CIS 5560

Cryptography
Lecture 2




Announcements

* HW 1 will be released tomorrow Wed Jan 21
* Due Friday Jan 30 at 5PM on Gradescope
* Recap on probability and mathematical background
* Get started ASAP and make use of office hours!
* Will have homework “party” Wednesdays 4:30-6PM
 For HW2 onwards, we will experiment with a new format for homework:

e Instead of offline written submissions, in-person “homework-writing” sessions on Friday

* Course website is up: pratyushmishra.com/classes/cis-5560/s26!


http://pratyushmishra.com/classes/cis-5560/s26
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Secure Communication

Key k Key k

Eavesdropper “Eve”

Alice wants to send a message m to
Bob without revealing it to Eve.

SETUP: Alice and Bob meet beforehand to agree on a
secret key k.



Key notion: Symmetric-Key Encryption

E}> a Ciphertext ¢ <« Enc(k, m)

Key k Key k

Three (possibly randomized) polynomial-time algorithms:

Key Generation Algorithm: Gen(1%) — k
Has to be randomized (why?)

Encryption Algorithm: Enc(k,m) — ¢

Decryption Algorithm: Dec(k,c) — m



Property 1: Correctness

e Yhke X, VNm e M, Dec(k,Enc(k,m)) = m
 Most basic property: if Bob gets incorrect answer,
scheme iIs useless!



Property 2: Security?



The Worst-case Adversary

An arbitrary computationally unbounded algorithm EVE.”

Knows Alice and Bob’s algorithms Gen, Enc and Dec but

does not know the key nor their internal randomness.
(Kerckhoff’s principle or Shannon’s maxim)

Can see the ciphertexts going through the channel
(but cannot modify them... we will come to that later)

Security Definition: What is she trying to learn?



What is a secure encryption scheme?

eAttacker’s abilities: CT only attack (for now)

*Possible security requirements:
o attempt #1: attacker cannot recover secret key

e Enc(k, m) = m would be secure

o attempt #2: attacker cannot recover all of plaintext
» Enc(k, (m;,m,)) = Enc(k,m,) || m, would be secure

e Shannon’s idea: CT should reveal no “info” about PT



Attempt 1: Caesar cipher

ldea: shift each letter over by a specific amount V.

Example:A—-+>D,B—-E,...,.Z—>C
Encrypt “HELLO CLASS” — “KHOOR FODVV”

Keyspace A = ?
Answer: “shifts by N € {0,...,25}”
Gen: Sample k = N « {0,...,25}
Enc(k, m) : replace each character ch in m withch + N
Dec(k, ¢) : replace each character ch in c withch — N



Attempt 1: Caesar cipher

* Question: Is this secure”? Can adversary recover message”?
» Answer: Yes!

 Just iterate over 26 possible keys, and see which one
decrypts!

Example: “KHOOR FODVV”

. Try with shift 1 = “LIPPS GPEWW”
. Try with shift 2 = “IFMMP DMBTT”
+ Try with shift 3 = “HELLO CLASS”
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Attempt 2: Substitution cipher

ldea: Caesar cipher maps letters to other letters in a simple way
(shifts)

Can we use an arbitrary mapping?
Example:A—-E,B—-C,...,Z—D

Keyspace & = ?
Answer: “all permutations over {0,...,25}”
Gen: Sample a random permutation k = «
Enc(k, m) : replace each character ch in m with z(ch)

Dec(k, ¢) : replace each character ch in ¢ with 7~ (ch)



Attempt 2: Substitution cipher

» Question: Does the old attack work?
 Answer: NOo!

Number of permutations = 26! ~ 2°° | can’t try each one!

« Question: Is this secure?
 Answer: Also no!

ldea: how many times does “X” show up in a message”?
How many times does “E” show up in a message?
E IS much more common!



0.14 -

0.12 -

0.1 -

0.08

0.06

0.04

0.02

abcdefghi jklImnopqgqrstuvwxyz

Can count number of times letters shows up
in ciphertext, match with frequency table
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Perfect Secrecy [Shannon]

What Eve knows after looking at ¢

What Eve knew before looking at ¢



* Probability distribution P over a finite set S is a function
P : S — [0,1] such that erSP(x) = 1

. An eventisasetA C §; Pr[A] = er 4, P(x) € [0,1]

- Union bound: For events A, and A,, Pr[A, UA,| < Pr[A,] + Pr[A,]
+ Arandom variable X isafn X : § — Vthat induces a dist. on V

» Events A and B are independent if Pr|A and B| = Pr|A] - Pr|B]
 RVsXand Yareind. if Pr[X =aand Y = b] = Pr|X =a] - Pr|Y = D]



. S =1{0,117
- Example distribution: Uniform: for allx € S, P(x) = 1/| S|
- Example event: A = {x & S | Isb(x) =1}.Pr[A] =1/2

- Example RV: X = Isb. Here V = {0,1}, and induced distribution is
PriIX=0]=1/2; PrIX=1]=1/2

- Example independent RVs: X = Isb and Y = msb

Pr|X(x) = 0and Y(x) = 0] = Pr[x = 00] = % = Pr|X(x) = O] Pr[Y(x) = O]



Uniform RV

« AUniformRViIsR: S — S that induces a uniform dist on S.

+ Thatis, forallx € §, Pr[R =x] = 1/| S|

Randomized algorithms

 Deterministic algorithm: y <« A(m)

- Randomized algorithm: y « A(m; R) where R il {0,1}"

» Qutput is a random variable y <$; A(m)



An important property of XOR

Thm: Yis an RV over {0,1}", X is a uniform ind. RV over {0,1}"

Then Z := Y & X is uniform var. on {0,1}"



Perfect Secrecy

Vme M ,NVNc € €, M is adversary's guess

Pr[M = m|Enc(H,m) = c] = Pr[M = m]

after before

Probability that ¢

encrypts the particular
message m




Shannon’s Perfect Secrecy Definition

Vme M ,NVNc € €, M is adversary's guess

Pr[M = m|Enc(H,m) = c] = Pr[M = m]

after before

v CT reveals no info about PT

But this def is difficult to work with:
How to prove that ciphertext reveals no info?



Alternate Def: Perfect Indistinguishabillity

For every m, m’

Probability that ¢ encrypts m (with random key k)

Probability that ¢ encrypts m’ (with diff. key k)

Hence every ciphertext is equally likely to decrypt to a given message

Vm.m' € M,c € €

Pr [Enc(k,m) =c] = Pr [Enc(k’,m’) = c]
k—H k'—H




The Two Definitions are Equivalent

THEOREM: An encryption scheme (Gen, Enc, Dec)
satisfies perfect secrecy IFF it satisfies perfect
iIndistinguishability.

Intuition:
SEC — IND: If a ciphertext reveals no information about
plaintext, it can equally likely be an encryption for m or m’

IND — SEC: If for any m, m’, ciphertext is equally likely to
decrypt to either m or m/, then it reveals no “distinguishing”

information about m or m'. Since this works for any m, m’,
ciphertext reveals no information about any message.



Perfect Secrecy I1s Achievable

The One-time Pad Construction:

Gen: Choose an n-bit string k at random, i.e. k < {0,1}"

Enc(k, m) with # = {0,1}": Outputc =m @ k

Dec(k,c): Output m = c @ k
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Perfect Secrecy I1s Achievable

The One-time Pad Construction:

Gen: Choose an n-bit string k at random, i.e. k < {0,1}"

Enc(k, m) with # = {0,1}": Outputc =m @ k

Dec(k,c): Output m = c @ k

Claim: One-time Pad achieves Perfect
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Perfect Secrecy I1s Achievable

The One-time Pad Construction:

Gen: Choose an n-bit string k at random, i.e. k < {0,1}"

Enc(k, m) with # = {0,1}": Outputc =m @ k

Dec(k,c): Output m = c @ k

Claim: One-time Pad achieves Perfect
Indistinguishabillity (and therefore perfect secrecy).

Proof: For any m, m’

Pr[Enc(k,m) = c] = 1/2" = Pr[Enc(k, m’) = ]




Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption scheme,
| A | > | M |




Shannon’s impossibility!

Messages n+1 bits ciphertexts

Keys n bits

Set of messages
consistent with ¢
= {D(k,c): all k}

Each cipher text can correspond to at most 2" messages, but
message space contains o+l possible messages!

So it is possible (and likely!) that a given cipher text can never
decrypt to m;!

Pr[Enc(Z,m;) =c] =0



Why is this bad?

Exchanging large keys is difficult

Need to keep large keys secure for a long time

» Generating truly random bits is kinda expensive!

So what can we do?




