
CIS 5560

Lecture 2
Cryptography

1

Announcements
• HW 1 will be released tomorrow Wed Jan 21

• Due Friday Jan 30 at 5PM on Gradescope

• Recap on probability and mathematical background

• Get started ASAP and make use of office hours!

• Will have homework “party” Wednesdays 4:30-6PM

• For HW2 onwards, we will experiment with a new format for homework:

• Instead of offline written submissions, in-person “homework-writing” sessions on Friday

• Course website is up: pratyushmishra.com/classes/cis-5560/s26!

http://pratyushmishra.com/classes/cis-5560/s26

Secure Communication

Key k Key k

Eavesdropper “Eve”

Alice wants to send a message to
Bob without revealing it to Eve.

m

m

Secure Communication

Key k Key k

Eavesdropper “Eve”

Alice wants to send a message to
Bob without revealing it to Eve.

m

m

SETUP: Alice and Bob meet beforehand to agree on a
secret key .k

Three (possibly randomized) polynomial-time algorithms:

Key Generation Algorithm: 𝖦𝖾𝗇(1λ) → k

Encryption Algorithm: 𝖤𝗇𝖼(k, m) → c

Decryption Algorithm: 𝖣𝖾𝖼(k, c) → m

Ciphertext c ← 𝖤𝗇𝖼(k, m)

Has to be randomized (why?)

5

Key notion: Symmetric-Key Encryption

m

Key k Key k

• ,
• Most basic property: if Bob gets incorrect answer,

scheme is useless!

∀k ∈ 𝒦, ∀m ∈ ℳ 𝖣𝖾𝖼(k, 𝖤𝗇𝖼(k, m)) = m

6

Property 1: Correctness

7

Property 2: Security?

The Worst-case Adversary
An arbitrary computationally unbounded algorithm EVE.*

Knows Alice and Bob’s algorithms , and but
does not know the key nor their internal randomness.  
	 (Kerckhoff’s principle or Shannon’s maxim)

𝖦𝖾𝗇 𝖤𝗇𝖼 𝖣𝖾𝖼

Can see the ciphertexts going through the channel  
(but cannot modify them… we will come to that later)

Security Definition: What is she trying to learn?

What is a secure encryption scheme?
•Attacker’s abilities: CT only attack (for now)

•Possible security requirements:

• attempt #1: attacker cannot recover secret key

• would be secure

• attempt #2: attacker cannot recover all of plaintext

• would be secure

• Shannon’s idea: CT should reveal no “info” about PT

𝖤𝗇𝖼(k, m) = m

𝖤𝗇𝖼(k, (m1, m2)) = 𝖤𝗇𝖼(k, m1) | | m2

Attempt 1: Caesar cipher
• Idea: shift each letter over by a specific amount .

• Example: A → D, B → E, …, Z → C 

Encrypt “HELLO CLASS” → “KHOOR FODVV” 

• Keyspace ?

• Answer: “shifts by ”

• : Sample

• replace each character in with

• replace each character in with

N

𝒦 =
N ∈ {0,…,25}

𝖦𝖾𝗇 k = N ← {0,…,25}
𝖤𝗇𝖼(k, m) : 𝖼𝗁 m 𝖼𝗁 + N
𝖣𝖾𝖼(k, c) : 𝖼𝗁 c 𝖼𝗁 − N

10

Attempt 1: Caesar cipher
• Question: Is this secure? Can adversary recover message?

• Answer: Yes!

• Just iterate over 26 possible keys, and see which one

decrypts!

• Example: “KHOOR FODVV”

• Try with shift 1 → “LIPPS GPEWW”

• Try with shift 2 → “IFMMP DMBTT”

• Try with shift 3 → “HELLO CLASS”

11

Attempt 2: Substitution cipher
• Idea: Caesar cipher maps letters to other letters in a simple way

(shifts)

• Can we use an arbitrary mapping?

• Example: A → E, B → C, …, Z → D 

• Keyspace ?

• Answer: “all permutations over ”

• : Sample a random permutation

• replace each character in with

• replace each character in with

𝒦 =
{0,…,25}

𝖦𝖾𝗇 k = π
𝖤𝗇𝖼(k, m) : 𝖼𝗁 m π(𝖼𝗁)
𝖣𝖾𝖼(k, c) : 𝖼𝗁 c π−1(𝖼𝗁)

12

Attempt 2: Substitution cipher
• Question: Does the old attack work?

• Answer: No!

• Number of permutations = , can’t try each one!

• Question: Is this secure?

• Answer: Also no!

• Idea: how many times does “X” show up in a message?

• How many times does “E” show up in a message?

• E is much more common!

26! ≈ 288

13

Can count number of times letters shows up
in ciphertext, match with frequency table

14

Perfect Secrecy [Shannon]

What Eve knows after looking at  
=  

What Eve knew before looking at

c

c

• Probability distribution over a finite set is a function
 such that

• An event is a set ;

• Union bound: For events and ,

• A random variable is a fn that induces a dist. on

• Events and are independent if

• RVs and are ind. if

P S
P : S → [0,1] ∑x∈S P(x) = 1

A ⊆ S Pr[A] = ∑x∈A P(x) ∈ [0,1]

A1 A2 Pr[A1 ∪ A2] ≤ Pr[A1] + Pr[A2]

X X : S → V V

A B Pr[A and B] = Pr[A] ⋅ Pr[B]

X Y Pr[X = a and Y = b] = Pr[X = a] ⋅ Pr[Y = b]

16

•

• Example distribution: Uniform: for all

• Example event: .

• Example RV: . Here , and induced distribution is

• Example independent RVs: and

S = {0,1}2

x ∈ S, P(x) = 1/ |S |

A = {x ∈ S | 𝗅𝗌𝖻(x) = 1} Pr[A] = 1/2

X = 𝗅𝗌𝖻 V = {0,1}
Pr[X = 0] = 1/2 ; Pr[X = 1] = 1/2

X = 𝗅𝗌𝖻 Y = 𝗆𝗌𝖻
Pr[X(x) = 0 and Y(x) = 0] = Pr[x = 00] =

1
4

= Pr[X(x) = 0] Pr[Y(x) = 0]

17

Randomized algorithms
• Deterministic algorithm:

• Randomized algorithm: where

• Output is a random variable

y ← A(m)
y ← A(m; R) R $← {0,1}n

y $← A(m)

Uniform RV
• A Uniform RV is that induces a uniform dist on .

• That is, for all ,

R : S → S S
x ∈ S Pr[R = x] = 1/ |S |

An important property of XOR
Thm: is an RV over , is a uniform ind. RV over

	 Then is uniform var. on

Y {0,1}n X {0,1}n

Z := Y ⊕ X {0,1}n

19

Perfect Secrecy

Pr[M = m |𝖤𝗇𝖼(𝒦, m) = c] = Pr[M = m]
beforeafter

∀m ∈ ℳ, ∀c ∈ 𝒞, M is adversary's guess

Probability that
encrypts the particular

message

c

m

Shannon’s Perfect Secrecy Definition

✓ CT reveals no info about PT

But this def is difficult to work with:
How to prove that ciphertext reveals no info?

Pr[M = m |𝖤𝗇𝖼(𝒦, m) = c] = Pr[M = m]
beforeafter

∀m ∈ ℳ, ∀c ∈ 𝒞, M is adversary's guess

Alternate Def: Perfect Indistinguishability
For every

 
Probability that encrypts (with random key)

=

Probability that encrypts (with diff. key) 

Hence every ciphertext is equally likely to decrypt to a given message

m, m′￼

c m k

c m′￼ k′￼

,∀m, m′￼ ∈ ℳ c ∈ 𝒞
Pr

k←𝒦
[𝖤𝗇𝖼(k, m) = c] = Pr

k′￼←𝒦
[𝖤𝗇𝖼(k′￼, m′￼) = c]

The Two Definitions are Equivalent

Intuition:
SEC → IND: If a ciphertext reveals no information about
plaintext, it can equally likely be an encryption for or  
 
IND → SEC: If for any , ciphertext is equally likely to
decrypt to either or , then it reveals no “distinguishing”
information about or . Since this works for any ,
ciphertext reveals no information about any message.

m m′￼

m, m′￼

m m′￼

m m′￼ m, m′￼

THEOREM: An encryption scheme
satisfies perfect secrecy IFF it satisfies perfect
indistinguishability.

(𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼)

Perfect Secrecy is Achievable
The One-time Pad Construction:

: Choose an -bit string at random, i.e. 𝖦𝖾𝗇 𝑛 k k ← {0,1}n

 with : Output 𝖤𝗇𝖼(k, m) ℳ = {0,1}n c = m ⊕ k

: Output 𝖣𝖾𝖼(k, c) m = c ⊕ k

Perfect Secrecy is Achievable
The One-time Pad Construction:

: Choose an -bit string at random, i.e. 𝖦𝖾𝗇 𝑛 k k ← {0,1}n

 with : Output 𝖤𝗇𝖼(k, m) ℳ = {0,1}n c = m ⊕ k

: Output 𝖣𝖾𝖼(k, c) m = c ⊕ k

Correctness: c ⊕ k = m ⊕ k ⊕ k = m

Perfect Secrecy is Achievable
The One-time Pad Construction:

: Choose an -bit string at random, i.e. 𝖦𝖾𝗇 𝑛 k k ← {0,1}n

 with : Output 𝖤𝗇𝖼(k, m) ℳ = {0,1}n c = m ⊕ k

: Output 𝖣𝖾𝖼(k, c) m = c ⊕ k

Claim: One-time Pad achieves Perfect
Indistinguishability (and therefore perfect secrecy).
Proof: For any 𝑚, 𝑐 ∈ {0,1}𝑛,

Pr
k←𝒦

[𝖤𝗇𝖼(k, m) = c] = Pr[k ⊕ m = c] = Pr[k = c ⊕ m] = 1/2n

Perfect Secrecy is Achievable
The One-time Pad Construction:

: Choose an -bit string at random, i.e. 𝖦𝖾𝗇 𝑛 k k ← {0,1}n

 with : Output 𝖤𝗇𝖼(k, m) ℳ = {0,1}n c = m ⊕ k

: Output 𝖣𝖾𝖼(k, c) m = c ⊕ k

Claim: One-time Pad achieves Perfect
Indistinguishability (and therefore perfect secrecy).
Proof: For any m, m′￼

Pr[𝖤𝗇𝖼(k, m) = c] = 1/2n = Pr[𝖤𝗇𝖼(k, m′￼) = c]

Perfect Secrecy has its Price
THEOREM: For any perfectly secure encryption scheme,

 |𝒦 | ≥ |ℳ |

Shannon’s impossibility!

c
Set of messages
consistent with c

= {D(k,c): all k}

Messages n+1 bits

𝑚0

𝑚1

ciphertexts

Each cipher text can correspond to at most messages, but
message space contains possible messages!

So it is possible (and likely!) that a given cipher text can never
decrypt to !

2n

2n+1

m1

Keys n bits

Pr[𝖤𝗇𝖼(𝒦, m1) = c] = 0

Why is this bad?

• Exchanging large keys is difficult

• Need to keep large keys secure for a long time

• Generating truly random bits is kinda expensive!

So what can we do?

