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CIS 5560

Lecture 3
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s25/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/


Announcements
• HW 0 is out; due Friday, Jan 31 at 5PM on Gradescope


• Covers modular arithmetic, basic probability, Caesar 
cipher


• Office Hours: 

• Pratyush: Friday 12-1PM
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Recap of last lecture
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Secure Communication

Key k Key k

Eavesdropper “Eve”

m
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Alice wants to send a message  to Bob without revealing it to Eve. m



Key Notion: Secret-key Encryption	 

(or Symmetric-key Encryption)

Three (possibly randomized) polynomial-time algorithms:

o Key Generation Algorithm: 𝖦𝖾𝗇(1k) → k

o Encryption Algorithm: 𝖤𝗇𝖼(k, m) → c

o Decryption Algorithm: 𝖣𝖾𝖼(k, c) → m 5

Key k Key k

 𝑚
Ciphertext c ← 𝖤𝗇𝖼(k, m)

m ← 𝖣𝖾𝖼(k, c)

Message space (probability distribution)  ℳ

Key space  𝒦

Ciphertext space  𝒞



Perfect Secrecy is Achievable

The One-time Pad Construction:

: Choose an -bit string k at random, i.e. 𝖦𝖾𝗇 𝑛 k ← {0,1}n

 with : Output 𝖤𝗇𝖼(k, m) ℳ = {0,1}n c = m ⊕ k

: Output 𝖣𝖾𝖼(k, c) m = c ⊕ k
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c
Set of messages 
consistent with c

= {D(k,c): all k} 

Messages n+1 bits 

𝑚0

𝑚1

ciphertexts 

Each cipher text can correspond to at most  messages, 
but message space contains  possible messages!


So it is possible (and likely!) that a given cipher text can 
never decrypt to !

2n

2n+1

m1

Keys n bits 

7Pr[𝖤𝗇𝖼(𝒦, m1) = c] = 0

THEOREM: For any perfectly secure encryption scheme, 
	 	 	  |𝒦 | ≥ |ℳ |



The Axiom of Modern Crypto

Feasible Computation = randomized polynomial-time* algorithms

(p.p.t. = Probabilistic polynomial-time)
(polynomial in a security parameter n)

Life
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Why Perfect Indistinguishability?
For all 𝑚0, 𝑚1, 𝑐:Pr[𝐸(𝒦, 𝑚0) = 𝑐] = Pr[𝐸(𝒦, 𝑚1) = 𝑐]

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦
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Why do we call it indistinguishability?

For all m0, m1, c : Pr[world 0] = Pr[world 1]

Ok, but why do we care? What does it 
matter whether we are in world 0 or world 1?



Perfect Indistinguishability from Eve’s POV

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is an all-powerful distinguisher.

She needs to decide whether  came from World 0 or World 1.c
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For every Eve and all ,m0, m1
Pr [𝖤𝗏𝖾 says that we are in world 0]

= Pr [𝖤𝗏𝖾 says that we are in world 1]

Let’s bring Eve into this definition.

It’s not really important whether or not we are 
in world 0 or world 1, but rather whether Eve 
can tell whether we are in world 0 or world 1



Perfect Indistinguishability from Eve’s POV

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is an all-powerful distinguisher.

She needs to decide whether  came from World 0 or World 1.c
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For every Eve and all ,m0, m1

Pr [𝖤𝗏𝖾(c) = 0 k ← 𝒦
c = 𝖤𝗇𝖼(k, m0)] = Pr [𝖤𝗏𝖾(c) = 1 k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)]

Let’s formalize what it means for Eve to 
guess correctly:



World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is an all-powerful distinguisher.

She needs to decide whether  came from World 0 or World 1.c
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For every Eve and all ,m0, m1

Pr [𝖤𝗏𝖾(c) = 0 k ← 𝒦
c = 𝖤𝗇𝖼(k, m0)] − Pr [𝖤𝗏𝖾(c) = 1 k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)] = 0

Equivalently,

Called 
adversary’s 
“advantage”

Perfect Indistinguishability from Eve’s POV



Perfect Indistinguishability from Eve’s POV, Take 2

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is an all-powerful distinguisher.

She needs to decide whether  came from World 0 or World 1.c

For every Eve and , m0, m1 Pr 𝖤𝗏𝖾(c) = b
k ← 𝒦

b ← {0,1}
c = 𝖤𝗇𝖼(k, mb)

=
1
2

13

We can rewrite this into an equivalent form with just one probability. 
Essentially, if Eve can’t distinguish between either world, it means 
that she is right half the time, and wrong half the time.



So what can we do with this 
framing?



The Key Idea:  
Computationally Bounded 

Adversaries
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The Axiom of Modern Crypto

Feasible Computation = randomized polynomial-time* algorithms

(p.p.t. = Probabilistic polynomial-time)

* in recent years, quantum polynomial-time

(polynomial in a security parameter n)

Life
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Secure Communication

Alice

Eve

17

Bob

Running time of Alice and Bob?

Fixed p.p.t.  (e.g., run in time )O(n2)

Running time of Eve?

Arbitrary p.p.t.  (e.g., run in time  or  or  )O(n2) O(n4) O(n1000)



World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is a PPT distinguisher.

She needs to decide whether  came from World 0 or World 1.c
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For every PPT Eve and , m0, m1

Pr [𝖤𝗏𝖾(c) = 0 k ← 𝒦
c = 𝖤𝗇𝖼(k, m0)] − Pr [𝖤𝗏𝖾(c) = 1 k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)] = 0

Computational Indistinguishability (take 1)

Doesn’t work: we saw counter-
example to this last class



World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is arbitrary PPT distinguisher.

She needs to decide whether  came from World 0 or World 1.c

For every PPT Eve and , m0, m1

Pr [𝖤𝗏𝖾(c) = 0 k ← 𝒦
c = 𝖤𝗇𝖼(k, m0)] − Pr [𝖤𝗏𝖾(c) = 1 k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)] = ε
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Idea: Eve can only do  better than random guessing.ε

Computational Indistinguishability (take 2)



How small should  be?ε

• In practice:
• Non-negligible (too large): 
• Negligible: 

• In theory, we care about asymptotics:
• Non-negligible:  
• Negligible:  for every poly 

1/230

1/2128

ε > 1/n2

ε < 1/p(n) p



Today’s Lecture
• Computational indistinguishability

• Negligible functions

• Pseudorandom generators

• Semantic security

• PRGs → Semantically-secure encryption

21



New Notion: Negligible Functions
Functions that grow slower than  for any polynomial . 1/p(n) p

Definition: A function  is negligible if  
	 for every polynomial function p, 
	 for all sufficiently large n:

	  
	 


 

ε : ℕ → ℝ

ε(n) <
1

p(n)

there exists an  s.t. 
for all  

𝑛0
𝑛 > 𝑛0:

Key property: Events that occur with negligible probability look 
to poly-time algorithms like they never occur. 
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Why is this the right notion?

Let Eve’s  be non-negligible   
(i.e. distinguishes wp ) 

Eve can distinguish for  fraction of keys!

ε 1/n2

1/2 + 1/n2

1/n2

23



Formalization: Negligible Functions
Functions that grow slower than 1/p(n) for any polynomial p. 

Question:  Let . Is  negligible?   ε(n) = 1/nlog n ε
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Definition: A function  is negligible if  
	 for every polynomial function p, 
	 for all sufficiently large n:

	  
	 


 

ε : ℕ → ℝ

ε(n) <
1

p(n)

there exists an  s.t. 
for all  

𝑛0
𝑛 > 𝑛0:



Security Parameter:  (sometimes )n 𝜆

• Runtimes & success probabilities are measured as a function of .

• Want: Honest parties run in time (fixed) polynomial in .  
• Allow: Adversaries to run in time (arbitrary) polynomial in ,  
• Require: adversaries to have success probability negligible in .

𝑛
𝑛

𝑛
𝑛

Definition: A function  is negligible if  
	 for every polynomial function p, 
	 for all sufficiently large n:

	  
	 


 

ε : ℕ → ℝ

ε(n) <
1

p(n)

there exists an  s.t. 
for all  

𝑛0
𝑛 > 𝑛0:



For every PPT Eve, there exists a negligible fn , st for all , 

                             

ε m0, m1

Pr [𝖤𝗏𝖾(c) = 0 k ← 𝒦
c = 𝖤𝗇𝖼(k, m0)] − Pr [𝖤𝗏𝖾(c) = 1 k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)] = ε(n)

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is arbitrary PPT distinguisher.

She needs to decide whether  came from World 0 or World 1.c
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Computational Indistinguishability (take 3)



What about Shannon’s impossibility?

c
Set of messages 
consistent with c

= {D(k,c): all k} 

Messages n+1 bits 

𝑚0

𝑚1

ciphertexts 

Consider Eve that picks a random key k and  
	 outputs 0 if D(k,c) = 


	 outputs 1 if D(k,c) = 

	 and a random bit if neither holds.

𝑚0
𝑚1

w.p  ≥ 𝟏 /𝟐𝒏

w.p = 0

Bottomline: Eve’s advantage ≈ 1/2n

Keys n bits 

27

Negligible!



Can we achieve this definition? 

Yes!



Our First Crypto Tool:  
Pseudorandom Generators (PRG)



Pseudorandom Generators

Informally: Deterministic Programs that stretch a 
“truly random” seed into a (much) longer 
sequence of “seemingly random” bits.

b1 b2 b3 ...PRG Gseed

Q2: Can such a G exist? 

Q1: How to define “seemingly random”?



How to Define a Strong  
Pseudo Random Number Generator?

Def 1 [Indistinguishability] 
“No polynomial-time algorithm can distinguish between the 
output of a PRG on a random seed vs. a truly random string”

= “as good as” a truly random string for all practical purposes. 

Def 2 [Next-bit Unpredictability] 
“No polynomial-time algorithm can predict the (i+1)th bit of the 
output of a PRG given the first i bits, better than chance”

Def 3 [Incompressibility] 
“No polynomial-time algorithm can compress the output of 
the PRG into a shorter string”

ALL THREE DEFS 

EQUIVALENT!



PRG Def 1: Indistinguishability

Notation:  (resp. ) denotes the random distribution 
on -bit (resp. -bit) strings;  is shorthand for .

Un Um
n m m m(n)

Definition [Indistinguishability]:  
A deterministic polynomial-time computable function 

                          is a PRG if:

(a) It is expanding:  and 

(b) for every PPT algorithm  (called a distinguisher) if there is a 

negligible function  such that:

G : {0,1}n → {0,1}m

m > n
D

ε

Pr[D(G(Un)) = 1] − Pr[D(Um) = 1] = ε(n)



PRG Def 1: Indistinguishability
Definition [Indistinguishability]:  
A deterministic polynomial-time computable function 

                          is a PRG if:

(a) It is expanding:  and 

(b) for every PPT algorithm  (called a distinguisher) if there is a 

negligible function  such that:

G : {0,1}n → {0,1}m

m > n
D

ε

Pr D(yb) = b

b ← {0,1}
x ← {0,1}n

y0 = G(x)
y1 ← {0,1}n+1

≤ 1/2 + ε(n)



PRG Def 1: Indistinguishability

WORLD 1:  
The Pseudorandom World

𝑦 ← 𝐺(𝑈𝑛)

WORLD 2:  
The Truly Random World

𝑦 ← 𝑈𝑚

PPT Distinguisher gets  but cannot tell which world she is iny



Why is this a good definition

Good for all Applications: 

As long as we can find truly random seeds, can 
replace true randomness by the output of 
PRG(seed) in ANY (polynomial-time) application.

If the application behaves differently, then it 
constitutes a (polynomial-time) statistical test 
between PRG(seed) and a truly random string.



Semantic Security

We briefly discussed earlier that we can view this 
as a game between a “challenger” and the 
adversary Eve. Let’s flesh that out.

36

For every PPT Eve, there exists a negligible fn , st for all , 


                             

ε m0, m1

Pr 𝖤𝗏𝖾(c) = b
k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

<
1
2

+ε(n)



Semantic Security

37

Challenger

1.
2.
3.

4. 

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

c

b′￼



Semantic Security
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Challenger

1.
2.
3.

4. 

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

c

b′￼

We had a good question last time: how does Eve 
even know what the choices for  are?m0, m1



Semantic Security
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Challenger

1.
2.
3.

4. 

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

c

b′￼

Ans: we’ll let Eve choose the messages!

m0, m1



Semantic Security
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For every PPT Eve, there exists a negligible fn  such that
ε

Pr 𝖤𝗏𝖾(c) = b

(m0, m1) ← 𝖤𝗏𝖾
k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

<
1
2

+ε(n)



Semantic Security
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For every PPT Eve, there exists a negligible fn  such that
ε

Pr 𝖤𝗏𝖾(c) = b

(m0, m1) ← Eve
k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

<
1
2

+ε(n)

Why is this the “right” definition?

Intuitively: even if Eve knows which 
messages are candidate plaintexts, 

ciphertext still reveals no information!



PRGs → Semantically Secure Encryption

42



PRG  Semantically Secure Encryption⟹
(or, How to Encrypt n+1 bits using an n-bit key)

 outputs 𝐷𝑒𝑐(𝑘, 𝑐) G(k) ⊕ c = G(k) ⊕ G(k) ⊕ m = m

o :

o Sample an -bit string at random.

𝖦𝖾𝗇(1k) → k
n

o :

o Expand  to an -bit string using PRG: 

o Output 

𝖤𝗇𝖼(k, m) → c
k n + 1 s = G(k)

c = s ⊕ m
o :


o Expand  to an -bit string using PRG: 

o Output 

𝖣𝖾𝖼(k, c) → m
k n + 1 s = G(k)

m = s ⊕ c

Correctness:

43



Suppose for contradiction that there exists an Eve that breaks our scheme. 


That, is assume that there is a p.p.t. Eve, and polynomial function  s.t.


 

	 	 	

p

Pr 𝖤𝗏𝖾(c) = b

|

|

(m0, m1) ← 𝖤𝗏𝖾
k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

>
1
2

+1/p(n)

Security: your first reduction!

PRG  Semantically Secure Encryption⟹
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Assume that there is a p.p.t. Eve, a polynomial function  and  s.t.
p m0, m1

Pr 𝖤𝗏𝖾(c) = b

|

|

(m0, m1) ← 𝖤𝗏𝖾
k ← {0,1}n

b ← {0,1}
c := G(k) ⊕ mb

>
1
2

+1/p(n)

Security: your first reduction!

Compare with Pr 𝖤𝗏𝖾(c) = b

|

|

(m0, m1) ← 𝖤𝗏𝖾
k′￼← {0,1}n+1

b ← {0,1}
c := k′￼⊕ mb

=
1
2

Let’s call this ρ′￼

Let’s call this ρ

PRG  Semantically Secure Encryption⟹
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Clearly, Eve can break security in 
PRG case, but not in OTP world!

↓
Eve can distinguish pseudorandom from random!

Idea: Use Eve to break PRG indistinguishability!
46



World 0 
     






Pr[D outputs "0" | b = 0 (y is pseudorandom)]
= Pr[𝖤𝗏𝖾 outputs b′￼= b | b = 0]
= ρ ≥ 1/2 + 1/p(n)

Therefore, 


Pr[D outputs "PRG" | y is pseudorandom] − Pr[D outputs "PRG" | y is pseudorandom]

≥ 1/𝑝(𝑛)

World 1 
     




Pr[D outputs "1" | b = 1 (y is random)]

= Pr[𝖤𝗏𝖾 outputs b′￼= b | b = 1
= ρ′￼= 1/2

Distinguisher :

1. Get two messages , from Eve and 

sample a bit 

2. Compute  

3. If , output “0”

4.Otherwise, output “1”

D(y)
m0, m1

b
b′￼← 𝖤𝗏𝖾(y ⊕ mb)

b′￼= b

47



𝑸𝟏:  Do PRGs exist?

(or, How to Encrypt n+1 bits using an n-bit key)

𝑸𝟐:  

(Exercise: If P=NP, PRGs do not exist.)

How do we encrypt longer messages or many 
messages with a fixed key?

(Length extension: If there is a PRG  that stretches by one 
bit, there is one that stretches by polynomially many bits) 

(Pseudorandom functions: PRGs with exponentially large 
stretch and “random access” to the output.)

PRG  Semantically Secure Encryption⟹

48



𝑸𝟏:  Do PRGs exist?

49



Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework  
(e.g. “appropriately chosen functions composed appropriately 
many times look random”)

50



Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework  
(e.g. “appropriately chosen functions composed appropriately 
many times look random”)

2. Come up with a candidate construction

MA
TH

Rijndael  
(now the Advanced 
Encryption Standard)

51



Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework  
(e.g. “appropriately chosen functions composed appropriately 
many times look random”)

2. Come up with a candidate construction

3. Do extensive cryptanalysis. 

52



Examples
• RC4: old PRG from 1987 

• Proposed by Ron Rivest (of RSA fame) 
• Fast and simple 
• Used in TLS till 2013

• However lots of biases


• e.g. 2nd byte of output has 2/256 chance of being 0.

• In 2013, attack which made key recovery feasible with just 

220 ciphertexts!

• Finally deprecated in 2015, 28 years after creation!

53



Constructing PRGs: Two Methodologies
The Foundational Methodology (much of this course)

Reduce to simpler primitives.

OWF

well-studied, average-case hard, problems

“Science wins either way” –Silvio Micali

PRG

PRF

Hashing

Digital 
Signatures

54



One-way Functions (Informally)
F

domain
range

Easy to  
compute

Hard to  
invert

55

Source of all hard problems in cryptography!



What is a good definition?



One-way Functions (Take 1)

A function (family)  where  is 
one-way if for every p.p.t. adversary , the following holds:


{Fn}n∈ℕ F( ⋅ ) : {0,1}n → {0,1}m(n)

A

Pr [A(1n, y) = x
x ← {0,1}n

y := Fn(x)] = negl(n)

Consider  for all . 𝑭𝒏(𝒙) = 𝟎 x
This is one-way according to the above definition.  
In fact, impossible to find the inverse even if  has 
unbounded time.

𝐴

Conclusion: not a useful/meaningful definition. 57



One-way Functions (Take 1)

A function (family)  where  is 
one-way if for every p.p.t. adversary , the following holds:


{Fn}n∈ℕ F( ⋅ ) : {0,1}n → {0,1}m(n)

A

Pr [A(1n, y) = x
x ← {0,1}n

y := Fn(x)] = negl(n)

58

The Right Definition: Impossible to find an inverse efficiently.



One-way Functions: The Definition

One-way Permutations:
One-to-one one-way functions with  𝑚(𝑛) = 𝑛 .

• Can always find an inverse with unbounded time

• … but should be hard with probabilistic 

polynomial time

59

A function (family)  where  is 
one-way if for every p.p.t. adversary , the following holds:


{Fn}n∈ℕ F( ⋅ ) : {0,1}n → {0,1}m(n)

A

Pr Fn(x′￼) = y
x ← {0,1}n

y := Fn(x)
x′￼← A(1n, y)

= negl(n)



How to get PRG from OWF?



1. Output 

𝖯𝖱𝖦(k)

Fn(k)

OWF → PRG, Attempt #1

(Assume )m(n) > n

Does this work?



1. Output 

𝖯𝖱𝖦(k)

Fn(k)

OWF → PRG, Attempt #1
Consider  constructed from another OWF :


1. Compute 


2. Output 

Fn(x) F′￼n

y := F′￼n(x)
y′￼:= (y0, 1,y1, 1,…, yn, 1)

Is  one-way?F

Yes!

Is  unpredictable?𝖯𝖱𝖦

No!



Our problem: 

OWFs don’t tell us anything about 
how their inputs are distributed


They are only hard to invert



Next class
• How to get randomness from OWF output


• How to use this to get PRGs

• How to extend the length of PRGs

• How to get PRGs with “exponentially-large” output
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