

CIS 5560

Cryptography Lecture 8

Course website:

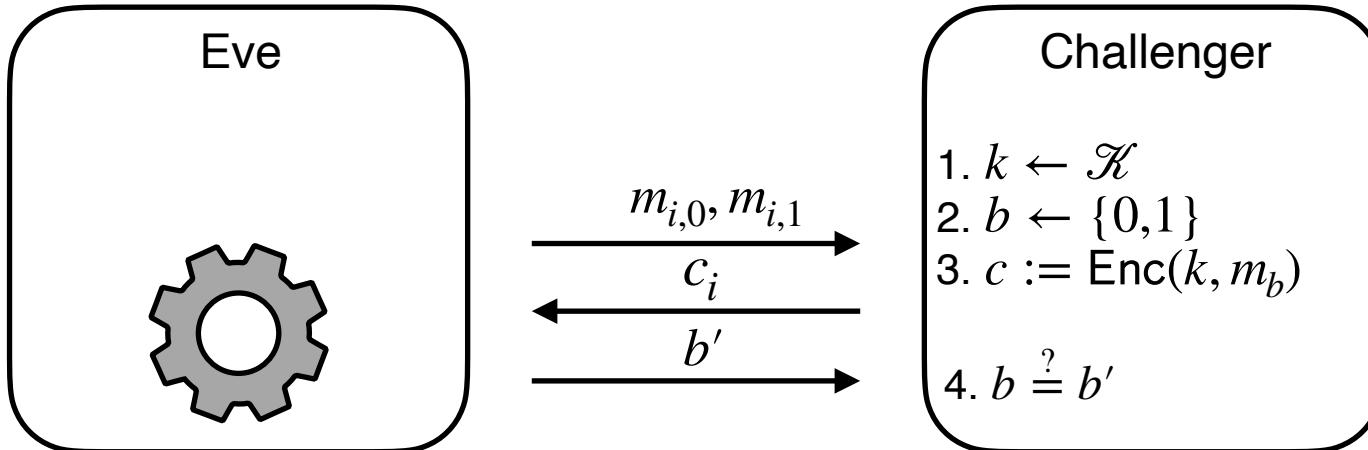
pratyushmishra.com/classes/cis-5560-s25/

Announcements

- **HW 3 out on Wednesday**
 - Due **Friday**, Feb 21 at 5PM on Gradescope
 - Covers PRFs, IND-CPA

Recap of last lecture

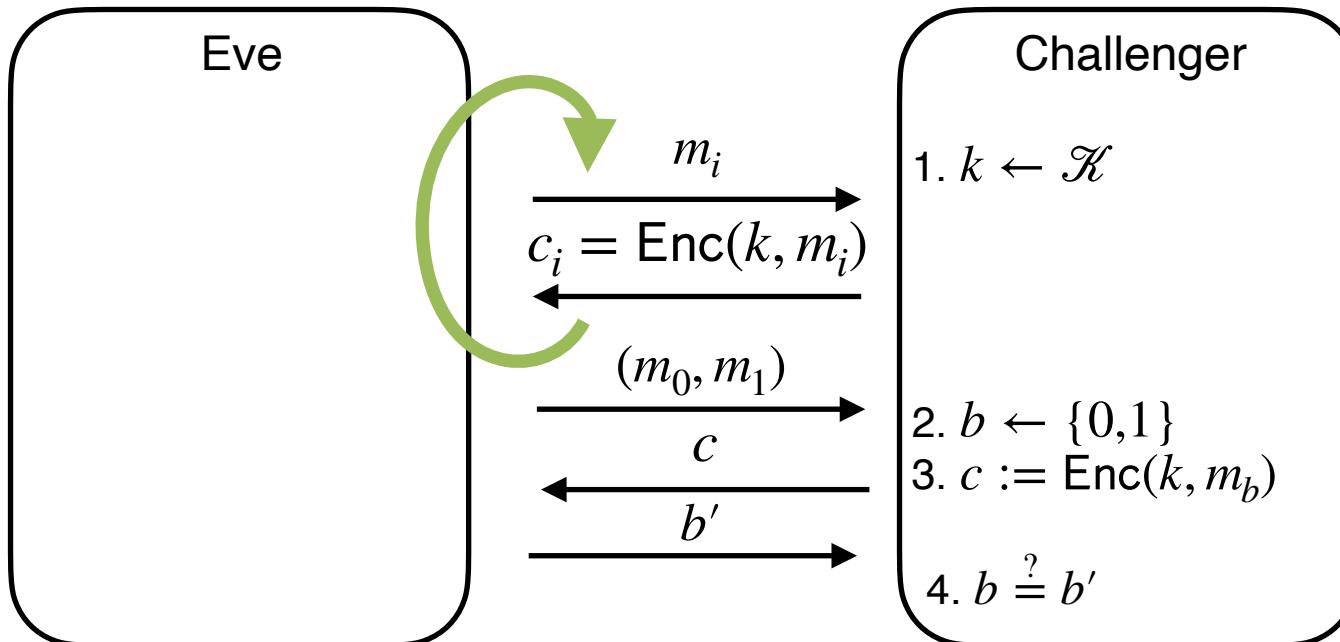
Semantic Security for Many Msgs



For every **PPT** Eve, there exists a negligible fn ε ,

$$\Pr \left[\text{Eve}(c_q) = b \left| \begin{array}{l} k \leftarrow \mathcal{K} \\ b \leftarrow \{0,1\} \\ \text{For } i \text{ in } 1, \dots, q : \\ (m_{i,0}, m_{i,1}) \leftarrow \text{Eve}(c_{i-1}) \\ c_i = \text{Enc}(k, m_{i,b}) \end{array} \right. \right] < \frac{1}{2} + \varepsilon(n)$$

Alternate (Stronger?) definition



Also called “IND-CPA”: Indistinguishability under Chosen-Plaintext Attacks

Equivalent to previous definition: just set $m_{i,0} = m_{i,1} = m_i$

Pseudorandom Functions

Collection of functions $\mathcal{F}_\ell = \{F_k : \{0,1\}^\ell \rightarrow \{0,1\}^m\}_{k \in \{0,1\}^n}$

- indexed by a key k
- n : key length, ℓ : input length, m : output length.
- Independent parameters, all $\text{poly}(\text{sec-param}) = \text{poly}(n)$
- #functions in $\mathcal{F}_\ell \leq 2^n$ (singly exponential in n)

Gen(1^n): Generate a random n -bit key k .

Eval(k, x) is a poly-time algorithm that outputs $F_k(x)$

Security: Cannot distinguish from random function

$$\left| \Pr \left[A^{f_k}(1^n) = 1 \mid k \leftarrow \{0,1\}^\ell \right] - \Pr \left[A^F(1^n) = 1 \mid F \leftarrow \text{Fns} \right] \right| \leq \text{negl}(n).$$

Randomized encryption w/ PRFs

Gen(1^n): Generate a random n -bit key k that defines

$$F_k : \{0,1\}^\ell \rightarrow \{0,1\}^m$$

Enc(k, m): Pick a random x and
let the ciphertext c be the pair $(x, y = F_k(x) \oplus m)$

Dec($k, c = (x, y)$):

Output $F_k(x) \oplus c$

Indistinguishable distributions

Definition: Two distributions X and Y are *computationally indistinguishable* if for every efficient distinguisher

$$\left| \Pr[D(x) = 1 \mid x \leftarrow X] - \Pr[D(y) = 1 \mid y \leftarrow Y] \right| = \text{negl}(n)$$

Denoted by $X \approx Y$

Eg: PRG security says that $X := \{G(x) \mid x \leftarrow \{0,1\}^n\} \approx Y := \{y \mid y \leftarrow \{0,1\}^m\}$

Eg: Single msg security says that

$$\{c \leftarrow \text{Enc}(k, m_0) \mid k \leftarrow \mathcal{K}\} \approx \{c \leftarrow \text{Enc}(k, m_1) \mid k \leftarrow \mathcal{K}\}$$

Proof by hybrid argument

$\text{Enc}(k, m)$: Pick a random x and output $(x, y = F_k(x) \oplus m)$

$\text{Dec}(k, c = (x, y))$: Output $F_k(x) \oplus c$

Single msg security says that the following dists are indistinguishable.

$$\{c \leftarrow \text{Enc}(k, m_0) \mid k \leftarrow \mathcal{K}\} \text{ and } \{c \leftarrow \text{Enc}(k, m_1) \mid k \leftarrow \mathcal{K}\}$$

How to do this? Let's create more (supposedly) indistinguishable distributions:

$$H_0 = \{c := (r, m_0 \oplus F_k(r)) \mid r \leftarrow \{0,1\}^n; k \leftarrow \mathcal{K}\} \quad \approx \text{by PRF security}$$

$$H_1 = \{c := (r, m_0 \oplus R(r)) \mid r \leftarrow \{0,1\}^n; R \leftarrow \text{Fns}\} \quad \approx \text{defn of random fn}$$

$$H_2 = \{c := (r, m_0 \oplus r') \mid r \leftarrow \{0,1\}^n; r' \leftarrow \{0,1\}^n\} \quad \approx \text{one time pad}$$

$$H_3 = \{c := (r, m_1 \oplus r') \mid r \leftarrow \{0,1\}^n; r' \leftarrow \{0,1\}^n\} \quad \approx \text{defn of random fn}$$

$$H_4 = \{c := (r, m_1 \oplus R(r)) \mid r \leftarrow \{0,1\}^n; R \leftarrow \text{Fns}\} \quad \approx \text{by PRF security}$$

$$H_5 = \{c := (r, m_1 \oplus F_k(r)) \mid r \leftarrow \{0,1\}^n; k \leftarrow \mathcal{K}\}$$

Today's Lecture

- Multi-message secure encryption
- Block ciphers, PRPs, encryption for long messages
- PRGs → PRFs

Randomized encryption w/ PRFs

Gen(1^n): Generate a random n -bit key k that defines

$$F_k : \{0,1\}^\ell \rightarrow \{0,1\}^m$$

Enc(k, m): Pick a random x and
let the ciphertext c be the pair $(x, y = F_k(x) \oplus m)$

Dec($k, c = (x, y)$):

Output $F_k(x) \oplus c$

Multi-msg security proof

Can be written as

$$\begin{aligned} & \{(\text{Enc}(k, m_0), \text{Enc}(k, m_1), \dots, \text{Enc}(k, m_n)) \mid k \leftarrow \mathcal{K}\} \\ & \approx \{(\text{Enc}(k, m'_0), \text{Enc}(k, m'_1), \dots, \text{Enc}(k, m'_n)) \mid k \leftarrow \mathcal{K}\} \end{aligned}$$

How to prove? Define $\text{Enc2}(m) = (r, R(r) \oplus m)$ for a random fn R , and $\text{Enc3}(m) = (r, r' \oplus m)$ for a random r' .

$H_0 = \{(\text{Enc}(k, m_0), \dots, \text{Enc}(k, m_n)) \mid k \leftarrow \mathcal{K}\}$	\approx PRF security
$H_1 = \{(\text{Enc2}(m_0), \dots, \text{Enc2}(m_n)) \mid R \leftarrow \text{Fns}\}$	$=$ Defn of random fn
$H_2 = \{(\text{Enc3}(m_0), \dots, \text{Enc3}(m_n)) \mid r'_i \leftarrow \{0,1\}^n\}$	$=$ OTP security
$H_3 = \{(\text{Enc3}(m'_0), \dots, \text{Enc3}(m'_n)) \mid r'_i \leftarrow \{0,1\}^n\}$	\approx Defn of random fn
$H_4 = \{(\text{Enc2}(m'_0), \dots, \text{Enc2}(m'_n)) \mid R \leftarrow \text{Fns}\}$	\approx PRF security
$H_n = \{(\text{Enc}(k, m'_0), \dots, \text{Enc}(k, m'_n)) \mid k \leftarrow \mathcal{K}\}$	

So far

Multi-msg security via randomized encryption

Pros:

- Relies on existing tools
- Generally fast
- No need to run PRF from start!

Cons:

- Ciphertext is $\sim 2x$ larger: $(r, m \oplus F_k(r))$
- Can only encrypt fixed-size n bit msg at a time
- Thus, sending a message of, say, $10n$ bits, requires $20n$ -sized ciphertext

Multi-msg security for long msgs

New concept: modes of operation

Ideas?

Recall:

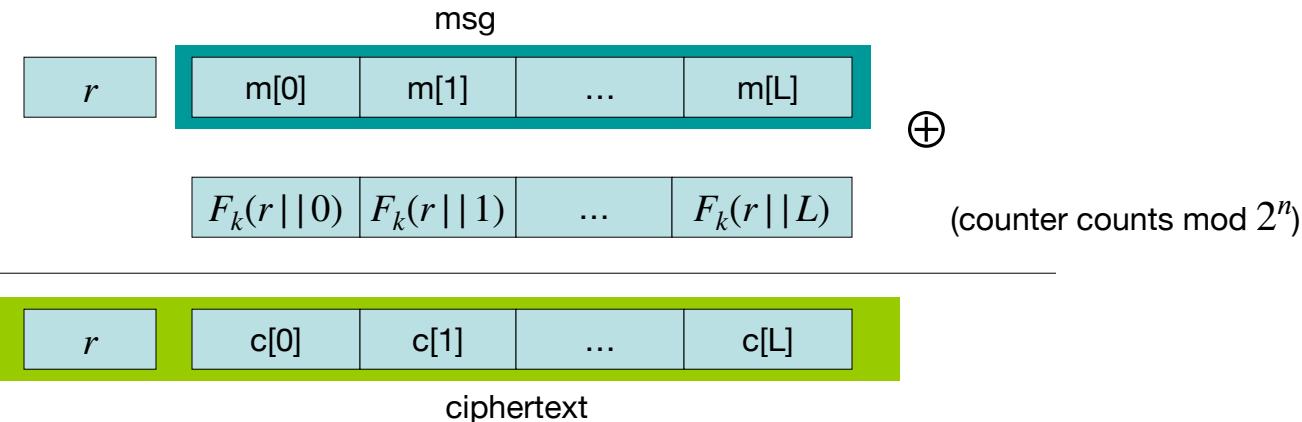
- Counter-based encryption
- Randomized encryption

Can we combine them?

Construction 2: rand ctr-mode

F : PRF defined over (K, X, Y) where $X = \{0,1\}^{2n}$ and $Y = \{0,1\}^n$

(e.g., $n=128$)



r - chosen at random for every message

note: parallelizable

rand ctr-mode: CPA analysis

Randomized counter mode: random IV.

Counter-mode Theorem: For any $L > 0$,

If F is a secure PRF over (K, X, Y) then

E_{CTR} is IND-CPA-secure.

In particular, for a q -query adversary A attacking E_{CTR}

there exists a PRF adversary B s.t.:

$$\text{Adv}_{\text{CPA}}[A, E_{CTR}] \leq 2 \cdot \text{Adv}_{\text{PRF}}[B, F] + 2 q^2 L / |X|$$

Note: ctr-mode only secure as long as $q^2 \cdot L \leq |X|$

Multi-msg security via randomized encryption

Pros:

- Pretty fast
- Ciphertext is $\sim (1 + 1/L)$ larger \rightarrow small for large L
- Parallelizable!

Cons:

- PRFs somewhat difficult to find, kind of slow

Good for us: Pseudorandom *Permutations* are easier to find!

PRPs and PRFs

- Pseudo Random Function **(PRF)** defined over (K, X, Y) :

$$F: K \times X \rightarrow Y$$

such that exists “efficient” algorithm to evaluate $F(k, x)$

- Pseudo Random Permutation **(PRP)** defined over (K, X) :

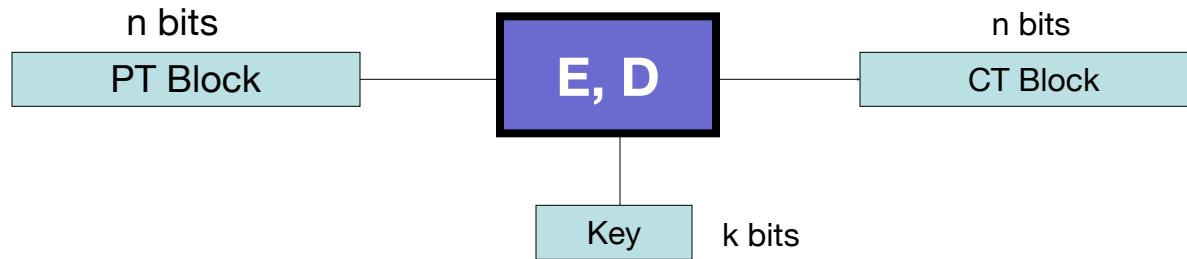
$$E: K \times X \rightarrow X$$

such that:

1. Exists “efficient” algorithm to evaluate $E(k, x)$
2. The function $E(k, \cdot)$ is one-to-one
3. Exists “efficient” inversion algorithm $D(k, x)$

Also called a Block Cipher

A **block cipher** is a pair of efficient algs. (E, D):



Canonical examples:

1. **AES:** n=128 bits, k = 128, 192, 256 bits
2. **3DES:** n= 64 bits, k = 168 bits (historical)

Running example

- Example PRPs: 3DES, AES, ...

AES128: $K \times X \rightarrow X$ where $K = X = \{0,1\}^{128}$

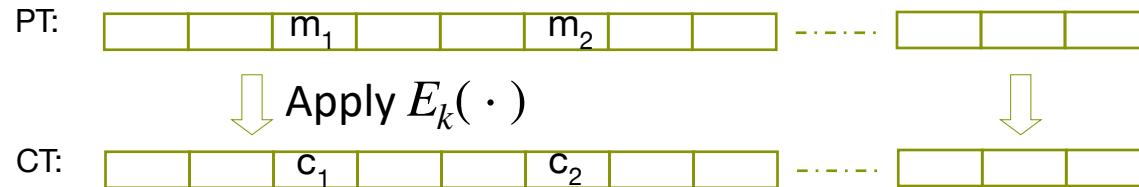
DES: $K \times X \rightarrow X$ where $X = \{0,1\}^{64}$, $K = \{0,1\}^{56}$

3DES: $K \times X \rightarrow X$ where $X = \{0,1\}^{64}$, $K = \{0,1\}^{168}$

- Functionally, any PRP where K and X are large is also a PRF.
 - A PRP is a PRF where $X=Y$ and is efficiently invertible

Incorrect use of a PRP

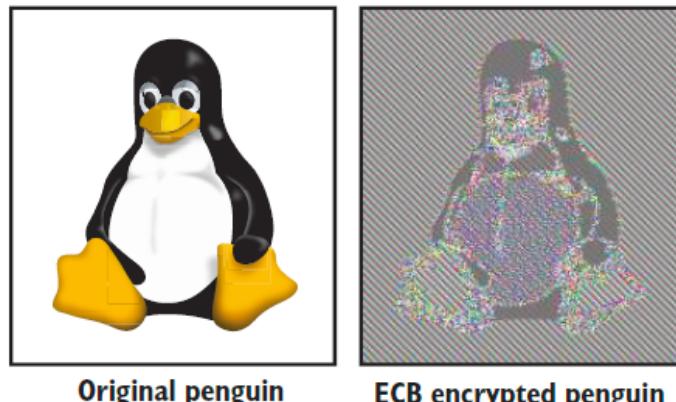
Electronic Code Book (ECB):



Problem:

- if $m_1 = m_2$ then $c_1 = c_2$

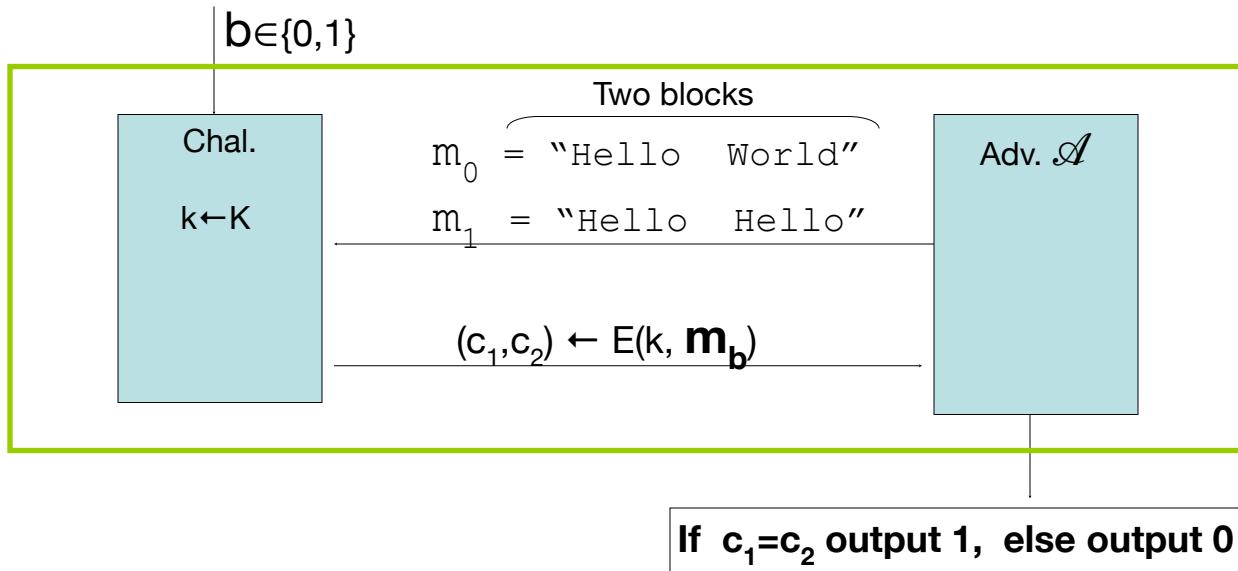
In pictures



(courtesy B. Preneel)

ECB is not Semantically Secure even for 1 msg

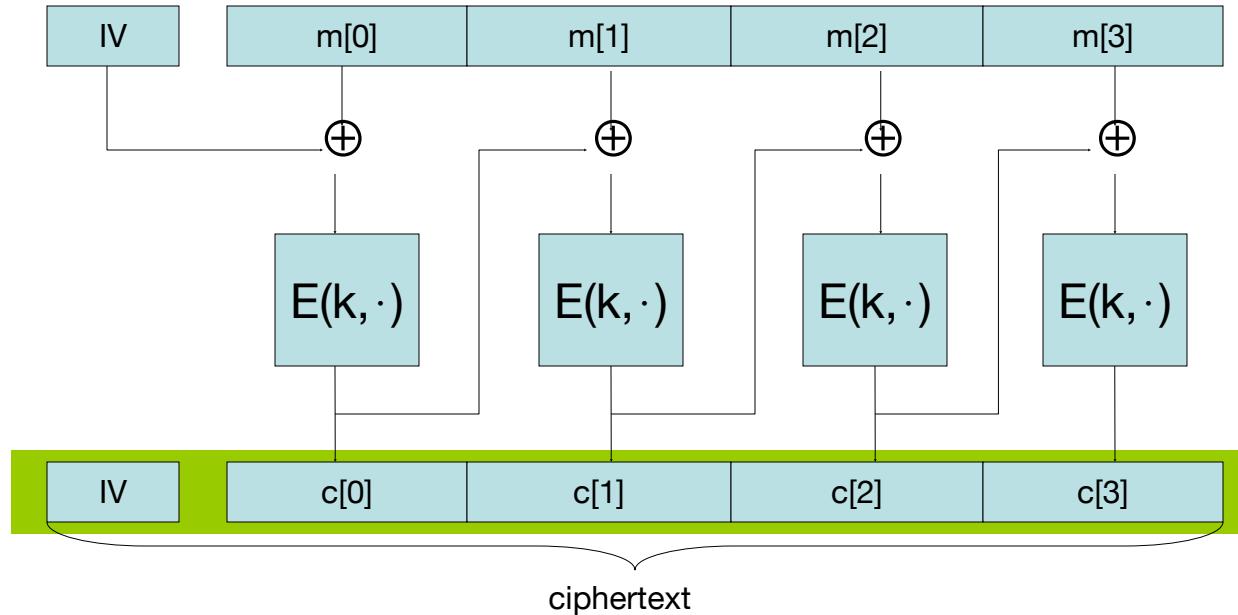
ECB is not semantically secure for messages that contain two or more blocks.



Then $\text{Adv}_{\text{SS}}[\mathcal{A}, \text{ECB}] = 1$

Secure Construction 1: CBC with random nonce

Cipher block chaining with a random IV (IV = nonce)



note: CBC where attacker can predict the IV is not CPA-secure. HW.

CBC: CPA Analysis

CBC Theorem: For any $L > 0$,

If E is a secure PRP over (K, X) then

E_{CBC} is a sem. sec. under CPA over (K, X^L, X^{L+1}) .

In particular, for a q -query adversary A attacking E_{CBC}
there exists a PRP adversary B s.t.:

$$\text{Adv}_{\text{CPA}}[A, E_{\text{CBC}}] \leq 2 \cdot \text{Adv}_{\text{PRP}}[B, E] + 2 \cdot \frac{q^2 L^2}{|X|}$$

Note: CBC is only secure as long as $q^2 \cdot L^2 \ll |X|$

messages enc. with key

max msg length

CBC: CPA Analysis

CBC Theorem: For any $L > 0$,

If E is a secure PRP over (K, X) then

E_{CBC} is a sem. sec. under CPA over (K, X^L, X^{L+1}) .

In particular, for a q -query adversary A attacking E_{CBC}
there exists a PRP adversary B s.t.:

$$\text{Adv}_{\text{CPA}}[A, E_{\text{CBC}}] \leq 2 \cdot \text{Adv}_{\text{PRP}}[B, E] + 2 \cdot \frac{q^2 L^2}{|X|}$$

Note: CBC is only secure as long as $q^2 \cdot L^2 \ll |X|$

messages enc. with key

max msg length

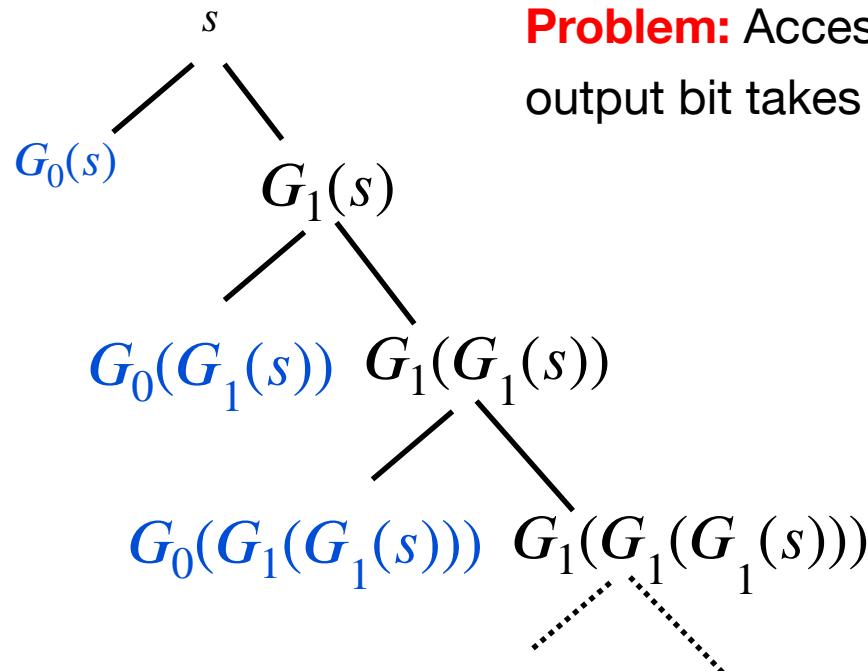
- PRPs and block cipher modes of operation
- PRGs → PRFs
- MACs, if we have time

Let's Look Back at Length Extension...

Theorem: Let $G: \{0,1\}^n \rightarrow \{0,1\}^{n+1}$ be a PRG. Then, for every polynomial $m(n)$, there is a PRG $G': \{0,1\}^n \rightarrow \{0,1\}^{m(n)}$.

Let's Look Back at Length Extension...

Construction: Let $G(s) = G_0(s) \parallel G_1(s)$ where $G_0(s)$ is 1 bit and $G_1(s)$ is n bits .



Problem: Accessing the i^{th} output bit takes time $\approx i$.

Goldreich-Goldwasser-Micali PRF

Theorem: Let G be a PRG. Then, for every polynomials $\ell = \ell(n)$, $m = m(n)$, there exists a PRF family $\mathcal{F}_\ell = \{f_s : \{0,1\}^\ell \rightarrow \{0,1\}^m\}_{s \in \{0,1\}^n}$.

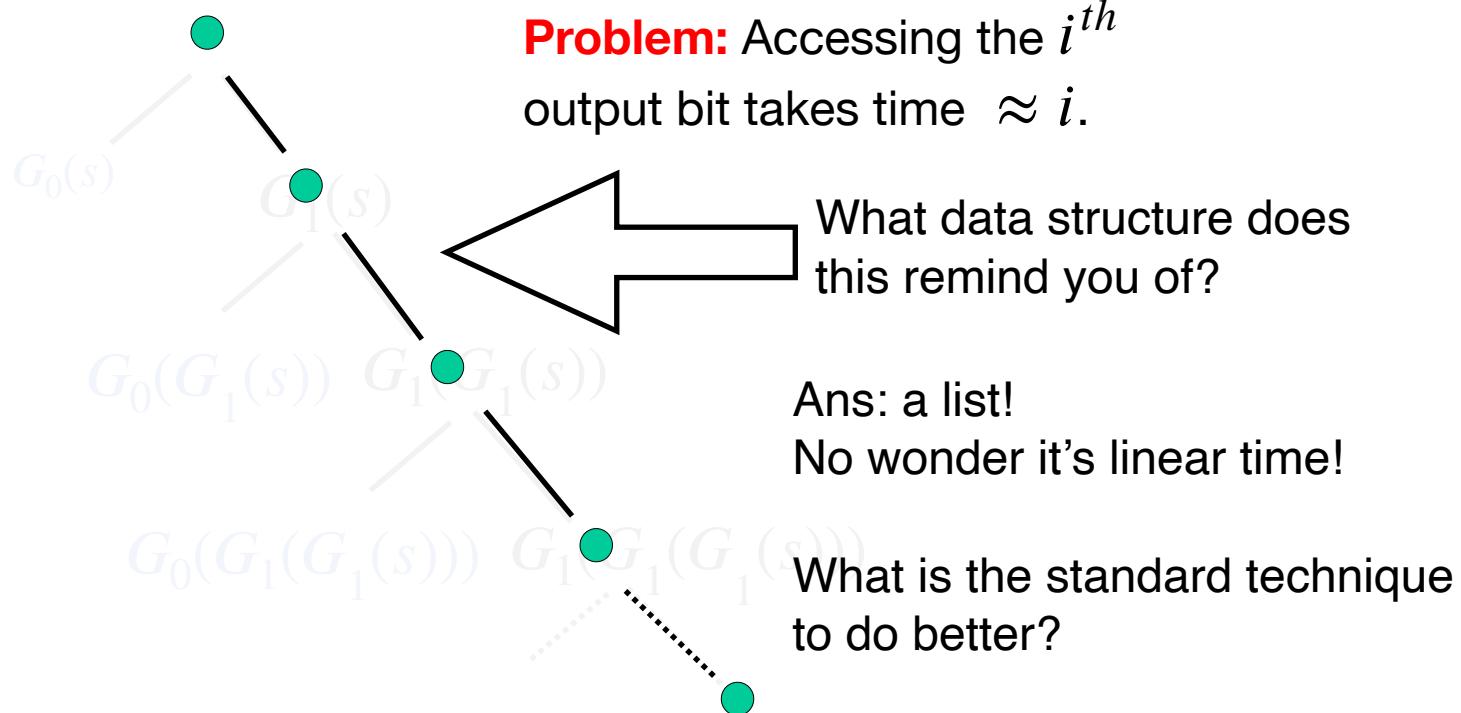
Note: We will focus on $m = \ell$.

The output length could be made smaller (by truncation) or larger (by expansion with a PRG).

What is the standard way to improve

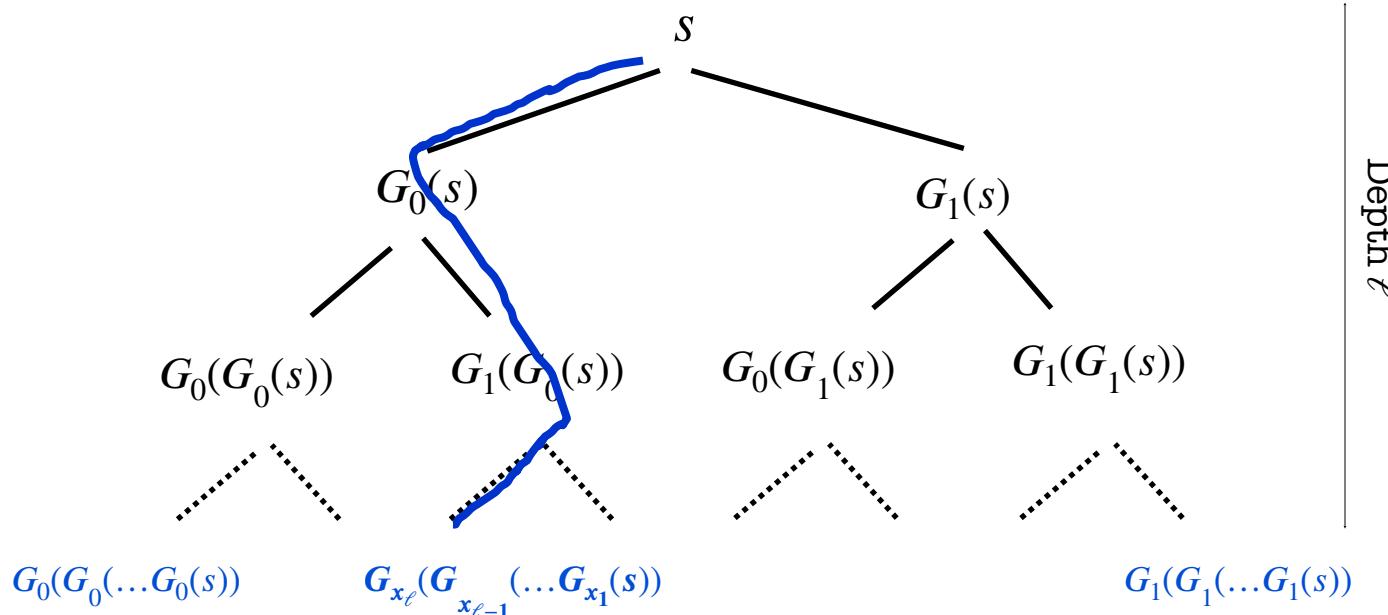
Let's Look Back at Length Extension...

Construction: Let $G(s) = G_0(s) \parallel G_1(s)$ where $G_0(s)$ is 1 bit and $G_1(s)$ is n bits .



Goldreich-Goldwasser-Micali PRF

Construction: Let $G(s) = G_0(s) \parallel G_1(s)$ where $G_0(s)$ and $G_1(s)$ are both n bits each.



Each path/leaf labeled by $x \in \{0,1\}^\ell$ corresponds to $f_s(x)$.

Goldreich-Goldwasser-Micali PRF

Construction: Let $G(s) = G_0(s) \parallel G_1(s)$ where $G_0(s)$ and $G_1(s)$ are both n bits each.

The pseudorandom function family \mathcal{F}_ℓ is defined by a collection of functions f_s where:

$$f_s(x_1 x_2 \dots x_\ell) = \mathbf{G}_{x_\ell}(\mathbf{G}_{x_{\ell-1}}(\dots \mathbf{G}_{x_1}(s)))$$

$\underbrace{\hspace{10em}}_{\ell\text{-bit input}}$

- ♦ f_s defines 2^ℓ pseudorandom bits.
- ♦ The x^{th} bit can be computed using ℓ evaluations of the PRG G (as opposed to $x \approx 2^\ell$ evaluations as before.)