CIS 5560

Cryptography
Lecture 9

Course website:
pratyushmishra.com/classes/cis-5560-s25/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Announcements

- HW 3 due next Friday
« HW2 due tomorrow!

Recap of last lecture

Pseudorandom Functions

Collection of functions F, = {F, : {0,1}* = {0,1}"} (0.1}

indexed by a key k
n: key length, : input length, m: output length.

Independent parameters, all poly(sec-param) = poly(n)

- #functions in &, < 2" (singly exponential in n)

Gen(1"): Generate a random n-bit key k.

Eval(k, x) is a poly-time algorithm that outputs F(x)

Security: Cannot distinguish from random function

[Pr[Af(1") = 1 | k < (0,1)7] = Pr[AT(1") = 1 | F < Fns] | < negl(n).

PRP/Block Cipher

A block cipher is a pair of efficient algs. (E, D):

n bits n bits

PT Block CT Block

Key k bits

Canonical examples:
1. AES: n=128 bits, k=128, 192, 256 bits
2. 3DES: n=64 bits, k=168 bits (historical)

Goldreich-Goldwasser-Micali PRF

Construction: Let G(s) = Gy(s) || G,(s) where G,(s) and G,(s) are
both n bits each.

S
Gy(s)
GO(G()(S)) GO(G] (S)) GI(GI(S))
Go(G(...Gy(s)) Gy (G (.G (5)) G(G (...Gy(s))

Each path/leaf labeled by x € {0,1} corresponds to f,(x).

2 uidaa

Today’s Lecture

 Proof of security for MAC
« Short MAC — Long MACs

Goldreich-Goldwasser-Micali PRF

Construction: Let G(s) = Gy(s) || G,(s) where G,(s) and G,(s) are
both n bits each.

S
Gy(s)
GO(G()(S)) GO(G] (S)) GI(GI(S))
Go(G(...Gy(s)) Gy (G (.G (5)) G(G (...Gy(s))

Each path/leaf labeled by x € {0,1} corresponds to f,(x).

2 uidaa

Goldreich-Goldwasser-Micali PRF

Construction: Let G(s) = Gy(s) || G,(s) where G,(s) and G,(s) are
both n bits each.

The pseudorandom function family &%, is defined by a collection
of functions f, where:

f(x1%y...x7) = G (G (.G ()

|

Y

£ -bit input
¢ £ defines 2 pseudorandom bits.

¢ The x™ bit can be computed using ¢ evaluations of the
PRG G (as opposed to x ~ 27 evaluations as before.)

GGM PRF: Proof of Security

By contradiction. Assume there is a ppt D and a poly function p s.t.

‘Pr [AR(1m) = 1 | k < {0,1}¢] = Pr[AF(1") =1 | F < Fns] ‘ > 1/p(n) .

The pseudorandom world:
Hybrid O

S

Go(s) —

Gy (s)

Problem:
Hybrid argument on leaves
doesn’t work. Why?

O
Go(Gy()\ G(G(s))

O 000 O
fo(GY 1(...(s)))
b1 b2 b3 bx bzf

x‘ ‘ J(x)

D

The pseudorandom world:
Hybrid O

S

Go(s) —

Gy (s)

O Key Idea:
Gy(G (s G1(G(s)) Hybrid argument by levels
of the tree

O 000 O
fo(GY 1(...(s)))
b1 b2 b3 bx bzf

x‘ ‘ J(x)

D

The pseudorandom world:
Hybrid O

Hybrid 1

S

Go(s) G\(s)

O
Go(Gy()\ G(G(s))

O 000 O
fo(GY _‘(...(s)))
by by b3y ... b, -~ by

S0 and §1 are random
S0
S1

O
G1(G(9))

000 O

by by by .. by - by

x‘ ‘ J(x)

D

xt l f(x)

D

Hybrid 1

S0 and S are random

S0
51

O
G1(G(s))

000 O

Hybrid 2

by by by .. by - by

x' l J(x)

D

S00> - -- S11 are random

O 000 O

The random world:

Hybrid £
b, b, by«
O O 000 O O
by b, b; b, --- by
xt l J(x)

Hybrid i

Spis --- Sqpi are random

S()i

S1i
oOo0ooo00Q !

O 000 O

by by by .. by --- by

xt l f(x)

Q: Is the function in the
hybrid efficiently
computable?

A: Yes! Lazy Evaluation.

GGM PRF

Theorem: Let G be a PRG. Then, for every polynomials #, m, there
exists a PRF family #, = { £;:{0,1}* - {0,1}"} (0.1

Some nits:

¢ Expensive: ¢ invocations of a PRG.
¢ Sequential: bit-by-bit, # sequential invocations of a PRG.

¢ Loss in security reduction: break PRF with advantage
¢ = break PRG with advantage «/q¢, where g is an
arbitrary polynomial = #queries of the PRF distinguisher.

Tighter reduction? Avoid the loss?

The authentication problem

B ,
g 8

: Bob
Alice Can also alter/
k inject more k
messages!

This is known as a man-in-the-middle attack.
How can Bob check if the message is indeed from Alice?

The authentication problem

w
: (m, 1) w (m, t)or L \ Q

: Bob
Alice Can also alter/
k inject more k
messages!

We want Alice to generate a tag for the message m
which is hard to generate without the secret key k.

Wait... Does encryption not solve this?

@Q Enc(k, m) X Q

Alice Bob

Key k Key kK

Wait... Does encryption not solve this?

g m@kwm’eak X Q

Bob
Can toggle

between m k
and m’

One-time pad (and encryption schemes in
general) are malleable.

Wait... Does encryption not solve this?

@

Q AGLIDR GIAGLLY Q

Alice

Can toggle
between m
and m’

Bob

One-time pad (and encryption schemes in

general) are malleable.

Privacy and Integrity are very different goals!

Message Authentication Codes (MACs)

A triple of algorithms (Gen, MAC, Ver):

- Gen(1"): Produces a key k « .

« MAC(k, m): Outputs a tag ¢ (may be deterministic).
- Ver(k, m, t): Outputs Accept or Reject.

Correctness: Pr[Ver(k,m, MAC(k,m) = 1] =1

Security: Hard to forge. Intuitively, it should be hard to
come up with a new pair (m’, t’) such that Ver accepts.

What is the power of the adversary?

E)
. MAC(k. , MAC(k,
’ § o

Alice Bob

- Can see many pairs (m, MAC(k, m)) .

- Can access a MAC oracle MAC(k, ®)

— Obtain tags for message of choice.
This is called a chosen message attack (CMA).

Defining MAC Security

- Total break: The adversary should not be able to
recover the key k.

- Universal break: The adversary can generate a
valid tag for every message.

- Existential break: The adversary can generate a
new valid tag t for some message m.

We will require MACs to be secure against the
existential break!!

EUF-CMA Security

Existentially Unforgeable against Chosen Message Attacks

g S

t, = MAC(k, m,) k=K
my
t, = MAC(k, m,)
(m:t) Accept if (m, 1) # (m,, 1,)
. » forall i, and
Ver(k,m,t) =1

Want: Pr((m, 1) « AMACK)(1"), Ver(k, m, 1) =1, (m, 1) & Q)) = negl(n).
where Q is the set of queries { (m t-) } that A makes.

(XA
1

Let 1=(S,V) be a MAC.

Suppose an attacker is able to find m, # m, such that

MAC(k, m,) = MAC(k, m;) for % of the keys k in K

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for my or m,

—> No, this MAC can be broken using a chosen msg attack
It depends on the details of the MAC

/Mv[A, Z] = /2

Let 1=(S,V) be a MAC.
Suppose MAC(k,m) is always 5 bits long

Can this MAC be secure?

- No, an attacker can simply guess the tag for messages
It depends on the details of the MAC

Yes, the attacker cannot generate a valid tag for any message

Adv CP«,Z] = ’/39_

Dealing with Replay Attacks

- The adversary could send an old valid (m, tag) at a
later time.

— In fact, our definition of security does not rule this
out.

 In practice:

— Append a time-stamp to the message. Eg. (m, T,
MAC(m, T)) where T = 21 Sep 2022, 1:47pm.

— Sequence numbers appended to the message (this
requires the MAC algorithm to be stateful).

