

CIS 5560

Cryptography Lecture 9

Course website:

pratyushmishra.com/classes/cis-5560-s25/

Announcements

- **HW 3 due next Friday**
- **HW2 due tomorrow!**

Recap of last lecture

Pseudorandom Functions

Collection of functions $\mathcal{F}_\ell = \{F_k : \{0,1\}^\ell \rightarrow \{0,1\}^m\}_{k \in \{0,1\}^n}$

- indexed by a key k
- n : key length, ℓ : input length, m : output length.
- Independent parameters, all $\text{poly}(\text{sec-param}) = \text{poly}(n)$
- #functions in $\mathcal{F}_\ell \leq 2^n$ (singly exponential in n)

Gen(1^n): Generate a random n -bit key k .

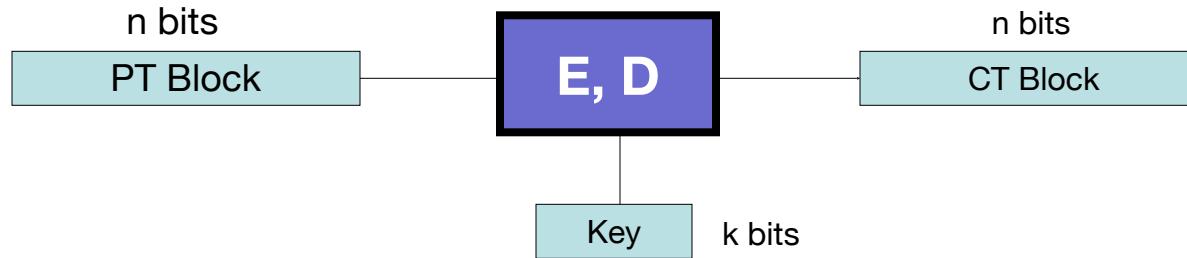
Eval(k, x) is a poly-time algorithm that outputs $F_k(x)$

Security: Cannot distinguish from random function

$$\left| \Pr \left[A^{f_k}(1^n) = 1 \mid k \leftarrow \{0,1\}^\ell \right] - \Pr \left[A^F(1^n) = 1 \mid F \leftarrow \text{Fns} \right] \right| \leq \text{negl}(n).$$

PRP/Block Cipher

A **block cipher** is a pair of efficient algs. (E, D):

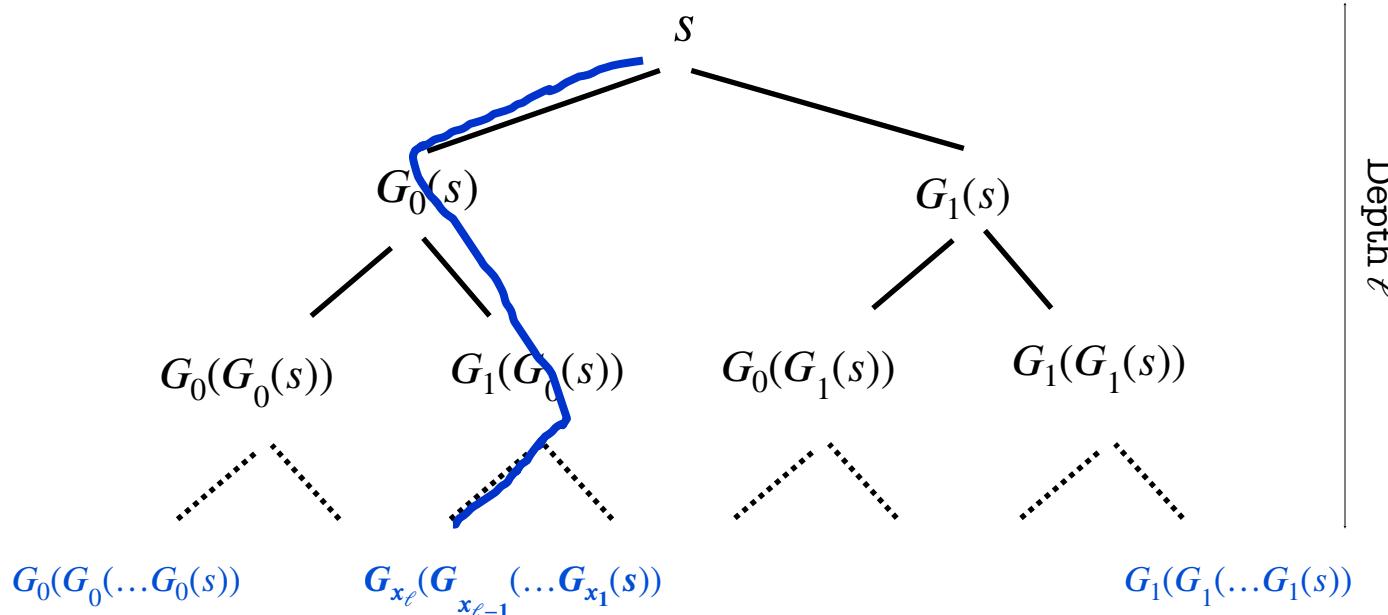


Canonical examples:

1. **AES:** $n=128$ bits, $k = 128, 192, 256$ bits
2. **3DES:** $n= 64$ bits, $k = 168$ bits (historical)

Goldreich-Goldwasser-Micali PRF

Construction: Let $G(s) = G_0(s) \parallel G_1(s)$ where $G_0(s)$ and $G_1(s)$ are both n bits each.



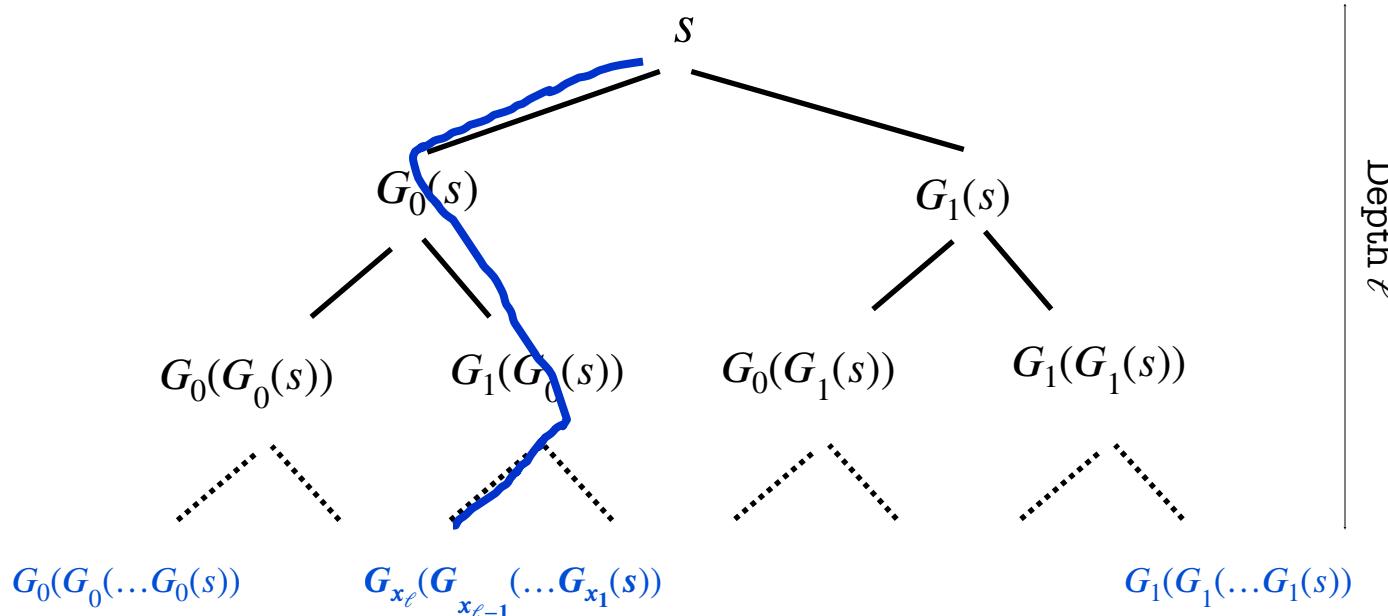
Each path/leaf labeled by $x \in \{0,1\}^\ell$ corresponds to $f_s(x)$.

Today's Lecture

- Proof of security for MAC
- Short MAC \rightarrow Long MACs

Goldreich-Goldwasser-Micali PRF

Construction: Let $G(s) = G_0(s) \parallel G_1(s)$ where $G_0(s)$ and $G_1(s)$ are both n bits each.



Each path/leaf labeled by $x \in \{0,1\}^\ell$ corresponds to $f_s(x)$.

Goldreich-Goldwasser-Micali PRF

Construction: Let $G(s) = G_0(s) \parallel G_1(s)$ where $G_0(s)$ and $G_1(s)$ are both n bits each.

The pseudorandom function family \mathcal{F}_ℓ is defined by a collection of functions f_s where:

$$f_s(x_1 x_2 \dots x_\ell) = \mathbf{G}_{x_\ell}(\mathbf{G}_{x_{\ell-1}}(\dots \mathbf{G}_{x_1}(s)))$$

$\underbrace{\hspace{10em}}_{\ell\text{-bit input}}$

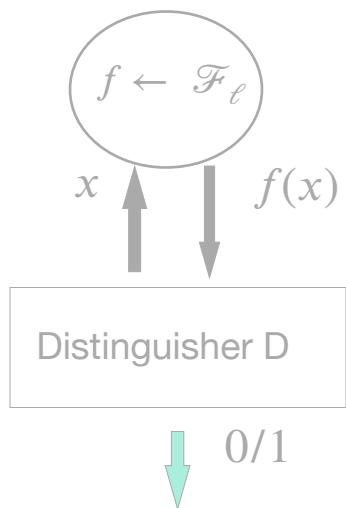
- ♦ f_s defines 2^ℓ pseudorandom bits.
- ♦ The x^{th} bit can be computed using ℓ evaluations of the PRG G (as opposed to $x \approx 2^\ell$ evaluations as before.)

GGM PRF: Proof of Security

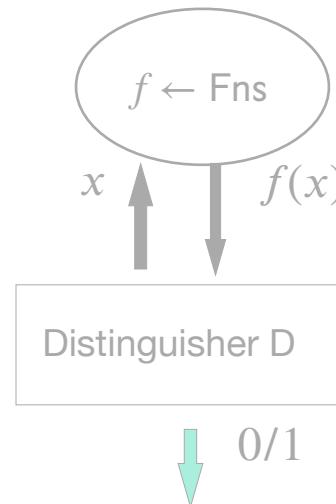
By contradiction. Assume there is a ppt D and a poly function p s.t.

$$\left| \Pr [A^{f_k}(1^n) = 1 \mid k \leftarrow \{0,1\}^\ell] - \Pr [A^F(1^n) = 1 \mid F \leftarrow \text{Fns}] \right| \geq 1/p(n).$$

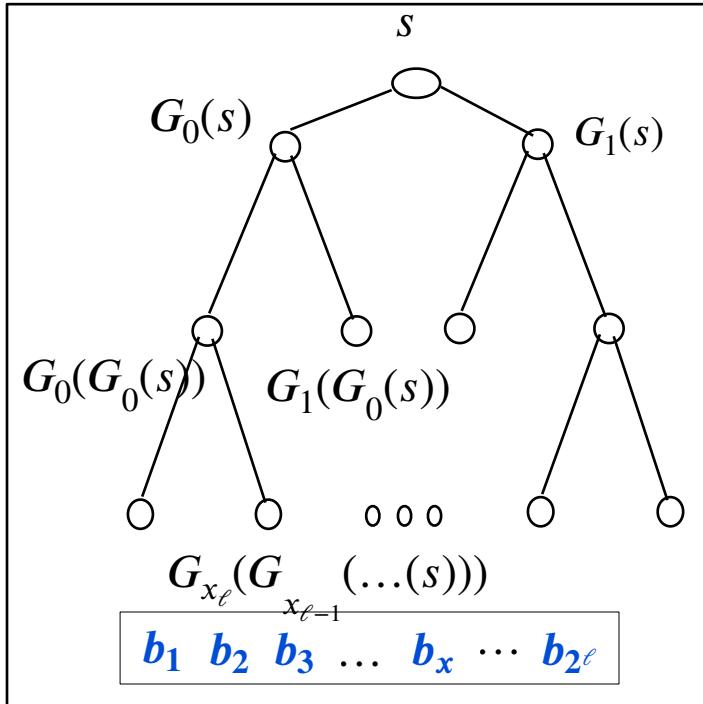
The pseudorandom world



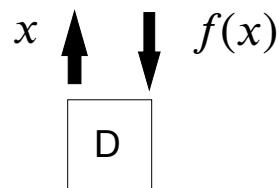
The random world



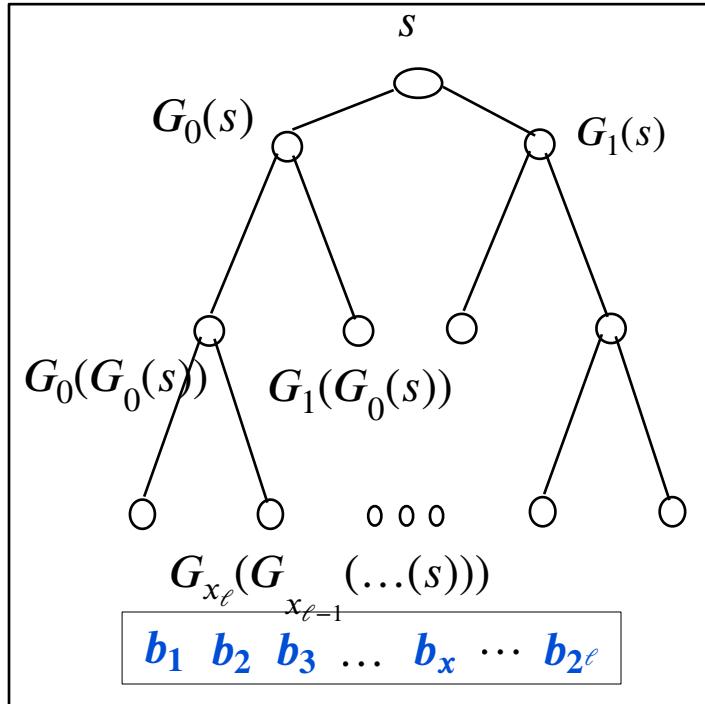
The pseudorandom world: Hybrid 0



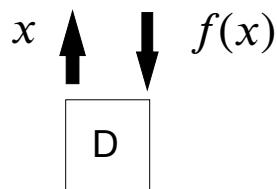
Problem:
Hybrid argument on leaves
doesn't work. Why?



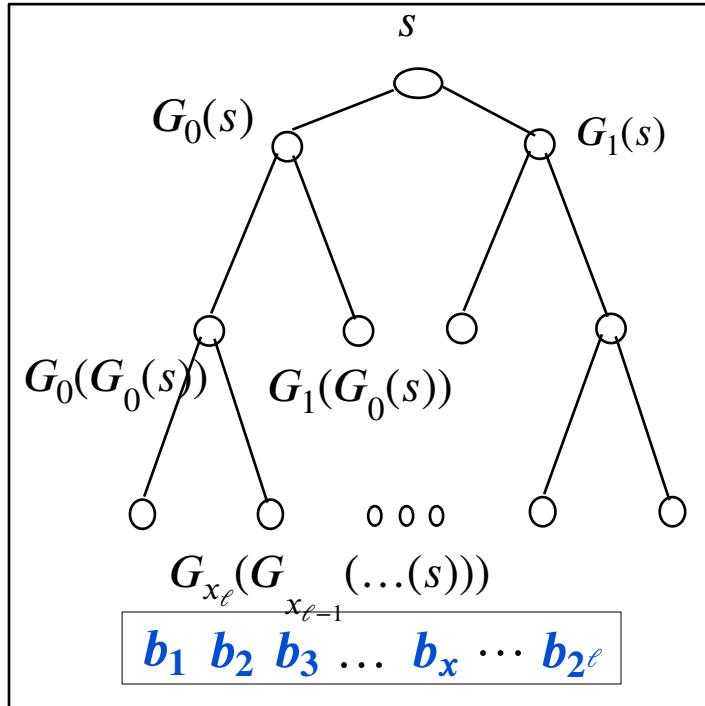
The pseudorandom world: Hybrid 0



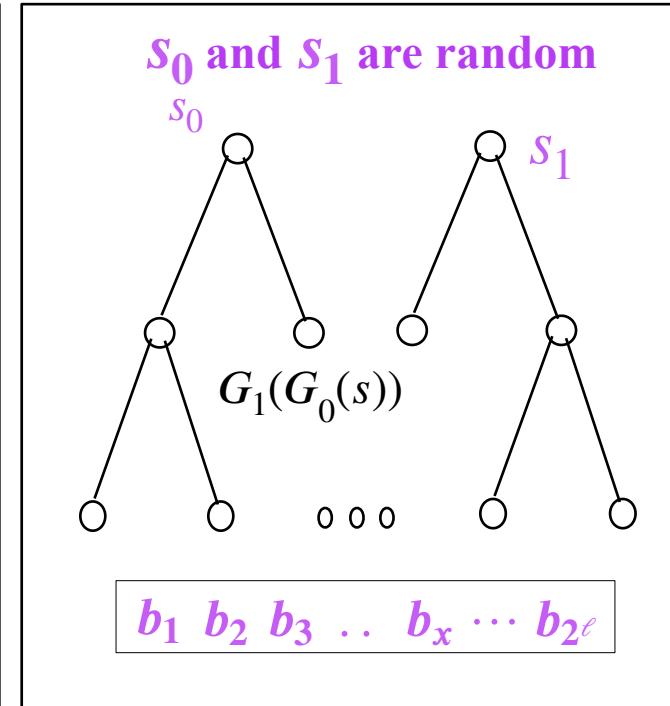
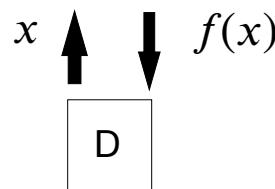
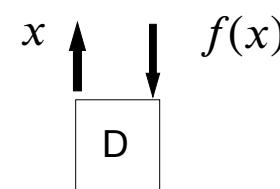
Key Idea:
**Hybrid argument by levels
of the tree**



The pseudorandom world: Hybrid 0



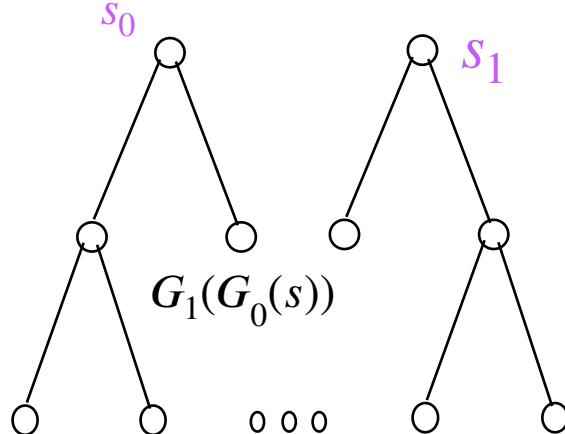
Hybrid 1



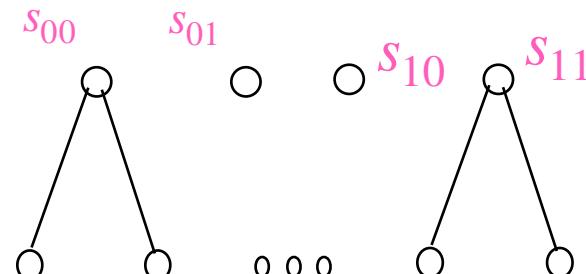
Hybrid 1

Hybrid 2

s_0 and s_1 are random



$s_{00}, \dots s_{11}$ are random



x \uparrow \downarrow $f(x)$

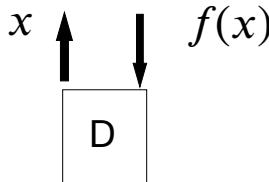
x \uparrow \downarrow $f(x)$

The random world: Hybrid ℓ

■ ■ ■

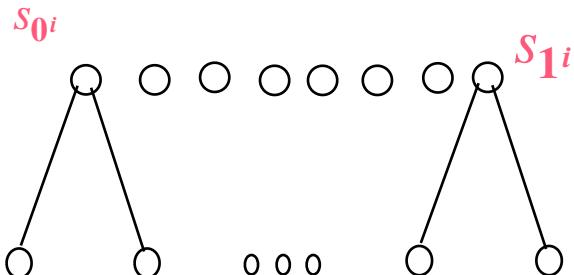
b_1 b_2 0 0 0 0 b_{2^ℓ}

b_1 b_2 b_3 ... b_x ... b_{2^ℓ}



Hybrid i

s_{0i}, \dots, s_{1i} are random



$b_1 \ b_2 \ b_3 \dots \ b_x \dots \ b_{2^\ell}$

Q: Is the function in the hybrid efficiently computable?

A: Yes! Lazy Evaluation.

x \uparrow $f(x)$

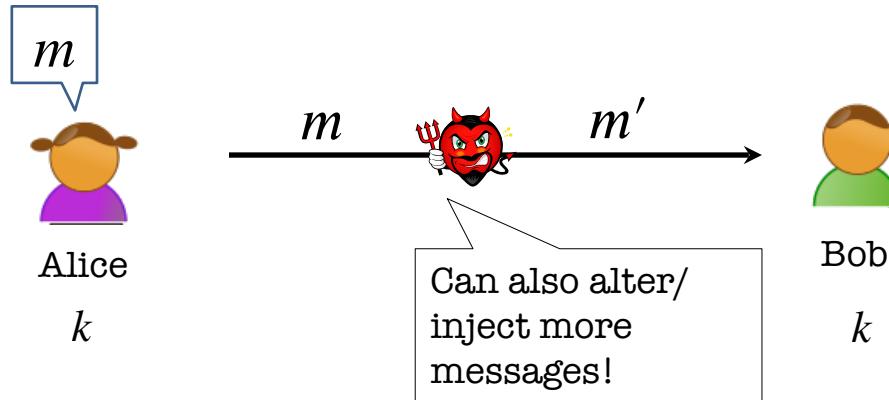
GGM PRF

Theorem: Let G be a PRG. Then, for every polynomials ℓ, m , there exists a PRF family $\mathcal{F}_\ell = \{f_s : \{0,1\}^\ell \rightarrow \{0,1\}^m\}_{s \in \{0,1\}^n}$.

Some nits:

- ◆ *Expensive*: ℓ invocations of a PRG.
- ◆ *Sequential*: bit-by-bit, ℓ sequential invocations of a PRG.
- ◆ *Loss in security reduction*: break PRF with advantage $\varepsilon \implies$ break PRG with advantage $\varepsilon/q\ell$, where q is an arbitrary polynomial = #queries of the PRF distinguisher.
Tighter reduction? Avoid the loss?

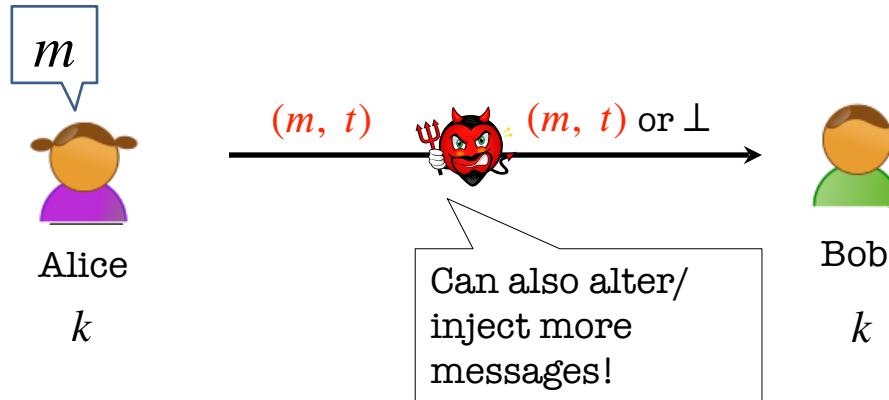
The authentication problem



This is known as a **man-in-the-middle attack**.

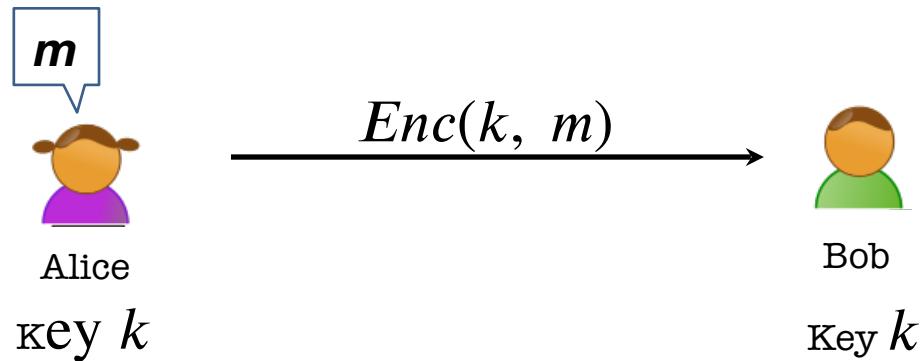
How can Bob check if the **message is indeed from Alice?**

The authentication problem

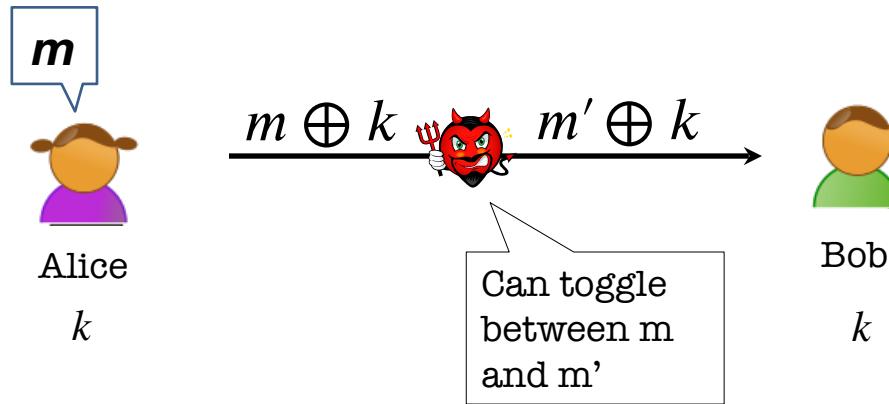


We want Alice to generate a **tag** for the message m which is **hard to generate** without the secret key k .

Wait... Does encryption not solve this?

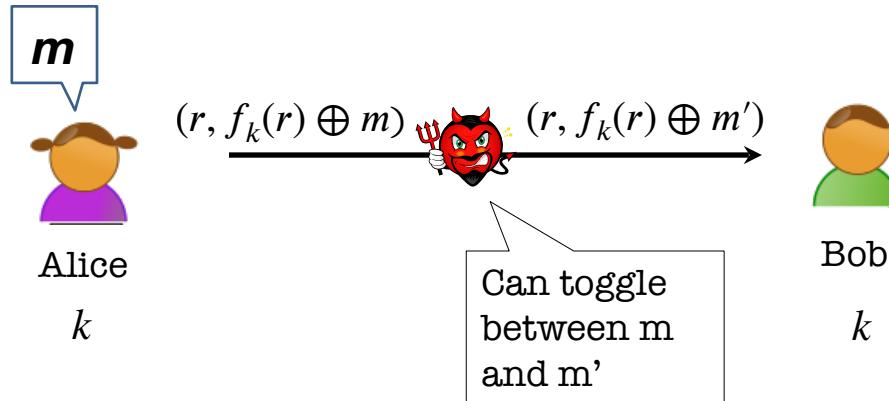


Wait... Does encryption not solve this?



One-time pad (and encryption schemes in general) are **malleable**.

Wait... Does encryption not solve this?



One-time pad (and encryption schemes in general) are **malleable**.

Privacy and Integrity are very **different goals!**

Message Authentication Codes (MACs)

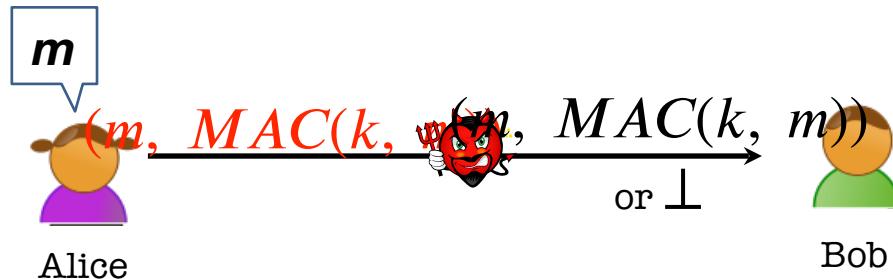
A triple of algorithms (Gen, MAC, Ver):

- $\text{Gen}(1^n)$: Produces a key $k \leftarrow \mathcal{K}$.
- $\text{MAC}(k, m)$: Outputs a tag t (may be deterministic).
- $\text{Ver}(k, m, t)$: Outputs Accept or Reject.

Correctness: $\Pr[\text{Ver}(k, m, \text{MAC}(k, m)) = 1] = 1$

Security: *Hard to forge*. Intuitively, it should be hard to come up with a new pair (m', t') such that Ver accepts.

What is the power of the adversary?



- Can see many pairs $(m, \text{MAC}(k, m))$.
- Can access a MAC oracle $\text{MAC}(k, \bullet)$
 - Obtain tags for message of choice.

This is called a *chosen message attack (CMA)*.

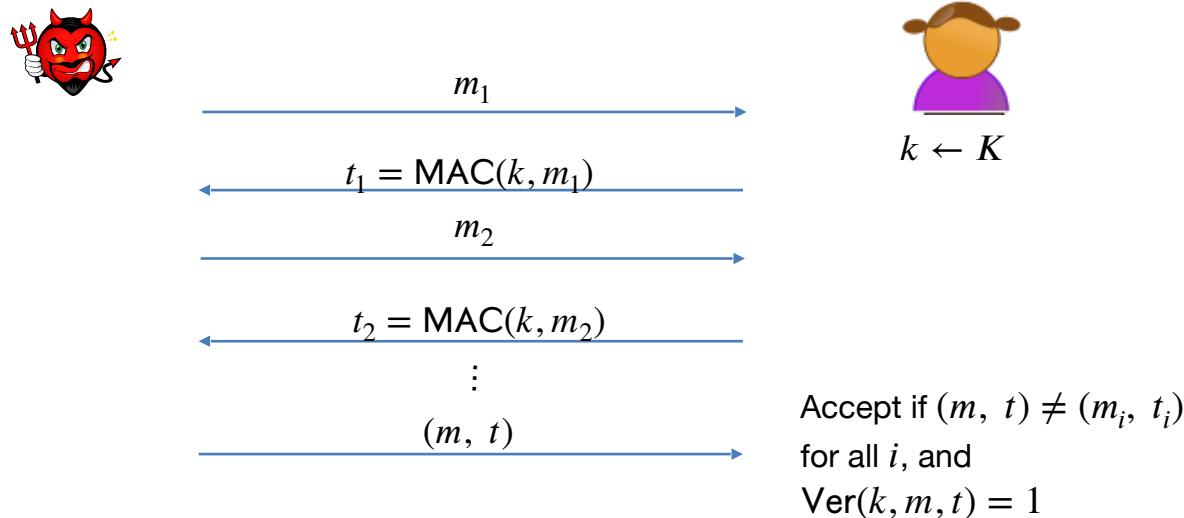
Defining MAC Security

- **Total break:** The adversary should not be able to recover the key k .
- **Universal break:** The adversary can generate a valid tag for **every** message.
- **Existential break:** The adversary can generate a **new** valid tag t for **some** message m .

We will require MACs to be secure against the existential break!!

EUF-CMA Security

Existentially Unforgeable against Chosen Message Attacks



Want: $\Pr((m, t) \leftarrow A^{MAC(k, \cdot)}(1^n), \text{Ver}(k, m, t) = 1, (m, t) \notin Q) = \text{negl}(n)$.
where Q is the set of queries $\left\{ (m_i, t_i) \right\}_i$ that A makes.

Let $\mathcal{I} = (S, V)$ be a MAC.

Suppose an attacker is able to find $m_0 \neq m_1$ such that

$$\text{MAC}(k, m_0) = \text{MAC}(k, m_1) \quad \text{for } \frac{1}{2} \text{ of the keys } k \text{ in } K$$

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for m_0 or m_1

No, this MAC can be broken using a chosen msg attack

It depends on the details of the MAC

$$\text{Adv}[\mathcal{A}, \mathcal{I}] = \frac{1}{2}$$

Let $I = (S, V)$ be a MAC.

Suppose $\text{MAC}(k, m)$ is always 5 bits long

Can this MAC be secure?

- No, an attacker can simply guess the tag for messages
- It depends on the details of the MAC
- Yes, the attacker cannot generate a valid tag for any message

$$\text{Adv}[A, I] = 1/32$$

Dealing with Replay Attacks

- The adversary could send an old valid (m, tag) at a **later time**.
 - In fact, our definition of security does not rule this out.
- **In practice:**
 - Append a time-stamp to the message. Eg. $(m, T, \text{MAC}(m, T))$ where $T = 21 \text{ Sep 2022, 1:47pm}$.
 - Sequence numbers appended to the message (this requires the MAC algorithm to be *stateful*).