CIS 5560

Cryptography
Lecture 3

Course website:
pratyushmishra.com/classes/cis-5560-s25/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Announcements

- HW 0 is out; due Friday, Jan 31 at 5PM on Gradescope

- Covers modular arithmetic, basic probability, Caesar
cipher

« Office Hours:
* Pratyush: Friday 12-1PM

Recap of last lecture

Secure Communication

Y Key k

"

Eavesdropper “Eve”

0
X - - 8

Alice wants to send a message m to Bob without revealing it to Eve.

Key Notion: Secret-key Encryption

(or Symmetric-key Encryption)
m Message space (probability distribution) /A

iphertex En
ﬂ‘ : <Cp ertexte = C(k,m); Q m « Dec(k, ¢)
— Ciphertext space €

Key k Key k

Key space %

Three (possibly randomized) polynomial-time algorithms:

o Key Generation Algorithm: Gen(1%) — k

o Encryption Algorithm: Enc(k,m) — ¢

o Decryption Algorithm: Dec(k,c) » m

Perfect Secrecy is Achievable

The One-time Pad Construction:
Gen: Choose an n-bit string k at random, i.e. k < {0,1}"
Enc(k, m) with # = {0,1}": Output c =m @ k
Dec(k,c): Output m = c ® k

THEOREM: For any perfectly secure encryption scheme,
|| > | A

Messages n+1 bits ciphertexts

Keys n bits

Set of messages
consistent with ¢
= {D(k,c): all k}

Each cipher text can correspond to at most 2" messages,
but message space contains pn+l possible messages!

So it is possible (and likely!) that a given cipher text can
never decrypt to m;,!

Pr[Enc(H#,m;) =c] =0

Life
The Axiom of Modern-€rypto

Feasible Computation = randomized polynomial-time* algorithms
(P-P-t. = Probabilistic polynomial-time)

(polynomial in a security parameter n)

Why Perfect Indistinguishability?

For all my, my, c:Pr[E(F, my) = c] = Pt[E(H,m,) = c]

Why do we call it indistinguishability?

g World O: A 4 World 1: A
k— X k— X
\C = Enc(k, mo)) \C = Enc(k, ml))

For all mg, m, ¢ : Pr[world 0] = Pr[world 1]

Ok, but why do we care? What does it
matter whether we are in world 0 or world 1?

Perfect Indistinguishability from Eve’s POV

Let’s bring Eve into this definition.

It’s not really important whether or not we are
in world 0 or world 1, but rather whether Eve
can tell whether we are in world 0 or world 1

g World O:) g World 1: A
k — KA k — KA
\C = Enc(k, mo)) \C = Enc(k, ml))

\\@(Eve is an all-powerful distinguisher.
She needs to decide whether ¢ came from World 0 or World 1.

For every Eve and all m), m,,
Pr [Eve says that we are in world O]

= Pr [Eve says that we are in world 1] 10

Perfect Indistinguishability from Eve’s POV

Let’s formalize what it means for Eve to
guess correctly:

g World O: A 4 World 1: A
k— X k— X
\C = Enc(k, mo)) \C = Enc(k, ml))

\\@(Eve is an all-powerful distinguisher.
She needs to decide whether ¢ came from World 0 or World 1.

For every Eve and all m), m,,

Perfect Indistinguishability from Eve’s POV

Equivalently,
g World O:) g World 1: A
k — KA k — KA
\C = Enc(k, mo) / \C = Enc(k, ml) /
\\@(Eve is an all-powerful distinguisher.
She needs to decide whether ¢ came from World 0 or Worlq ©2/led :
adversary’s
For every Eve and all my, m,, "advantage”
k— X k — H - ’
Pr [Eve(c) =0 ‘ o = B mo)] — Pr [Eve(c) =1 ‘c = Enell) =0

Perfect Indistinguishability from Eve’s POV, Take 2

We can rewrite this into an equivalent form with just one probability.
Essentially, if Eve can’t distinguish between either world, it means
that she is right half the time, and wrong half the time.

(World O:) g World 1:)
k — H k — H
\C = Enc(k, mo) / \C = Enc(k, ml) /

\3@(Eve is an all-powerful distinguisher.
She needs to decide whether ¢ came from World 0 or World 1.

[kK|
For every Eve and myy, m, Pr | Eve(c) = b b {01} | ==
¢ = Enc(k, m)

13

So what can we do with this
framing?

The Key ldea:

Computationally Bounded
Adversaries

Life
The Axiom of Modern-E€rypto

Feasible Computation = randomized polynomial-time* algorithms
(P-P-t. = Probabilistic polynomial-time)

(polynomial in a security parameter n)

* in recent years, quantum polynomial-time

16

Secure Communication

= — 8

Alice Bob

Running time of Alice and Bob?
Fixed p.p.t. (e.g., run in time O(n?))

Running time of Eve?
Arbitrary p.p.t. (e.g., run in time O(n?) or O(n*) or O(n'""))

17

Computational Indistinguishability (take 1)

4 World O:)

World 1: W
k— X e & 7
_¢ = Enclk,mg)) Doesn’t work: we saw counter-

“@l Eve is a PPT distinguisher. example to this last class
She needs to decide whether

\
For every PPT Eve and my,, my,
k<~ X kX
Pr [Eve(c) =0 o = Ereh mo)] — Pr [Eve(c) =1 ¢ = Enctk,m)| | = 0

18

Computational Indistinguishability (take 2)

4 World O:) g World 1:)
k — A k — A
¢ = Enc(k, m)) ¢ = Enc(k, m,))

\w’ Eve is arbitrary PPT distinguisher.
She needs to decide whether ¢ came from World 0 or World 1.

For every PPT Eve and my, my,

k — KX

¢ = Enc(k, m,) N

A

7
[Idea: Eve can only do ¢ better than random guessing‘]

Pr [Eve(c) = O‘

]—Pr[Eve(c)=1‘ k(_‘%]

¢ = Enc(k, m;)

How small should £ be?

» In practice:
. Non-negligible (too large): 1/2%"
. Negligible: 1/21%%

- In theory, we care about asymptotics:
. Non-negligible: € > 1/n?
- Negligible: € < 1/p(n) for every poly p

Today’s Lecture

- Computational indistinguishability

* Negligible functions

* Pseudorandom generators

- Semantic security

- PRGs — Semantically-secure encryption

New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function £ : N — R is negligible if
for every polynomial function p,

there exists an n s.t.

forall n > ng:
1

p(n)

e(n) <

Key property: Events that occur with negligible probability look
to poly-time algorithms like they never occur.

22

Why is this the right notion?

Let Eve’s € be non-negligible 1/n°
(i.e. distinguishes wp1/2 + 1/n?)

Eve can distinguish for 1/n? fraction of keys!

23

Formalization: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function £ : N — R is negligible if
for every polynomial function p,

there exists an n s.t.
forall n > ng:
1

e < p(n)

Question: Let ¢(n) = 1/n'°¢", Is ¢ negligible?

24

Security Parameter: n sometimes 4

Definition: A function € : N — R is negligible if
for every polynomial function p,

there exists an n; s.t.
forall n > ngy:

e(n) <

p(n)

Runtimes & success probabilities are measured as a function of A.
Want: Honest parties run in time (fixed) polynomial in 1.
Allow: Adversaries to run in time (arbitrary) polynomial in A1,

Require: adversaries to have success probability negligible in A.

Computational Indistinguishability (take 3)

g World O: A g World 1: B
k — KX k — KA
\C = Enc(k, mo)) \C = Enc(k, ml))

“@’ Eve is arbitrary PPT distinguisher.
She needs to decide whether ¢ came from World 0 or World 1.

For every PPT Eve, there exists a negligible fn ¢, st for all m, m;,

Pr[Eve(c)=O‘ ke A k‘_‘%]

o = ek mO)] U [E"e(c) =1 ‘c — Enctk,my)| | = €%

26

What about Shannon’s impossibility?

Messages n+1 bits ciphertexts

Keys n bits

Set of messages
consistent with ¢
= {D(k,c): all k}

Consider Eve that picks a random key k and
outputs O if D(k,c) = M1y w.p > 1/2"

outputs 1if D(k,c) =Nn1l; w.p=0

Negligible!
and a random bit if neither holds. egligible

Bottomline: Eve’s advantage ~ 1/2" ~ J o7

Can we achieve this definition?

Yes!

Our First Crypto Tool:
Pseudorandom Generators (PRG)

Pseudorandom Generators

Informally: Deterministic Programs that stretch a
“truly random” seed into a (much) longer
sequence of “seemingly random” bits.

Q1: How to define “seemingly random”?

Q2: Can such a G exist?

How to Define a Strong
Pseudo Random Number Generator?

Def 1 [Indistinguishability]

“No polynomial-time algorithm can distingt” between the
output of a PRG on a random seed vs. = .andom string”

= “as good as” a truly random strinr . practical purposes.

©
Def 2 [Next-bit Unpredir"oéjj

output of a PRG ¢’ \x?‘ | bits, better than chance”

“No polynomial-time 'Qg/ yq\can predict the (i+1)th bit of the
< aﬁé‘

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function
G:{0,1}" - {0,1}"is a PRG if:

(@) Itis expanding: m > n and

(b) for every PPT algorithm D (called a distinguisher) if there is a
negligible function ¢ such that:

Pr[D(G(U,)) = 1] = Pr[D(U,) = 11| = e(n)

Notation: U, (resp. U,) denotes the random distribution
on n-bit (resp. m-bit) strings; m is shorthand for m(n).

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function
G:{0,1}" - {0,1}"is a PRG if:

(@) Itis expanding: m > n and

(b) for every PPT algorithm D (called a distinguisher) if there is a
negligible function ¢ such that:

b {01}

x < {0,1}"
Yo = G

yi < {0,1}"*

Pr | D(y,) =b < 1/2 + e(n)

PRG Def 1: Indistinguishability

WORLD 1: WORLD 2:
The Pseudorandom World _‘-’ The Truly Random World
y< GUU,) y < U,

PPT Distinguisher gets y but cannot tell which world she is in

Why is this a good definition

Good for all Applications:

As long as we can find truly random seeds, can
replace true randomness by the output of
PRG(seed) in ANY (polynomial-time) application.

If the application behaves differently, then it
constitutes a (polynomial-time) statistical test
between PRG(seed) and a truly random string.

Semantic Security

For every PPT Eve, th_ere exists a negligible fn g, st for all m, m,,

Pr

Eve(c) =b

k— % |
b < {0,1}

c := Enc(k,my)

1
< —4¢n
> (n)

We Dbriefly discussed earlier that we can view this
as a game between a “challenger” and the
adversary Eve. Let’s flesh that out.

Semantic Security

/ Challenger \

1.k« A
2.b < {0,1}
3. ¢ := Enc(k, my)

4.h = b’

J

Semantic Security

/ Eve \ / Challenger \

1.k H
2.b < {0,1}
3. ¢ := Enc(k, my)

<<
@ b’ 4.b = b
>

_ J _ J

We had a good question last time: how does Eve
even know what the choices for my,, m, are?

Semantic Security

-

_

Eve

1

~

mg, my

b/

J

/ Challenger \

1.k H
2.b < {0,1}
3. ¢ := Enc(k, my)

4.h = b’

_ J

Ans: we’ll let Eve choose the messages!

Semantic Security

For every PPT Eve, there exists a negligible fn & such that
(mgy, m;) < Eve

k — KA
b « {0,1}
¢ := Enc(k, m;)

1
Pr |Eve(c) = b < E+e(n)

Semantic Security

For every PPT Eve, there exists a negligible fn & such that

Pr

Eve(c) =b

(my, my) < Eve

k — A
b < {0,1}

¢ := Enc(k, my)

1
<—+
S +e(m)

Why is this the “right” definition?

Intuitively: even if Eve knows which
messages are candidate plaintexts,
ciphertext still reveals no information!

PRGs — Semantically Secure Encryption

PRG — Semantically Secure Encryption

(or, How to Encrypt n+1 bits using an n-bit key)

o Gen(1¥) — k:

o Sample an n-bit string at random.

o Enc(k,m) — c:
o Expand k to an n + 1-bit string using PRG: s = G (k)
o Outputc =s @ m

o Dec(k,c) — m:
o Expand k to an n + 1-bit string using PRG: s = G (k)
o Outputm =s @ c
Correctness:

Dec(k,c)outputs G(k) Dc=Gk) D Gk)Dm =m

43

PRG — Semantically Secure Encryption

Security: your first reduction!

Suppose for contradiction that there exists an Eve that breaks our scheme.

That, is assume that there is a p.p.t. Eve, and polynomial function p s.t.

Pr

Eve(c) = b

|(m0, m,;) < Eve

k — H
b < {0,1}

€= Enc(k, m;)

1
> E+1/p(n)

44

PRG — Semantically Secure Encryption

Security: your first reduction!

Assume that there is a p.p.t. Eve, a polynomial function p and m,, m; s.t.

Pr

Compare with Pr

Eve(c) =0

Eve(c) =0

| (mg, m;) < Eve

b < {0,1)

| €= G(k) & m,

| (imy, m;) < Eve
k'« {0,1}"*!
b« {0,1}

INC = k' @ my,

Let’'s ¢

all this p’

k < {0,1)"

J .
—_ Let’s call this p

O\

1
> E-l‘ 1/p(n)

45

Clearly, Eve can break security in
PRG case, but not in OTP world!

!

Eve can distinguish pseudorandom from random!

Idea: Use Eve to break PRG indistinguishability!

Distinguisher D(y):
1. Get two messages m,,, m, from Eve and
sample a bit b
2.Compute b' < Eve(y @ my,)
3.1f b’ = b, output “0”
4.0therwise, output “1”

World 0 World 1
Pr[D outputs "1"| b =1 (y is random)]
Pr[D outputs "0"| b = 0 (y is pseudorandom)] = Pr[Eveoutputs b’ = b| b =1
= Pr[Eve outputs b’ = b| b = 0] =p'=1/2
=p>1/2+ 1/p(n)
Therefore,

Pr[D outputs "PRG" | y is pseudorandom] — Pr[D outputs "PRG" | y is pseudorandom] ‘

> 1/p(n) B .

PRG — Semantically Secure Encryption

Ol1:

02:

(or, How to Encrypt n+1 bits using an n-bit key)

Do PRGs exist?
(Exercise: If P=NP, PRGs do not exist.)

How do we encrypt longer messages or many
messages with a fixed key?

(Length extension: If there is a PRG that stretches by one
bit, there is one that stretches by polynomially many bits)

(Pseudorandom functions: PRGs with exponentially large
stretch and “random access” to the output.)

48

01 : Do PRGs exist?

49

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework

(e.g. “appropriately chosen functions composed appropriately
many times look random?”)

-y — —-

50

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework

(e.g. “appropriately chosen functions composed appropriately
many times look random?”)

2. Come up with a candidate construction

" ré Rijndael
— (now the Advanced
++ Encryption Standard)

51

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. “appropriately chosen functions composed appropriately
many times look random?”)

2. Come up with a candidate construction

3. Do extensive cryptanalysis.

52

Examples

- RC4: old PRG from 1987
« Proposed by Ron Rivest (of RSA fame)
- Fast and simple
« Used in TLS till 2013
- However lots of biases
 e.g. 2nd byte of output has 2/256 chance of being 0.

 In 2013, attack which made key recovery feasible with just
220 ciphertexts!

- Finally deprecated in 2015, 28 years after creation!

Constructing PRGs: Two Methodologies

The Foundational Methodology (much of this course)

Reduce to simpler primitives.

“Science wins either way” -Silvio Micali

Digital
Signatures PRF

%
:\ PRG /
Hashing N5 AN
/

N OWF

A

well-studied, average-case hard, problems

54

One-way Functions (Informally)

F

Easy to
compute

Hard to
invert

domain
range

Source of all hard problems in cryptography!

55

What is a good definition?

One-way Functions (Take 1)

A function (family) {F,},.cn Where F(-) : {0,1}" — {0,1}"™ is
one-waly if for every p.p.t. adversary A, the following holds:

x <« {0,1}"

] = negl(n)

Consider F,(x) = 0 for all x.

This is one-way according to the above definition.
In fact, impossible to find the inverse even if A has
unbounded time.

Conclusion: not a useful/meaningful definition.

57

One-way Functions (Take 1)

A function (family) {F,},.cn Where F(-) : {0,1}" — {0,1}"™ is
one-waly if for every p.p.t. adversary A, the following holds:

x <« {0,1}"

] = negl(n)

The Right Definition: Impossible to find an inverse efficiently.

58

One-way Functions: The Definition

A function (family) {F,},.cn Where F(-) : {0,1}" — {0,1}"™ is
one-waly if for every p.p.t. adversary A, the following holds:

Pr|F,(x)=y

x < {0,1}"]
y:=F,(x)

x < A(1",y)

= negl(n)

« Can always find an inverse with unbounded time
* ... but should be hard with probabilistic

polynomial time

One-way Permutations:
One-to-one one-way functions with m(n) = n.

59

How to get PRG from OWF?

OWF — PRG, Attempt #1

PRG(k)
1. Output F, (k)

(Assume m(n) > n)

Does this work?

OWF — PRG, Attempt #1

Consider F, (x) constructed from another OWF F: PRG(k)
1.Compute y := F}(x) 1. Output F, (k)
2.Output y’ := (yy, Ly, 1,..0,y,, 1)

Is ' one-way?

Yes!

Is PRG unpredictable?

No!

Our problem:

OWFs don’t tell us anything about
how their inputs are distributed

They are only hard to invert

Next class

- How to get randomness from OWF output
- How to use this to get PRGs
- How to extend the length of PRGs
- How to get PRGs with “exponentially-large” output

