CIS 5560

Cryptography
Lecture 4

Course website:
pratvushmishra.com/classes/cis-5560-s25

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Announcements

- HW 0 is out; due Friday, Jan 31 at 5PM on Gradescope

« HW 1 will be released tomorrow

« OTPs, perfect security/indistinguishability

* PRGs, computational indistinguishability, negl. fns

- Homework party tomorrow AGH 105A 4:30-6PM

- Work on HW0 and HW1 with classmates

* Ask questions to TAS!

+ Cryptography related CIS Colloquium today after class

- See what high level cryptography research looks like!

Recap of last lecture

Computational Indistinguishability

g World O: A g World 1: B
k — KX k — KA
\C = Enc(k, mo)) \C = Enc(k, ml))

“@’ Eve is arbitrary PPT distinguisher.
She needs to decide whether ¢ came from World 0 or World 1.

For every PPT Eve, there exists a negligible fn ¢, st for all m, m;,

= &(n)

Pr [Eve(c) =0 ‘ ¢ = Enc(k, mo)] b [Eve(c) = ‘ ¢ = Enc(k, ml)]

Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function £ : N — R is negligible if
for every polynomial function p,

there exists an n s.t.

forall n > ng:
1

p(n)

e(n) <

Question: Let ¢(n) = 1/n'°¢", Is ¢ negligible?

Pseudorandom Generators

Informally: Deterministic Programs that stretch a
“truly random” seed into a (much) longer
sequence of “seemingly random” bits.

Q1: How to define “seemingly random”?

Q2: Can such a G exist?

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function
G:{0,1}" - {0,1}"is a PRG if:

(@) Itis expanding: m > n and

(b) for every PPT algorithm D (called a distinguisher) if there is a
negligible function ¢ such that:

Pr[D(G(U,)) = 1] = Pr[D(U,) = 11| = e(n)

Notation: U, (resp. U,) denotes the random distribution
on n-bit (resp. m-bit) strings; m is shorthand for m(n).

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function
G:{0,1}" - {0,1}"is a PRG if:

(@) Itis expanding: m > n and

(b) for every PPT algorithm D (called a distinguisher) if there is a
negligible function ¢ such that:

b {01}

x < {0,1}"
Yo = G

yi < {0,1}"*

Pr | D(y,) =b < 1/2 + e(n)

Semantic Security

For every PPT Eve, there exists a negligible tn &, st for all m, m,,
I k— H |
Pr |Eve(c) = b b~ {0,1} | <—=+e(n)

¢ = Enck,m,)| 2

Semantic Security

/ Challenger \

1.k« A
2.b < {0,1}
3. ¢ := Enc(k, my)

4.h = b’

J

Semantic Security

For every PPT Eve, there exists a negligible fn & such that
(mgy, m;) < Eve

k — KA
b « {0,1}
¢ := Enc(k, m;)

1
Pr |Eve(c) = b < E+e(n)

PRGs — Semantically Secure Encryption

PRG — Semantically Secure Encryption

(or, How to Encrypt n+1 bits using an n-bit key)

o Gen(1¥) — k:

o Sample an n-bit string at random.

o Enc(k,m) — c:
o Expand k to an n + 1-bit string using PRG: s = G (k)
o Outputc =s @ m

o Dec(k,c) — m:
o Expand k to an n + 1-bit string using PRG: s = G (k)
o Outputm =s @ c
Correctness:

Dec(k,c)outputs G(k) Dc=Gk) D Gk)Dm =m

13

Today’s Lecture

- PRG Indistinguishability = Semantic Security
« One way functions and permutations
- OWPs — PRGs

PRG — Semantically Secure Encryption

Security: your first reduction!

Suppose for contradiction that there exists an Eve that breaks our scheme.

That, is assume that there is a p.p.t. Eve, and polynomial function p s.t.

Pr

Eve(c) = b

|(m0, m,;) < Eve

k — H
b < {0,1}

€= Enc(k, m;)

1
> E+1/p(n)

15

PRG — Semantically Secure Encryption

Security: your first reduction!

Assume that there is a p.p.t. Eve, a polynomial function p and m,, m; s.t.

Pr

Compare with Pr

Eve(c) =0

Eve(c) =0

| (mg, m;) < Eve

b < {0,1)

| €= G(k) & m,

| (imy, m;) < Eve
k'« {0,1}"*!
b« {0,1}

INC = k' @ my,

Let’'s ¢

all this p’

k < {0,1)"

J .
—_ Let’s call this p

O\

1
> E-l‘ 1/p(n)

16

Clearly, Eve can break security in
PRG case, but not in OTP world!

!

Eve can distinguish pseudorandom from random!

Idea: Use Eve to break PRG indistinguishability!

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function
G:{0,1}" - {0,1}"is a PRG if:

(@) Itis expanding: m > n and

(b) for every PPT algorithm D (called a distinguisher) if there is a
negligible function ¢ such that:

b {01}

x < {0,1}"
Yo = G

yi < {0,1}"*

Pr | D(y,) =b < 1/2 + e(n)

Setting: we have 3 patrties:
- Eve

- Challenger for PRG game
- Distinguisher D (that we will construct)

ldea: we will “emulate” semantic security
game for Eve

Distinguisher D(y):
1. Get two messages m,,, m,, from Eve and
sample a bit b
2.Compute b’ « Eve(y @ m,)

3.Output b’ = b, output “0”
4.0therwise, output “1”

World O World 1
Pr[D outputs "0"| b = 0 (y is pseudorandom)] Pr[D outputs "1"| b =1 (y is random)]
= Pr[Eve outputs b’ = b| b = 0] = Pr[Eveoutputs b’ =b| b =1
=p>1/2+4+1/p(n) =p' =1/2
Therefore,

Pr[D outputs "PRG" | y is pseudorandom] — Pr[D outputs "PRG" | y is random] ‘

> 1/p(m) B .

PRG — Semantically Secure Encryption

Ol1:

02:

(or, How to Encrypt n+1 bits using an n-bit key)

Do PRGs exist?
(Exercise: If P=NP, PRGs do not exist.)

How do we encrypt longer messages or many
messages with a fixed key?

(Length extension: If there is a PRG that stretches by one
bit, there is one that stretches by polynomially many bits)

(Pseudorandom functions: PRGs with exponentially large
stretch and “random access” to the output.)

21

01 : Do PRGs exist?

22

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework

(e.g. “appropriately chosen functions composed appropriately
many times look random?”)

-y — —-

23

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework

(e.g. “appropriately chosen functions composed appropriately
many times look random?”)

2. Come up with a candidate construction

" ré Rijndael
— (now the Advanced
++ Encryption Standard)

24

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. “appropriately chosen functions composed appropriately
many times look random?”)

2. Come up with a candidate construction

3. Do extensive cryptanalysis.

25

Examples

- RC4: old PRG from 1987
« Proposed by Ron Rivest (of RSA fame)
- Fast and simple
« Used in TLS till 2013
- However lots of biases
 e.g. 2nd byte of output has 2/256 chance of being 0.

 In 2013, attack which made key recovery feasible with just
220 ciphertexts!

- Finally deprecated in 2015, 28 years after creation!

Constructing PRGs: Two Methodologies

The Foundational Methodology (much of this course)

Reduce to simpler primitives.

“Science wins either way” -Silvio Micali

Digital
Signatures PRF

%
:\ PRG /
Hashing N5 AN
/

N OWF

A

well-studied, average-case hard, problems

27

One-way Functions (Informally)

F

Easy to
compute

Hard to
invert

domain
range

Source of all hard problems in cryptography!

28

What is a good definition?

OWEF Security Attempt #1

-

_

Eve

1

~

J

/ Challenger \

1.x «< {0,1}"
2.y =f(x)

?
4. x = x

_ J

One-way Functions (Take 1)

A function (family) {F,},.cn Where F(-) : {0,1}" — {0,1}"™ is
one-waly if for every p.p.t. adversary A, the following holds:

x <« {0,1}"

] = negl(n)

Consider F,(x) = 0 for all x.

This is one-way according to the above definition.
In fact, impossible to find the inverse even if A has
unbounded time.

Conclusion: not a useful/meaningful definition.

31

OWEF Security Attempt #2

/ Eve \ / Challenger \
1.x «< {0,1}"
2.y =f(x)
) \4. x=x

Does it have to be the exact input?

One-way Functions (Take 1)

A function (family) {F,},.cn Where F(-) : {0,1}" — {0,1}"™ is
one-waly if for every p.p.t. adversary A, the following holds:

x <« {0,1}"

] = negl(n)

The Right Definition: Impossible to find an inverse efficiently.

33

OWEF Security Attempt #2

-

_

Eve

1

~

J

/ Challenger \

1.x < {0,1}"
2.y =f(x)

4.y = f(x')
_ J

One-way Functions: The Definition

A function (family) {F,},.cn Where F(-) : {0,1}" — {0,1}"™ is
one-waly if for every p.p.t. adversary A, the following holds:

Pr|F,(x)=y

x < {0,1}"]
y:=F,(x)

x < A(1",y)

= negl(n)

« Can always find an inverse with unbounded time
* ... but should be hard with probabilistic

polynomial time

One-way Permutations:
One-to-one one-way functions with m(n) = n.

35

How to get PRG from OWF?

OWF — PRG, Attempt #1

PRG(k)
1. Output F, (k)

(Assume m(n) > n)

Does this work?

OWF — PRG, Attempt #1

Consider F, (x) constructed from another OWF F: PRG(k)
1.Compute y := F}(x) 1. Output F, (k)
2.Output y’ := (yy, Ly, 1,..0,y,, 1)

Is ' one-way?

Yes!

Is PRG unpredictable?

No!

Our problem:

OWFs don’t tell us anything about
how their outputs are distributed.

They are only hard to invert!

OWP — PRG, Attempt #1

Let /' : {0,1}" — {0,1}" be a one-way permutation
Consider the following PRG candidate

PRG(k)
1. Output F(k)

Does this work?

No, it’s not expanding!

But how are outputs distributed?

Claim: Output of F'is uniformly distributed

Claim: Output of OWP is uniformly distributed

Proof: Assume for contradiction that this is not the case.
This means that there exists some y such that

Pr[F(x) = y|x « {0,1}"] > 1/2"

(xIF@ =y}
This means that > ,
n n

which in turn means that F'is not a permutation!

Our problem:

OWFs don’t tell us anything about how
their outputs are distributed.

Solution: use OWP
Problem: no expansion

OWP — PRG, Attempt #2

Let /' : {0,1}" — {0,1}" be a one-way permutation

Imagine there existed B : {0,1}" — {0,1} such that
the following was a PRG

PRG(k)

1.0utput F(k) || B(k)

What properties do we need of B?

1. One-way: can't find k from B(k)
2. Pseudorandom: B(k) looks like a random bit
3. Unpredictable: B(k) is unpredictable given F(k)

Hardcore Bits

HARDCORE PREDICATE

For any F:{0,1}" - {0,1}", B:{0,1}" — {0,1}
Is a hardcore predicate if for every efficient
A, there is a negligible function u s.t.

x <« {0,1}"

Pr [b = B(x) b ACF)

] = 1/2 + u(n)

Hardcore Predicate (in pictures)

F(X)

0
‘J‘, e v
@"&5 0\) 1
00‘09 i
! Hardto
X i compute
1
\4
N
Cogy . b B(X)

pllte

Existence of hardcore predicates

Goldreich-Levin Theorem

Let F: {0,1}" — {0,1}" be a one-way function.
Define H(x||r) := F(x)||r.

Then B(x||r) := {(x, r) is a hardcore predicate for H

Existence of hardcore predicates

Hardcore predicate for RSA

Define Fy, (x) := x° mod N to be the RSA OWF.

Then Isb(x) is a hardcore predicate for F’

OWP — PRG

OWP = PRG

Theorem

Let F be a one-way permutation, and let B be
a hardcore predicate for F.

Then, G(x) := F(x) || B(x) is a PRG.

Proof (next slide): Use next-bit unpredictability.

PRG Indistinguishability

/ Distinguisher \

1

_ J

/ Challenger \

1.5 <« {0,1}"
2.y :=G(s)

4. b = PRG

_ J

‘ PrD(G(U,)) = 1] - Pr[D(U,) = 1] ‘ = £(n)

PRG Next-Bit Unpredictability

/ Distinguisher \ / Challenger \
1.5 <« {0,1}"
Vi eeos Vit 2.y :=G(s)
<
@ b . 4. b ~ Y;
_ J _ J
Pr |A _y PO
LAY, - Yim) = Y v G| =T &(n)

PRG Def 2: Next-bit Unpredictability

Definition [Next-bit Unpredictability]:
A deterministic polynomial-time computable function G: {0,1}n
— {0,1}m is next-bit unpredictable if:

for every PPT algorithm P (called a next-bit predictor) and
everyi € {1,...,m}, if there is a negligible function | such

that: 1
a Pr[y < G(U,):P(y1y,...:1) = y,-] =5+ KM

Notation: y,.y,....y, are the bits of the m-bit string y.

Def 1 and Def 2 are Equivalent

Theorem:
A PRG G is indistinguishable if and only if it
IS next-bit unpredictable.

Def 1 and Def 2 are Equivalent

Theorem:
A PRG G passes all PPT distinguishers if and
only if it passes PPT next-bit distinguishers.

NBU and Indistinguishability

¢ Next-bit Unpredictability (NBU): Seemingly much weaker
requirement. Only says that next bit predictors, a
particular type of distinguishers, cannot succeed.

¢ Yet, surprisingly, Next-bit Unpredictability (NBU) =
Indistinguishability.

¢ NBU often much easier to use.

OWP = PRG

Theorem: G is a PRG assuming F is a one-way permutation.

Proof: Assume for contradiction that G is not a PRG.
Therefore, there is a next-bit predictor P, and index i, and a
polynomial p such that

x <« {0,1}"

Pr [P(yy,....5i) =,
C1EOL-) =0 G

] =1/2+ 1/p(n)

Observation: The index i has to be n + 1. Do you see why?

Hint: G(x) := F(x)| | B(x) and we
know F'(x) is uniformly distributed

OWP = PRG

Theorem: G is a PRG assuming F is a one-way permutation.

Proof: Assume for contradiction that G is not a PRG.

Therefore, there is a next-bit predictor P, and polynomial p
such that

x <« {0,1}"

Pr|P(y,...,y)=
I (yl yn) yn+1 y — G(X)

] = 1/2 + 1/p(n)

OWP = PRG

Theorem: G is a PRG assuming F is a one-way permutation.

Proof: Assume for contradiction that G is not a PRG.

Therefore, there is a next-bit predictor P, and polynomial p
such that

x <« {0,1}"

P =
r [P(F(X)) B(x) v < G(x)

] = 1/2 + 1/p(n)

So, P can figure out B(x) and break hardcore property!
QED.

Next class

* Indistinguishability <=> Unpredictability
- How to extend the length of PRGs
- How to get PRGs with “exponentially-large” output

