, x, π) = 1

∧
(F, x, w) ∉ ℛ

:
(%$, #$) ← '()*%(F)

π ← P̃(%$, x)
w ← EP̃(%$, x)

≈ 0

|π | = O(log |F | )
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SNARGs of Knowledge (SNARKs)
• Completeness: For all , 

 . 

• Knowledge Soundness: For each efficient  there exists an 
extractor  such that 

 

• Succinctness: 

(F, x, w) ∈ ℛ
Pr [V(#$, x, π) = 1 : (%$, #$) ← '()*%(F)

π ← P(%$, x, w) ] = 1

P̃
E

Pr
V(#$, x, π) = 1

∧
(F, x, w) ∉ ℛ

:
(%$, #$) ← '()*%(F)

π ← P̃(%$, x)
w ← EP̃(%$, x)

≈ 0

|π | = O(log |F | )
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What about privacy?
•  :  

Does proof reveal info about preimage? 

•  :  
Does proof reveal info about which signature was used? 

•  
Does proof reveal info about credit history?

F(x, w) := '-./(w) ?= x

F((m, %$), σ) := 0(1234'2567)*1((%$, m, σ) ?= 1

F(x = 9:;1(, w = :1(<2)_=29)) := >1(<2)?;<(@(w) ?= x

Verifier is the adversary now!
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Zero Knowledge SNARKs (zkSNARKs)
• Completeness: For all , … 

• Knowledge Soundness: For each efficient  there exists an 
extractor  such that … 

• Zero Knowledge: Proof reveals no information to  other 
than validity of  

 

• Succinctness: 

(F, x, w) ∈ ℛ
P̃

E
V

w
Pr [V(#$, x, π) : (%$, #$) ← '()*%(F )

π ← '2A(%$, x) ] = Pr [V(#$, x, π) : (%$, #$) ← '()*%(F )
π ← P(%$, x, w) ]

|π | = O(log |F | )
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Zero Knowledge SNARKs (zkSNARKs)
• Completeness: For all , … 

• Knowledge Soundness: For each efficient  there exists an 
extractor  such that … 

• Zero Knowledge: For all , and all efficient 
there exists an simulator  such that 

 

• Succinctness: 

(F, x, w) ∈ ℛ
P̃

E
(F, x, w) ∈ R Ṽ
'2A

Pr [V(#$, x, π) : (%$, #$) ← '()*%(F )
π ← '2A(%$, x) ] = Pr [V(#$, x, π) : (%$, #$) ← '()*%(F )

π ← P(%$, x, w) ]
|π | = O(log |F | )
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Doesn’t this break soundness?

Pr [V(#$, x, π) : (%$, #$) ← '()*%(F )
π ← '2A(%$, x) ] = Pr [V(#$, x, π) : (%$, #$) ← '()*%(F )

π ← P(%$, x, w) ]
 has same success probability as honest prover!'2A

This is actually okay: we provide Sim with additional powers!
• Interactive case: Sim can rewind verifier
• Non-interactive case: Sim gets “trapdoor”/secret information
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zk Marker Demo
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What about succinct verification?

•  :  
Do I need to compute  hashes to verify proof? 

•  
Do I need to evaluate complex model to verify proof?

F(x, w) = '-./106(w) ?= x
106

F(x = 9:;1(, w = :1(<2)_=29)) = >1(<2)?;<(@(w) ?= x

Succinctness: |π | = O(log |F | )
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Strongly Succinct zkSNARKs
• Completeness: For all , … 

• Knowledge Soundness: For each efficient  there exists an 
extractor  such that … 

• Zero Knowledge: For all , and all efficient 
there exists an simulator  such that 

 

• Succinctness:   
                          and 

(F, x, w) ∈ ℛ
P̃

E
(F, x, w) ∈ R Ṽ
'2A

Pr [V(#$, x, π) : (%$, #$) ← '()*%(F )
π ← '2A(%$, x) ] = Pr [V(#$, x, π) : (%$, #$) ← '()*%(F )

π ← P(%$, x, w) ]
|π | = O(log |F | )

B2A((V) = O(log |F | , |x | )



Constructing zkSNARKs
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Starting point: Trivial NP Protocol

w

pk proving key
x public input
w private witness

Prover

vk verifying key
x public input

Verifier

Problem 1: Non-succinct proof!  
Problem 2: Non-succinct verification! 
Problem 3: Not hiding at all!
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Strawman 1: Hash the witness

H(w)

pk proving key
x public input
w private witness

Prover

vk verifying key
x public input

Verifier

Problem 1 solved: Succinct proof!  
Problem 2: How to verify? 
Problem 3: Still might not be hiding!
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Strawman 2: Commit to the witness

COMM(w)

pk proving key
x public input
w private witness

Prover

vk verifying key
x public input

Verifier

Problem 1 solved: Succinct proof!  
Problem 2: How to verify? 
Problem 3: Still might not be hiding!



ZKP MOOC

  
satisfying the following properties 

• Binding: For all efficient adv. , 
  

(no adv can open commitment to two diff values) 

• Hiding: For all , and all adv. , 
 

(no adv can learn committed value, i.e. comms are indistinguishable)

>;AA2)(w; r) → :A

D
Pr [>;AA2)(w; r) = >;AA2)(w′ ; r′ ) : (w, r, w′ , r′ ) ← D] ≈ 0

w, w′ D
D(>;AA2)(w; r)) = D(>;AA2)(w′ ; r′ ))

18

Commitment Schemes



ZKP MOOC

A standard construction

Let  be a cryptographic hash function. Then  
  

is a commitment scheme

H
>;AA2)(w; r) := H(w, r)

19
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Strawman 2: Commit to the witness

COMM(w)

pk proving key
x public input
w private witness

Prover

vk verifying key
x public input

Verifier

Problem 1 solved: Succinct proof!  
Problem 2: How to verify? 
Problem 3 solved: COMM hides w!



Performing checks on  
committed data?
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What does V do in the Trivial NP proof?

w

F proving key
x public input
w private witness

Prover

F verifying key
x public input

Verifier

Evaluate F(x, w)!

To apply this to our commitment-based protocol, 
do we need a “fully-homomorphic” commitment?



ZKP MOOC

Pair of algorithms with the following syntax: 
•  

• Commits to the message 
•  

• Evaluates a function over the committed 
message, and outputs the result in the clear.

>;AA2)(w; r) → :A

F#7@(Fx, :A) → F(x, w)

23

Homomorphic Commitments?
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Strawman 3: Homomorphic Commitments

cm1. :A := >;AA2)(w; r)

Prover(%$, x, w)

(#7@(Fx, :A) ?= 1
Verifier(#$, x)

               Completeness: Follows from that of commitment
Knowledge Soundness: Follows from Trivial NP Proof
            Succinct pf size: Follows if eval. proof is succinct 
                                   ZK: ???

Problem 1: This would violate ZK: no hiding! 
Problem 2: All constructions are inefficient!



ZKP MOOC

Triple of algorithms with the following syntax: 
•  

• Commits to the message 
•  

• Returns proof of correct evaluation of  
•  

• Checks that  is a valid proof that , where 
 is the msg inside 

>;AA2)(m; r) → :A

G1;#(F#7@(F, m; r) → (F(m), π)
F(m)

>=(:$F#7@(F, :A, v, π) → b ∈ {0,1}
π F(m) = v

m :A
25

Idea: Ask Prover to help

Does this work?
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Strawman 4: Functional Commitments

cm
1.  
2.

>;AA2)(w; r)
G1;#(F#7@(Fx, w; r)

Prover(%$, x, w)

>=(:$F#7@(Fx, :A,1,π)

Verifier(#$, x)

               Completeness: Follows from that of 
Knowledge Soundness: Ditto
                                   ZK: Follows from hiding
             Succinct pf size: Follows if eval. proof is succinct

(G1;#(F#7@, >=(:$F#7@)

πFx

Are we done?
No! We just pushed the problem one layer down!



ZKP MOOC

Triple of algorithms with the following syntax: 
•  

• Commits to the message 
•  

• Returns proof of correct evaluation of  
•  

• Checks that  is a valid proof that , where 
 is the msg inside 

>;AA2)(m; r) → :A

G1;#(F#7@(F, m; r) → (F(m), π)
F(m)

>=(:$F#7@(F, :A, v, π) → b ∈ {0,1}
π F(m) = v

m :A
27

Problem: This is a zkSNARK for !F
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Trivial NP Proof 
System

Very Complex 
Commitment

Compiler zkSNARK

Let’s Reassess Our Status



How about we rebalance?
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More Complex 
Proof System

Simpler 
Commitment

Compiler zkSNARK



What commitment schemes exist?
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Polynomial commitments:  
▪ : Interpret  as univariate poly   in  and evaluate at  

Multilinear commitments:  
▪ : Interpret  as multilinear poly   in  and evaluate at     

Vector commitments:  
▪ : Interpret  as vector   in  and return  

Inner-product commitments:  
▪ : Interpret  as vector   in  and return 

Fz(m) m f(X ) H[X ] z

F ⃗z(m) m f(X ) H[ ⃗X ] ⃗z

Fi(m) m v H n vi

F ⃗q(m) m ⃗v H n ⟨ ⃗v, ⃗q⟩

e.g.,   #($1, …, $%) = $1$3 + $1$4$5 + $7

Which to pick?
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A: Polynomials!



Let’s pick polynomials

32

???

Polynomial 
Commitment

Compiler zkSNARK


