
Pratyush Mishra
UPenn
Fall 2023

Theory and Practice of Succinct
Zero Knowledge Proofs

Lecture 02: Modern zkSNARK Constructions

2

Succinct Non-Interactive Arguments (SNARGs)

O(log(F))

pk proving key
x public input
w private witness

Prover

vk verifying key
x public input

Verifier

Õ(F)

I know w s.t. F(x, w) = 1

[]Mic94, Groth10, GGPR13, Groth16…
…, GWC19, CHMMVW20, …

F function
Setup

pk vk

3

Succinct Non-Interactive Arguments (SNARGs)

• Completeness: If ,

 .

• Soundness: If , for all efficient provers

• Succinctness:

(F, x, w) ∈ ℛ
Pr [V(#$, x, π) = 1 : (%$, #$) ← '()*%(F)

π ← P(%$, x, w)] = 1

(F, x, w) ∉ ℛ P̃
Pr [V(#$, x, π) = 1 :

(%$, #$) ← '()*%(F)
π ← P̃(%$, x)] ≈ 0

|π | = O(log |F |)

4

What if there’s always a witness?

• : there is always a preimage!

• : if pk is a
valid public key, there is always a valid signature!

• Generally many examples where witness always exists!

F(x, w) := '-./(w) ?= x

F((m, %$), σ) := 0(1234'2567)*1((%$, m, σ) ?= 1

Soundness: If , then for all efficient provers (F, x, w) ∉ ℛ P̃
Pr [V(#$, x, π) = 1 :

(%$, #$) ← '()*%(F)
π ← P̃(%$, x)] ≈ 0

5

SNARGs of Knowledge (SNARKs)
• Completeness: For all ,

 .

• Knowledge Soundness: If , then
“knows” such that

• Succinctness:

(F, x, w) ∈ ℛ
Pr [V(#$, x, π) = 1 : (%$, #$) ← '()*%(F)

π ← P(%$, x, w)] = 1

V(#$, x, π) = 1 P̃
w (F, x, w) ∈ ℛ

Pr
V(#$, x, π) = 1

∧
(F, x, w) ∉ ℛ

:
(%$, #$) ← '()*%(F)

π ← P̃(%$, x)
w ← EP̃(%$, x)

≈ 0

|π | = O(log |F |)

6

SNARGs of Knowledge (SNARKs)
• Completeness: For all ,

 .

• Knowledge Soundness: For each efficient there exists an
extractor such that

• Succinctness:

(F, x, w) ∈ ℛ
Pr [V(#$, x, π) = 1 : (%$, #$) ← '()*%(F)

π ← P(%$, x, w)] = 1

P̃
E

Pr
V(#$, x, π) = 1

∧
(F, x, w) ∉ ℛ

:
(%$, #$) ← '()*%(F)

π ← P̃(%$, x)
w ← EP̃(%$, x)

≈ 0

|π | = O(log |F |)

7

What about privacy?
• :

Does proof reveal info about preimage?

• :
Does proof reveal info about which signature was used?

•
Does proof reveal info about credit history?

F(x, w) := '-./(w) ?= x

F((m, %$), σ) := 0(1234'2567)*1((%$, m, σ) ?= 1

F(x = 9:;1(, w = :1(<2)_=29)) := >1(<2)?;<(@(w) ?= x

Verifier is the adversary now!

8

Zero Knowledge SNARKs (zkSNARKs)
• Completeness: For all , …

• Knowledge Soundness: For each efficient there exists an
extractor such that …

• Zero Knowledge: Proof reveals no information to other
than validity of

• Succinctness:

(F, x, w) ∈ ℛ
P̃

E
V

w
Pr [V(#$, x, π) : (%$, #$) ← '()*%(F)

π ← '2A(%$, x)] = Pr [V(#$, x, π) : (%$, #$) ← '()*%(F)
π ← P(%$, x, w)]

|π | = O(log |F |)

9

Zero Knowledge SNARKs (zkSNARKs)
• Completeness: For all , …

• Knowledge Soundness: For each efficient there exists an
extractor such that …

• Zero Knowledge: For all , and all efficient
there exists an simulator such that

• Succinctness:

(F, x, w) ∈ ℛ
P̃

E
(F, x, w) ∈ R Ṽ
'2A

Pr [V(#$, x, π) : (%$, #$) ← '()*%(F)
π ← '2A(%$, x)] = Pr [V(#$, x, π) : (%$, #$) ← '()*%(F)

π ← P(%$, x, w)]
|π | = O(log |F |)

10

Doesn’t this break soundness?

Pr [V(#$, x, π) : (%$, #$) ← '()*%(F)
π ← '2A(%$, x)] = Pr [V(#$, x, π) : (%$, #$) ← '()*%(F)

π ← P(%$, x, w)]
 has same success probability as honest prover!'2A

This is actually okay: we provide Sim with additional powers!
• Interactive case: Sim can rewind verifier
• Non-interactive case: Sim gets “trapdoor”/secret information

11

zk Marker Demo

12

What about succinct verification?

• :
Do I need to compute hashes to verify proof?

•
Do I need to evaluate complex model to verify proof?

F(x, w) = '-./106(w) ?= x
106

F(x = 9:;1(, w = :1(<2)_=29)) = >1(<2)?;<(@(w) ?= x

Succinctness: |π | = O(log |F |)

13

Strongly Succinct zkSNARKs
• Completeness: For all , …

• Knowledge Soundness: For each efficient there exists an
extractor such that …

• Zero Knowledge: For all , and all efficient
there exists an simulator such that

• Succinctness:
 and

(F, x, w) ∈ ℛ
P̃

E
(F, x, w) ∈ R Ṽ
'2A

Pr [V(#$, x, π) : (%$, #$) ← '()*%(F)
π ← '2A(%$, x)] = Pr [V(#$, x, π) : (%$, #$) ← '()*%(F)

π ← P(%$, x, w)]
|π | = O(log |F |)

B2A((V) = O(log |F | , |x |)

Constructing zkSNARKs

15

Starting point: Trivial NP Protocol

w

pk proving key
x public input
w private witness

Prover

vk verifying key
x public input

Verifier

Problem 1: Non-succinct proof!  
Problem 2: Non-succinct verification! 
Problem 3: Not hiding at all!

16

Strawman 1: Hash the witness

H(w)

pk proving key
x public input
w private witness

Prover

vk verifying key
x public input

Verifier

Problem 1 solved: Succinct proof!  
Problem 2: How to verify? 
Problem 3: Still might not be hiding!

17

Strawman 2: Commit to the witness

COMM(w)

pk proving key
x public input
w private witness

Prover

vk verifying key
x public input

Verifier

Problem 1 solved: Succinct proof!  
Problem 2: How to verify? 
Problem 3: Still might not be hiding!

ZKP MOOC

satisfying the following properties

• Binding: For all efficient adv. ,

(no adv can open commitment to two diff values)

• Hiding: For all , and all adv. ,

(no adv can learn committed value, i.e. comms are indistinguishable)

>;AA2)(w; r) → :A

D
Pr [>;AA2)(w; r) = >;AA2)(w′ ; r′) : (w, r, w′ , r′) ← D] ≈ 0

w, w′ D
D(>;AA2)(w; r)) = D(>;AA2)(w′ ; r′))

18

Commitment Schemes

ZKP MOOC

A standard construction

Let be a cryptographic hash function. Then

is a commitment scheme

H
>;AA2)(w; r) := H(w, r)

19

20

Strawman 2: Commit to the witness

COMM(w)

pk proving key
x public input
w private witness

Prover

vk verifying key
x public input

Verifier

Problem 1 solved: Succinct proof!  
Problem 2: How to verify? 
Problem 3 solved: COMM hides w!

Performing checks on  
committed data?

22

What does V do in the Trivial NP proof?

w

F proving key
x public input
w private witness

Prover

F verifying key
x public input

Verifier

Evaluate F(x, w)!

To apply this to our commitment-based protocol, 
do we need a “fully-homomorphic” commitment?

ZKP MOOC

Pair of algorithms with the following syntax:
•

• Commits to the message
•

• Evaluates a function over the committed
message, and outputs the result in the clear.

>;AA2)(w; r) → :A

F#7@(Fx, :A) → F(x, w)

23

Homomorphic Commitments?

24

Strawman 3: Homomorphic Commitments

cm1. :A := >;AA2)(w; r)

Prover(%$, x, w)

(#7@(Fx, :A) ?= 1
Verifier(#$, x)

 Completeness: Follows from that of commitment
Knowledge Soundness: Follows from Trivial NP Proof
 Succinct pf size: Follows if eval. proof is succinct 
 ZK: ???

Problem 1: This would violate ZK: no hiding! 
Problem 2: All constructions are inefficient!

ZKP MOOC

Triple of algorithms with the following syntax:
•

• Commits to the message
•

• Returns proof of correct evaluation of
•

• Checks that is a valid proof that , where
 is the msg inside

>;AA2)(m; r) → :A

G1;#(F#7@(F, m; r) → (F(m), π)
F(m)

>=(:$F#7@(F, :A, v, π) → b ∈ {0,1}
π F(m) = v

m :A
25

Idea: Ask Prover to help

Does this work?

26

Strawman 4: Functional Commitments

cm
1.
2.

>;AA2)(w; r)
G1;#(F#7@(Fx, w; r)

Prover(%$, x, w)

>=(:$F#7@(Fx, :A,1,π)

Verifier(#$, x)

 Completeness: Follows from that of
Knowledge Soundness: Ditto
 ZK: Follows from hiding
 Succinct pf size: Follows if eval. proof is succinct

(G1;#(F#7@, >=(:$F#7@)

πFx

Are we done?
No! We just pushed the problem one layer down!

ZKP MOOC

Triple of algorithms with the following syntax:
•

• Commits to the message
•

• Returns proof of correct evaluation of
•

• Checks that is a valid proof that , where
 is the msg inside

>;AA2)(m; r) → :A

G1;#(F#7@(F, m; r) → (F(m), π)
F(m)

>=(:$F#7@(F, :A, v, π) → b ∈ {0,1}
π F(m) = v

m :A
27

Problem: This is a zkSNARK for !F

28

Trivial NP Proof
System

Very Complex
Commitment

Compiler zkSNARK

Let’s Reassess Our Status

How about we rebalance?

29

More Complex
Proof System

Simpler
Commitment

Compiler zkSNARK

What commitment schemes exist?

30

Polynomial commitments:
▪ : Interpret as univariate poly in and evaluate at

Multilinear commitments:
▪ : Interpret as multilinear poly in and evaluate at

Vector commitments:
▪ : Interpret as vector in and return

Inner-product commitments:
▪ : Interpret as vector in and return

Fz(m) m f(X) H[X] z

F ⃗z(m) m f(X) H[⃗X] ⃗z

Fi(m) m v H n vi

F ⃗q(m) m ⃗v H n ⟨ ⃗v, ⃗q⟩

e.g., #($1, …, $%) = $1$3 + $1$4$5 + $7

Which to pick?

31

A: Polynomials!

Let’s pick polynomials

32

???

Polynomial
Commitment

Compiler zkSNARK

