Theory and Practice of Succinct
Zero Knowledge Proofs

Lecture 02: Modern zkSNARK Constructions

Pratyush Mishra

UPenn
Fall 2023

Succinct Non-Interactive Arguments (SNARGS)

Mic94, Groth10, GGPR13, Groth16...
..., GWC19, CHMMVW20, ...

Setup

S .
Q F function %

Prover { | know w s.t. F(x, w) = 1

pk proving key Verifier

x public input > vk verifying key

w private withess O(log(F)) X public input
N /

O(F)

Succinct Non-Interactive Arguments (SNARGS)

e Completeness: If (F,x,w) € X,
k, vk Setup(F
Pr|Vivk xmy = 1 : PRVR) = Setupli))
< P(pk, x,w)

¢ Soundness: [f (F,x,w) & R, for all efficient provers P
(pk, vk) < Setup(F)

Pr | V(vk,x,n) =1 : - ~ 0
< P(pk, x)

What if there’s always a withess?

Soundness: If (F, x, w) & 92, then for all efficient provers P

k, vk) < Setup(F
Pr | V(vk,x,7m) =1 : P) . P ~ ()
n < P(pk, x)

F(x,w) := SHA2(w) = x: there is always a preimage!

F((m, pk), 6) := VerifySignature(pk, m, o) = 1 : if pkis a
valid public key, there is always a valid signature!

Generally many examples where witness always exists!

SNARGs of Knowledge (SNARKS)

e Knowledge Soundness: If V(vk, x, 7) = 1, then P
“knows” w such that (F, x, w) € X

SNARGs of Knowledge (SNARKS)

e Knowledge Soundness: For each efficient P there exists an
extractor K such that)
Vivk, x,7) = 1 (pk, vk) < Setup(F)
Pr A ; 7 <« P(pk, x) ~ 0
(F,x,w) € % w < Es(pk, x)

What about privacy?

0
F(x,w) := SHA2(w) = x:
Does proof reveal info about preimage”

o ?
F((m, pk), o) := VerifySignature(pk,m,o) = 1:
Does proof reveal info about which signature was used?

L . ?
F(x = score, w = credit_hist) := CreditModel(w) = x
Does proof reveal info about credit history?

Verifier is the adversary now!

Zero Knowledge SNARKSs (zkSNARKS)

e Zero Knowledge: Proof reveals no information to V other
than validity of w

Zero Knowledge SNARKSs (zkSNARKS)

e Zero Knowledge: For all (F, x,w) € R, and all efficient \Y

there exists an simulator Sim such that

(pk, vk) < Setup(F)
Pr | V(vk, x, 7) : _ =Pr |V(vk, x,7n) :
< Sim(pk, x)

(pk, vk) < Setup(F)
m < P(pk,x,w)

Doesn’t this break soundness?

(pk, vk) < Setup(F)
Pr |V(vk,x, 7) : _ = Pr |V(vk,x, 7)) :
< Sim(pk, x)

(pk, vk) < Setup(F’)
n < P(pk, x, w)

Sim has same success probability as honest prover!

This is actually okay: we provide Sim with additional powers!
- Interactive case: Sim can rewind verifier
- Non-interactive case: Sim gets “trapdoor”/secret information

10

zk Marker Demo

What about succinct verification?
Succinctness: | 7| = O(log | F'|)

6)
F(x,w) = SHA2'(w) = x -
Do | need to compute 10° hashes to verify proof?

L . ?
F(x = score, w = credit_hist) = CreditModel(w) = x
Do | need to evaluate complex model to verify proof?

Strongly Succinct zkSNARKSs

and Time(V) = O(log | F'|, |x]|)

Constructing zkSNARKSs

Starting point: Trivial NP Protocol

\

Prover
pk proving key

X public input

w private witness

J

&

Verifier
vk verifying key
x public input

)

Problem 1: Non-succinct proof!
Problem 2: Non-succinct verification!
Problem 3: Not hiding at all!

15

Strawman 1: Hash the witness

\

Prover
pk proving key

X public input

w private witness

J

&

Verifier
vk verifying key
x public input

)

Problem 1 solved: Succinct proof!
Problem 2: How to verify?
Problem 3: Still might not be hiding!

16

Strawman 2: Commit to the witness

o "
Prover . —)
pk proving key Verifier
X public input vk verifying key
w private witness CO|\/||\/|(W) X public input
_ J N J

Problem 1 solved: Succinct proof!
Problem 2: How to verify?
Problem 3: Still might not be hiding!

Commitment Schemes

Commit(w; r) = cm
satistying the following properties

e Binding: For all efficient adv. &,
Pr |Commit(w; r) = Commit(w’; r') : (w,r,w,r) « 9| = 0
(no adv can open commitment to two diff values)

e Hiding: For all w, w’, and all adv. &,
A (Commit(w; r)) = A (Commit(w’; r'))

(no adv can learn committed value, i.e. comms are indistinguishable)

18

A standard construction

Let H be a cryptographic hash function. Then
Commit(w;r) := Hw, r)

IS a commitment scheme

19

Strawman 2: Commit to the witness

o "
Prover . —)
pk proving key Verifier
X public input vk verifying key
w private witness CO|\/||\/|(W) X public input
_ J N J

Problem 1 solved: Succinct proof!
Problem 2: How to verify?
Problem 3 solved: COMM hides w!

Performing checks on
committed data?

What does V do in the Trivial NP proof?

Prover . —)
F proving key Veritier
X public input F verifying key
w private witness w X public input
_ J N J

Evaluate F(x, w)!

To apply this to our commitment-based protocol,
do we need a “fully-homomorphic” commitment?

Homomorphic Commitments?

Pair of algorithms with the following syntax:
e Commit(w;r) > cm
e Commits to the message
e Eval(F,,cm) — F(x,w)
e Fvaluates a function over the committed
message, and outputs the result in the clear.

23

Strawman 3: Homomorphic Commitments

~ M
Prover(pk, x, w)

_ Verifier(vk, x)
1.cm := Commit(w;r), cm)
— —> eval(F,cm) =1

_ J _),

Completeness: Follows from that of commitment
Knowledge Soundness: Follows from Trivial NP Proof

Succinct pf size: Follows if eval. proof is succinct
ZK: ???

Problem 1: This would violate ZK: no hiding!
Problem 2: All constructions are inefficient!

24

ldea: Ask Prover to help

Triple of algorithms with the following syntax:
e Commit(m;r) - cm
e Commits to the message
e Provekval(F,m;r) —» (F(m), n)
e Returns proof of correct evaluation of F(m)
e CheckEval(F,cm,v,7) - b € {0,1}
e Checks that 7 is a valid proof that F(m) = v, where
m is the msg inside cm

Does this work?

25

Strawman 4: Functional Commitments

e)
Prover(pk, x, w)
1. Commit(w: 7) Verifier(vk, x)
. cm
2. ProveEval(F,w;r) —> CheckEval(F,, cm,1,7)
]ZFx
N ™) J

Completeness: Follows from that of (ProveEval, CheckEval)
Knowledge Soundness: Ditto

ZK: Follows from hiding
Succinct pf size: Follows if eval. proof is succinct

Are we done?

No! We just pushed the problem one layer down!

26

Problem: This is a zkSNARK for F

Triple of algorithms with the following syntax:
e Commit(m;r) - cm
e Commits to the message
e Provekval(F,m;r) —» (F(m), n)
e Returns proof of correct evaluation of F(m)
e CheckEval(F,cm,v,7) - b € {0,1}
e Checks that 7 is a valid proof that F(m) = v, where
m is the msg inside cm

27

Let’s Reassess Our Status

Trivial NP Proof
System

Compiler

How about we rebalance?

More Complex
Proof System

Compiler

What commitment schemes exist?

Polynomial commitments:
« F.(m): Interpret m as univariate poly f(X) in [F[X] and evaluate at z

Multilinear commitments: €.0. f(Xpr e Xpe) = X123+ X,24%5 + X
« F=(m): Interpret m as multilinear poly f(X) in F[X] and evaluate at Z

Vector commitments:
= F;(m): Interpret m as vector vin [F"* and return v;

Inner-product commitments:
« Fz(m): Interpret m as vector Vin F" and return (V, g)

Which to pick?

30

A: Polynomials!
@ Benedlkt Blinz

Reed - Solomon code: Polynomial
Zero-Knwoledge Proof Systems: Polynomials
Secret Sharing: Polynomial Evaluations
|dentity Testing: Polynomials equal?

FFTs: Polynomials

FRI: FFTs-> Polynomials
SNARK: Polynomials

STARK: SNARK

Security Parameter: Polynomial
Lagrange: Polynomial

31

Let’s pick polynomials

-

Compiler

L

&

