CIS 5560

Cryptography
Lecture 8

Course website:
pratyushmishra.com/classes/cis-5560-s25/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Announcements

- HW 3 out on Wednesday
- Due Friday, Feb 21 at 5PM on Gradescope
« Covers PRFs, IND-CPA

Recap of last lecture

Semantic Security for Many Msgs

/ Eve \ / Challenger \
1.k A
Mm; o, M; 1 . |2 b < {0,1}
) C; 3. ¢ := Enc(k,my)
LA PR
_ J _ J

For every PPT Eve, there exists a negligible fn &,)
kA
b < {0,1}

Foriinl,...,q: <l+8(l/l)
2

Pr [Eve(c,)) = b
(m; g, m; 1) < Eve(c;_y)

Alternate (Stronger?) definition

/ Eve \ / Challenger \

m; . 1.k H
<
(m()a m)
- > 12.b < {0,1)}
< = 3. ¢ := Enc(k, my)
>

_ Y, b=

Also called “IND-CPA”: Indistinguishability under Chosen-Plaintext Attacks

Equivalent to previous definition: just set m; , = m; | = m,

Pseudorandom Functions

Collection of functions F, = {F, : {0,1}* = {0,1}"} (0.1}

indexed by a key k
n: key length, : input length, m: output length.

Independent parameters, all poly(sec-param) = poly(n)

- #functions in &, < 2" (singly exponential in n)

Gen(1"): Generate a random n-bit key k.

Eval(k, x) is a poly-time algorithm that outputs F(x)

Security: Cannot distinguish from random function

[Pr[Af(1") = 1 | k < (0,1)7] = Pr[AT(1") = 1 | F < Fns] | < negl(n).

Randomized encryption w/ PRFs

Gen(1"): Generate a random n-bit key k that defines
F,: {01} = {0,1}™

Enc(k,m): Pick arandom x and
let the ciphertext ¢ be the pair (x,y = F(x) & m)

Dec(k, c = (x,y)):

Output Fi.(x) & ¢

Indistinguishable distributions

Definition: Two distributions X and Y are computationally indistinguishable
if for every efficient distinguisher

[PHD@) =1 | x < X]=PrD() = 1 | y < Y]| = negl(n)

Denoted by X =~ Y

Eg: PRG security says that X := {G(x)|x < {0,1}"} = Y = {y|y « {0,1}"}
Eg: Single msg security says that
{c < Enc(k,my) | k <« H} = {c < Enclk,m)) | k « H}

Proof by hybrid argument

Enc(k,m): Pick arandom x and output (x,y = Fi(x) & m)
Dec(k,c = (x,y)): Output F(x) & c

Single msg security says that the following dists are indistinguishable.
{c < Enc(k,my) | k < H}and {c < Enc(k,m)) | k <« F'}

How to do this? Let’s create more (supposedly) indistinguishable distributions:

Hy = {c:=(r,my® F(r) | r < {0,1}"k « K}

H ={c=0my®@R(r) | r < {0,1}";R « Fns}

Hy={c:=0my®r | r < {0,1}"r < {0,1}"] .
~ one time pad

[—]3 = {c = (I", ml @ r’ | — {0,1}”’ r’ <« {O,l}n}

H,={c:=(r,m ®RG) | r < {0,1})";R « Fns} ~ deM ofrandomn

Hs={c:=(r,m ®F,r) | r < {0,1})sk «) ~ by PRFsecurity 10

~ by PRF security

~ defn of random fn

Today’s Lecture

« Multi-message secure encryption
 Block ciphers, PRPs, encryption for long messages
- PRGs — PRFs

Randomized encryption w/ PRFs

Gen(1"): Generate a random n-bit key k that defines
F,: {01} = {0,1}™

Enc(k,m): Pick arandom x and
let the ciphertext ¢ be the pair (x,y = F(x) & m)

Dec(k, c = (x,y)):

Output Fi.(x) & ¢

12

Multi-msg security proof

Can be written as
{(Enc(k,mg), Enc(k,my), ...,Enc(k,m,)) | k « H'}
~ {(Enc(k, mé), Enc(k, m{),Enc(k,m))) | k « F'}

How to prove? Define Enc2(m) = (r, R(r) & m) for a random fn R, and
Enc3(m) = (r, ' @ m) for a random r".

HO = {(EnC(k, mo), cees EnC(k, mn)) | k « :%/} ~ PRF Security
H, = {(Enc2(my), ..., Enc2(m,)) | R < Fns}

= Defn of random fn
H, = {(Enc3(m0), A Enc3(mn)) rlf «~ {0,1}"*}

= OTP security
H3 = {(Enc3(m(’)), - Enc3(m,;)) rl-’ «~ {0,1}"}

~ Defn of random fn
H, = {(Enc2(my), ..., Enc2(m,)) | R < Fns}

H, = {(Enc(k,m]), ..., Enck,m)) |k« K} ~ PRF security

13

So far

Multi-msg security via randomized encryption
Pros:

e Relies on existing tools
e Generally fast
* No need to run PRF from start!

Cons:

e Ciphertextis ~2x larger: (r,m @ F(r))

e Can only encrypt fixed-size n bit msg at a time

e Thus, sending a message of, say, 10 bits, requires
20n-sized ciphertext

14

Multi-msg security for long msgs

New concept: modes of operation
Ideas?

Recall:

« Counter-based encryption

- Randomized encryption

Can we combine them?

Construction 2: rand ctr-mode

F: PRF defined over (K, X, Y) where X = {0,1}**and Y = {0,1}"

msg

r m][0] m[1]

Fi(r[10)

Fi(r[|1)

Fi(r[|L)

S

(e.g., n=128)

(counter counts mod 2"

r c[0]

c[1]

c[L]

ciphertext

r - chosen at random for every message

note: parallelizable

16

rand ctr-mode: CPA analysis
Randomized counter mode: random IV.

Counter-mode Theorem: For any L>0,
If F is a secure PRF over (K,X,Y) then
E.. is IND-CPA-secure.

CTR

In particular, for a g-query adversary A attacking E 5

there exists a PRF adversary B s.t.:

AV A, Eqrel < 2-AdVoed[B, F] + 22 L/ [X]

Note: ctr-mode only secure aslongas qg2-L < [X]
17

Multi-msg security via randomized encryption

Pros:
* Pretty fast
« Ciphertext is ~ (1 + 1/L) larger = small for large L

« Parallelizable!
Cons:

e PRFs somewhat difficult to find, kind of slow

Good for us: Pseudorandom Permutations are
easier to find! 18

PRPs and PRFs

Pseudo Random Function (PRF) defined over (K,X,Y):
F: Kx X =Y

such that exists “efficient” algorithm to evaluate F(k,Xx)

Pseudo Random Permutation (PRP) defined over (K,X):
E: KxX = X

such that:
1. Exists “efficient” algorithm to evaluate E(k,X)

2. The function E(Kk, -) is one-to-one

3. Exists “efficient” inversion algorithm D(k,x)

19

Also called a Block Cipher

A block cipher is a pair of efficient algs. (E, D):

n bits

PT Block

Canonical examples:
n=128 bits, k =128, 192, 256 bits
2. 3DES: n= 64 bits,

1. AES:

Key

n bits
CT Block

k bits

k = 168 bits (historical)

20

Running example

Example PRPs: 3DES, AES,

AES128: Kx X —= X where K=X={0,1}128
DES: KxX — X where X ={0,1}64, K={0,1}%6

3DES: KxX = X where X={0,1}64, K ={0,1}168

Functionally, any PRP where K and X are large is also a PRF,
— A PRP is a PRF where X=Y and is efficiently invertible

21

Incorrect use of a PRP

Electronic Code Book (ECB):

P [T My T m] | -~ |
~ Apply Ei(+)
Cr [T " Te T [T TS 7] | -~ |
Problem:

- if m=m, then c,=c,

22

In pictures

Original penguin ECB encrypted penguin

(courtesy B. Preneel)
23

ECB is not Semantically Secure even for 1 msg

ECB is not semantically secure for messages that contain
two or more blocks.

befo,1)

\ Two blocks
Chal. m, = “Hello World” Adv. &f
kK m, = “Hello Hello”

(c,,c,) « Ek, m)

|
|

If c,=c, output 1, else output 0

Then Advg[&f, ECB] = 1

Secure Construction 1: CBC with random nonce

Cipher block chaining with a random IV (IV = nonce)
v m|[0] m[1] m[2] m([3]
E(k,) E(k,") E(k,-) E(k,-)
v c[0] c[1] c[2] c[3]
ciphertext

note: CBC where attacker can predict the IV is not CPA-secure. HW.

CBC: CPA Analysis

CBC Theorem: For any L>0,
If E is a secure PRP over (K,X) then
E-.~~ is a sem. sec. under CPA over (K, XL, XL+1),

CBC

In particular, for a g-query adversary A attacking E_g.

there exists a PRP adversary B s.t.:

AQV golA, Ecgol < 2-AdVoro[B, E] + @

S

Note: CBC is only secure as long as g@-LZ < [X|
\

messages enc. with key max msg length

26

CBC: CPA Analysis

CBC Theorem: For any L>0,
If E is a secure PRP over (K,X) then
E-.~~ is a sem. sec. under CPA over (K, XL, XL+1),

CBC

In particular, for a g-query adversary A attacking E_g.

there exists a PRP adversary B s.t.:

AQV golA, Ecgol < 2-AdVoro[B, E] + @

S

Note: CBC is only secure as long as g@-LZ < [X|
\

messages enc. with key max msg length

27

- PRGs — PRFs
- MACs, if we have time

Let’s Look Back at Length Extension...

Theorem: Let G: {0,1}" — {0,1}""! be a PRG. Then, for every
polynomial m(n), there is a PRG G’: {0,1}" — {0,1}"™,

Let’s Look Back at Length Extension...
Construction: Let G(s) = G(s) | | G{(s) where G (s) is 1 bit
and G{(s) is n bits .

s Problem: Accessing the i’
/ \ output bit takes time = i.

Gy(s) G,(s)
7N\
Go(G (5)) G1(G,())
7N\

Gy(G1(G () GI(G,(G,()

h

Goldreich-Goldwasser-Micali PRF

Theorem: Let G be a PRG. Then, for every polynomials 7 = £(n), m
= m(n), there exists a PRF family %, = {£,:{0,1}* = {0,1}"} (0.1

Note: We will focusonm = Z.

The output length could be made smaller (by truncation) or larger
(by expansion with a PRG).

What is the standard way to improve

Let’s Look Back at Length Extension...
Construction: Let G(s) = G(s) | | G{(s) where G (s) is 1 bit

and G{(s) is n bits .

@ Problem: Accessing the i’

h

\ output bit takes time = i.

What data structure does

N

AN

.
e

this remind you of?

Ans: a list!
No wonder it’s linear time!

What is the standard technique
to do better?

Goldreich-Goldwasser-Micali PRF

Construction: Let G(s) = Gy(s) || G,(s) where G,(s) and G,(s) are
both n bits each.

S
Gy(s)
GO(G()(S)) GO(G] (S)) GI(GI(S))
Go(G(...Gy(s)) Gy (G (.G (5)) G(G (...Gy(s))

Each path/leaf labeled by x € {0,1} corresponds to f,(x).

2 uidaa

Goldreich-Goldwasser-Micali PRF

Construction: Let G(s) = Gy(s) || G,(s) where G,(s) and G,(s) are
both n bits each.

The pseudorandom function family &%, is defined by a collection
of functions f, where:

f(x1%y...x7) = G (G (.G ()

|

Y

£ -bit input
¢ £ defines 2 pseudorandom bits.

¢ The x™ bit can be computed using ¢ evaluations of the
PRG G (as opposed to x ~ 27 evaluations as before.)

