

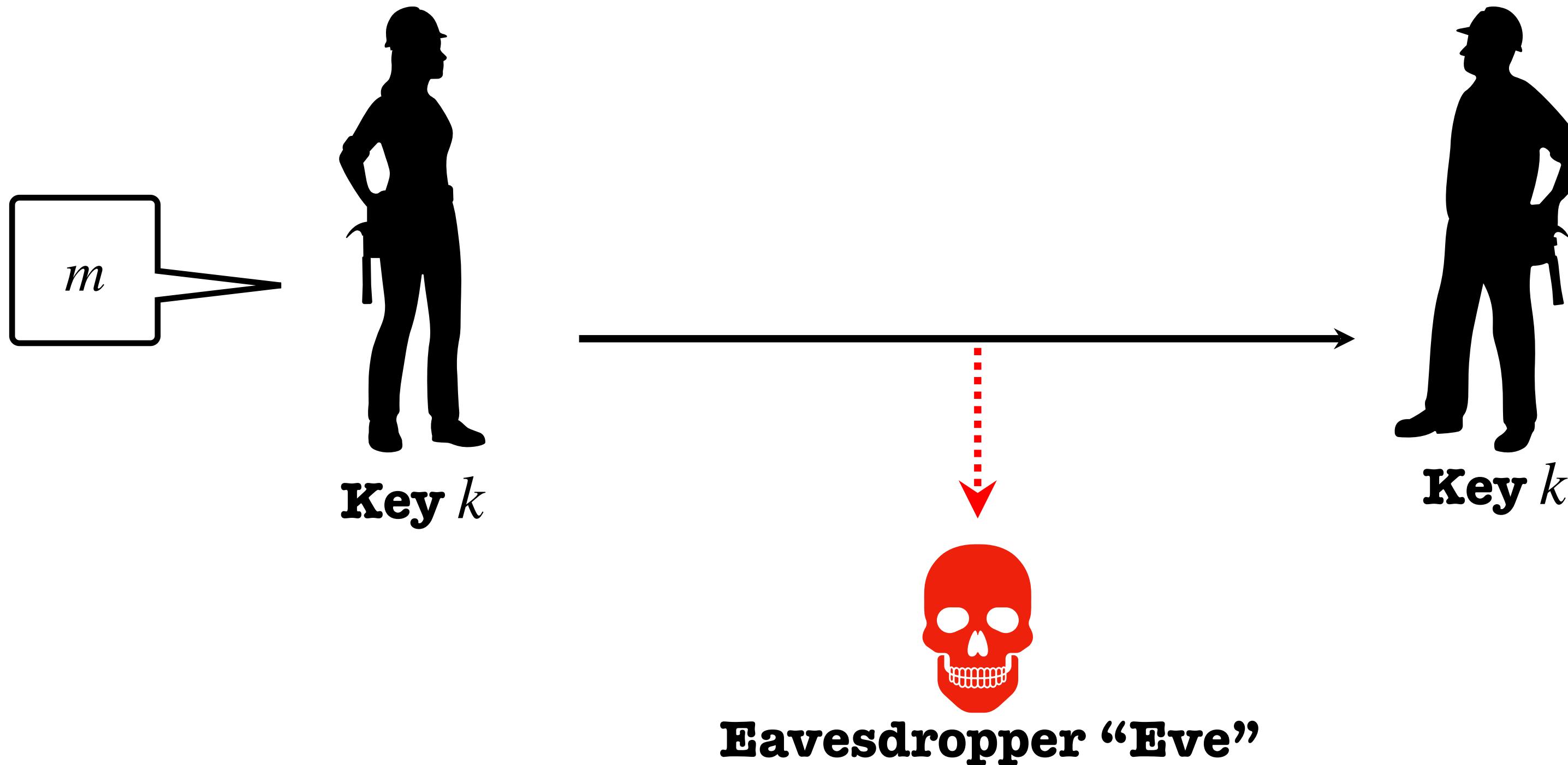
CIS 5560

Cryptography
Lecture 2

Announcements

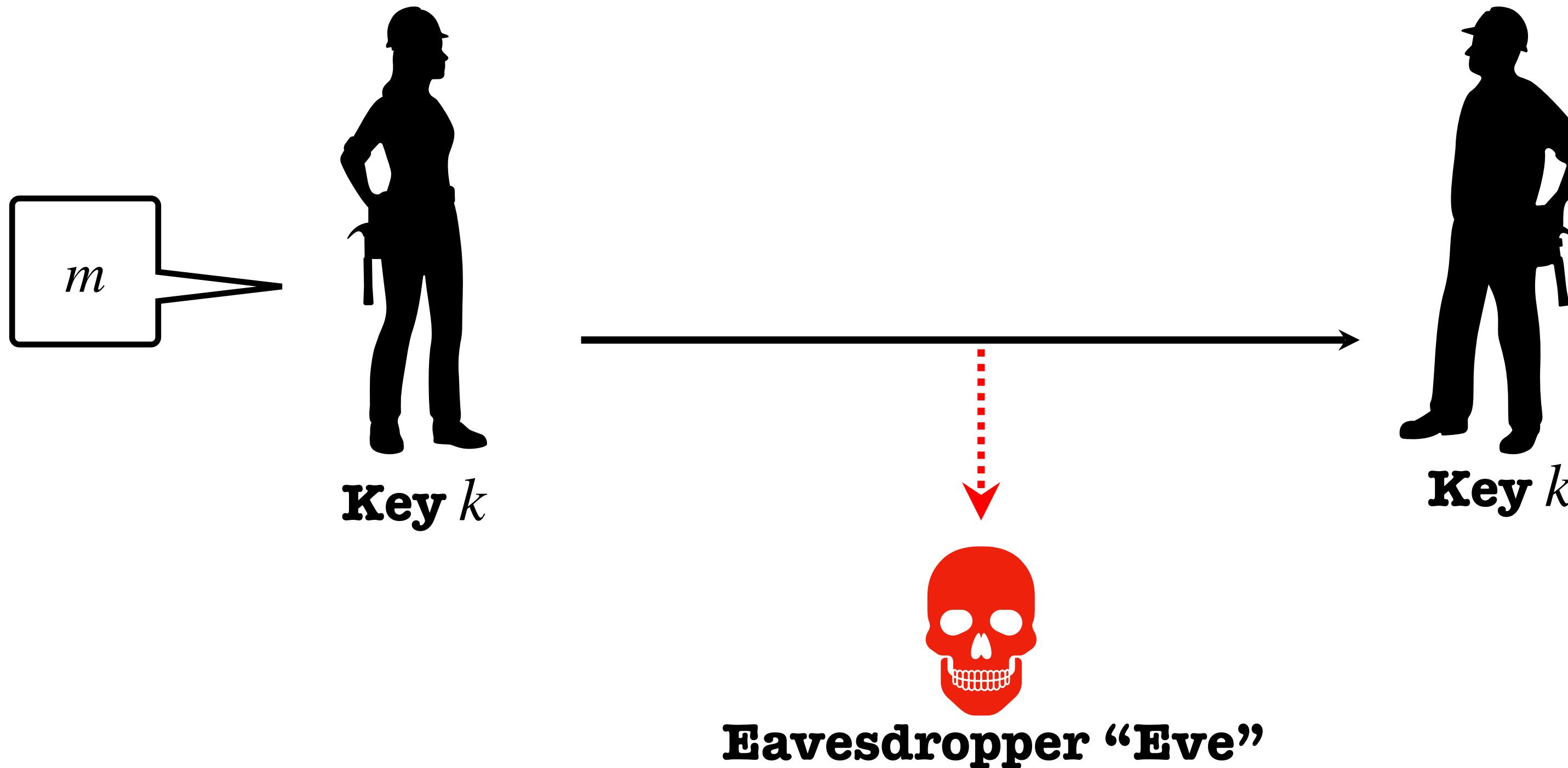
- **HW 1 will be released tomorrow Wed Jan 21**
 - **Due Friday Jan 30 at 5PM on Gradescope**
 - Recap on probability and mathematical background
 - Get started ASAP and make use of office hours!
 - Will have homework “party” Wednesdays 4:30-6PM
 - **For HW2 onwards, we will experiment with a new format for homework:**
 - Instead of offline written submissions, in-person “homework-writing” sessions on Friday
 - Course website is up: pratyushmishra.com/classes/cis-5560/s26!

Secure Communication



Alice wants to send a message m to Bob without revealing it to Eve.

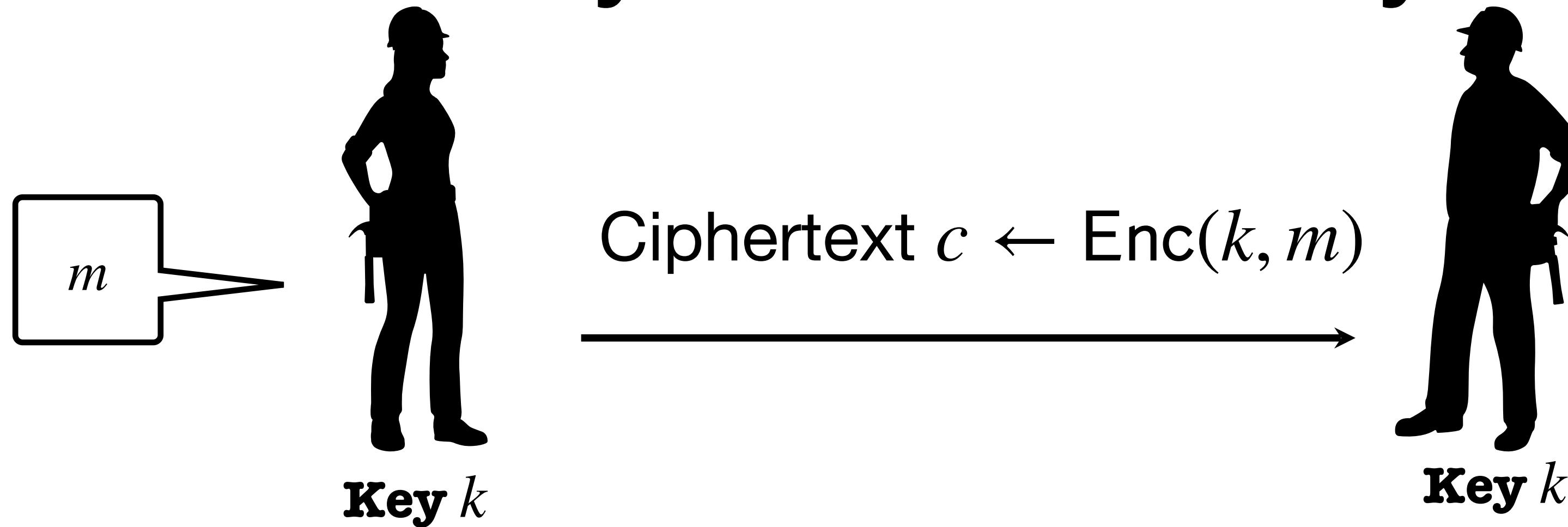
Secure Communication



Alice wants to send a message m to Bob without revealing it to Eve.

SETUP: Alice and Bob meet beforehand to agree on a secret key k .

Key notion: Symmetric-Key Encryption



Three (possibly randomized) polynomial-time algorithms:

Key Generation Algorithm: $\text{Gen}(1^\lambda) \rightarrow k$

Has to be randomized (why?)

Encryption Algorithm: $\text{Enc}(k, m) \rightarrow c$

Decryption Algorithm: $\text{Dec}(k, c) \rightarrow m$

Property 1: Correctness

- $\forall k \in \mathcal{K}, \forall m \in \mathcal{M}, \text{Dec}(k, \text{Enc}(k, m)) = m$
- **Most basic property: if Bob gets incorrect answer, scheme is useless!**

Property 2: Security?

The Worst-case Adversary

An arbitrary computationally *unbounded* algorithm **EVE**.*

Knows Alice and Bob's algorithms Gen, Enc and Dec but does not know the key nor their internal randomness.

(Kerckhoff's principle or Shannon's maxim)

Can see the ciphertexts going through the channel
(but cannot modify them... we will come to that later)

Security Definition: What is she trying to learn?

What is a secure encryption scheme?

- Attacker's abilities: **CT only attack** (for now)
- Possible security requirements:
 - attempt #1: **attacker cannot recover secret key**
 - $\text{Enc}(k, m) = m$ would be secure
 - attempt #2: **attacker cannot recover all of plaintext**
 - $\text{Enc}(k, (m_1, m_2)) = \text{Enc}(k, m_1) \parallel m_2$ would be secure
 - Shannon's idea: **CT should reveal no “info” about PT**

Attempt 1: Caesar cipher

- Idea: shift each letter over by a specific amount N .
- Example: $A \rightarrow D, B \rightarrow E, \dots, Z \rightarrow C$
Encrypt “HELLO CLASS” \rightarrow “KHOOR FODVV”
- Keyspace $\mathcal{K} = ?$
 - Answer: “shifts by $N \in \{0, \dots, 25\}$ ”
 - Gen: Sample $k = N \leftarrow \{0, \dots, 25\}$
 - $\text{Enc}(k, m)$: replace each character ch in m with $\text{ch} + N$
 - $\text{Dec}(k, c)$: replace each character ch in c with $\text{ch} - N$

Attempt 1: Caesar cipher

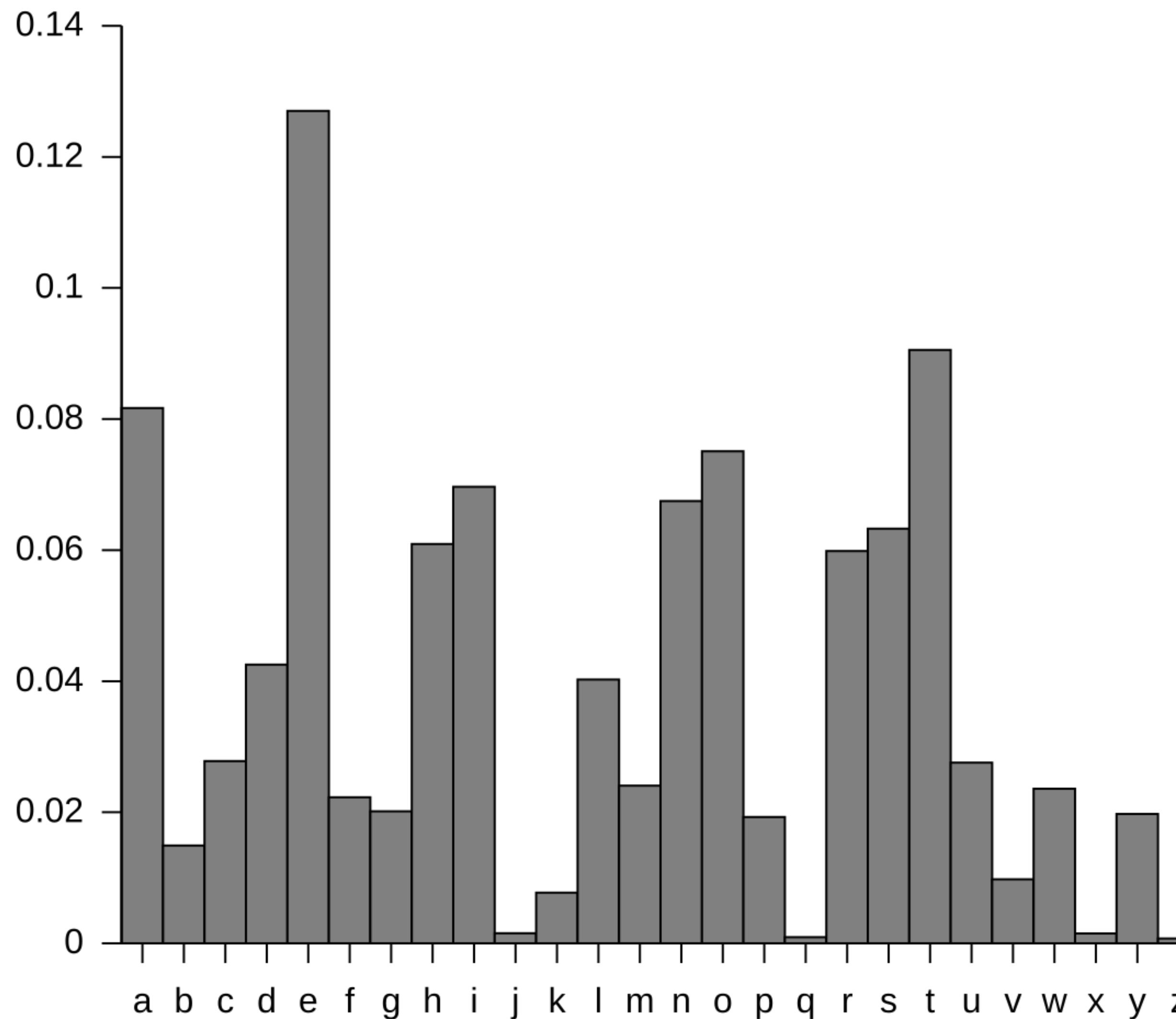
- Question: Is this secure? Can adversary recover message?
- Answer: Yes!
 - Just iterate over 26 possible keys, and see which one decrypts!
- Example: “KHOOR FODVV”
 - Try with shift 1 → “LIPPS GPEWW”
 - Try with shift 2 → “IFMMP DMBTT”
 - Try with shift 3 → “HELLO CLASS”

Attempt 2: Substitution cipher

- Idea: Caesar cipher maps letters to other letters in a simple way (shifts)
- Can we use an arbitrary mapping?
- Example: $A \rightarrow E, B \rightarrow C, \dots, Z \rightarrow D$
- Keyspace $\mathcal{K} = ?$
 - Answer: “all permutations over $\{0, \dots, 25\}$ ”
- Gen: Sample a random permutation $k = \pi$
- $\text{Enc}(k, m)$: replace each character ch in m with $\pi(\text{ch})$
- $\text{Dec}(k, c)$: replace each character ch in c with $\pi^{-1}(\text{ch})$

Attempt 2: Substitution cipher

- Question: Does the old attack work?
- Answer: No!
 - Number of permutations = $26! \approx 2^{88}$, can't try each one!
 - Question: Is this secure?
 - Answer: Also no!
 - Idea: how many times does “X” show up in a message?
 - How many times does “E” show up in a message?
 - E is much more common!



Can count number of times letters shows up
in ciphertext, match with frequency table

Perfect Secrecy [Shannon]

What Eve knows *after* looking at c

=

What Eve knew *before* looking at c

- **Probability distribution** P over a finite set S is a function $P : S \rightarrow [0,1]$ such that $\sum_{x \in S} P(x) = 1$
- **An event** is a set $A \subseteq S$; $\Pr[A] = \sum_{x \in A} P(x) \in [0,1]$
- **Union bound:** For events A_1 and A_2 , $\Pr[A_1 \cup A_2] \leq \Pr[A_1] + \Pr[A_2]$
- A **random variable** X is a fn $X : S \rightarrow V$ that induces a dist. on V
- Events A and B are **independent** if $\Pr[A \text{ and } B] = \Pr[A] \cdot \Pr[B]$
- RVs X and Y are **ind.** if $\Pr[X = a \text{ and } Y = b] = \Pr[X = a] \cdot \Pr[Y = b]$

- $S = \{0,1\}^2$
- **Example distribution:** Uniform: for all $x \in S, P(x) = 1/|S|$
- **Example event:** $A = \{x \in S \mid \text{lsb}(x) = 1\}$. $\Pr[A] = 1/2$
- **Example RV:** $X = \text{lsb}$. Here $V = \{0,1\}$, and induced distribution is $\Pr[X = 0] = 1/2$; $\Pr[X = 1] = 1/2$
- **Example independent RVs:** $X = \text{lsb}$ and $Y = \text{msb}$
 $\Pr[X(x) = 0 \text{ and } Y(x) = 0] = \Pr[x = 00] = \frac{1}{4} = \Pr[X(x) = 0] \Pr[Y(x) = 0]$

Uniform RV

- A **Uniform RV** is $R : S \rightarrow S$ that induces a uniform dist on S .
- That is, for all $x \in S$, $\Pr[R = x] = 1/|S|$

Randomized algorithms

- Deterministic algorithm: $y \leftarrow A(m)$
- Randomized algorithm: $y \leftarrow A(m; R)$ where $R \leftarrow \{0,1\}^n$
- Output is a random variable $y \leftarrow A(m)$

An important property of XOR

Thm: Y is an RV over $\{0,1\}^n$, X is a uniform ind. RV over $\{0,1\}^n$

Then $Z := Y \oplus X$ is uniform var. on $\{0,1\}^n$

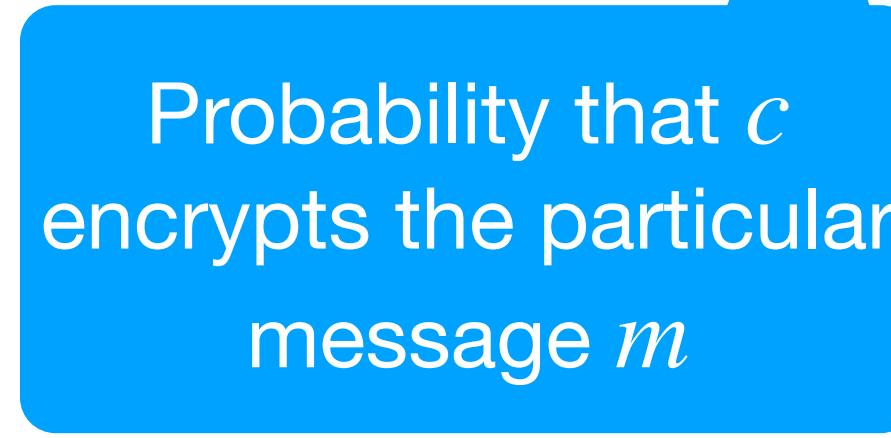
Perfect Secrecy

$\forall m \in \mathcal{M}, \forall c \in \mathcal{C}, M$ is adversary's guess

$$\Pr[M = m | \text{Enc}(\mathcal{K}, m) = c] = \Pr[M = m]$$

after

before



Probability that c encrypts the particular message m

Shannon's Perfect Secrecy Definition

$\forall m \in \mathcal{M}, \forall c \in \mathcal{C}, M$ is adversary's guess

$$\Pr[M = m | \text{Enc}(\mathcal{K}, m) = c] = \Pr[M = m]$$

after

before

✓ CT reveals no info about PT

But this def is difficult to work with:

How to prove that ciphertext reveals no info?

Alternate Def: Perfect Indistinguishability

For every m, m'

Probability that c encrypts m (with random key k)

=

Probability that c encrypts m' (with diff. key k')

Hence every ciphertext is equally likely to decrypt to a given message

$$\forall m, m' \in \mathcal{M}, c \in \mathcal{C}$$

$$\Pr_{k \leftarrow \mathcal{K}} [\text{Enc}(k, m) = c] = \Pr_{k' \leftarrow \mathcal{K}} [\text{Enc}(k', m') = c]$$

The Two Definitions are Equivalent

THEOREM: An encryption scheme $(\text{Gen}, \text{Enc}, \text{Dec})$ satisfies perfect secrecy IFF it satisfies perfect indistinguishability.

Intuition:

SEC \rightarrow IND: If a ciphertext reveals no information about plaintext, it can equally likely be an encryption for m or m'

IND \rightarrow SEC: If for any m, m' , ciphertext is equally likely to decrypt to either m or m' , then it reveals no “distinguishing” information about m or m' . Since this works for any m, m' , ciphertext reveals no information about any message.

Perfect Secrecy is Achievable

The One-time Pad Construction:

Gen: Choose an n -bit string k at random, i.e. $k \leftarrow \{0,1\}^n$

Enc(k, m) with $\mathcal{M} = \{0,1\}^n$: Output $c = m \oplus k$

Dec(k, c): Output $m = c \oplus k$

Perfect Secrecy is Achievable

The One-time Pad Construction:

Gen: Choose an n -bit string k at random, i.e. $k \leftarrow \{0,1\}^n$

Enc(k, m) with $\mathcal{M} = \{0,1\}^n$: Output $c = m \oplus k$

Dec(k, c): Output $m = c \oplus k$

Correctness: $c \oplus k = m \oplus k \oplus k = m$

Perfect Secrecy is Achievable

The One-time Pad Construction:

Gen: Choose an n -bit string k at random, i.e. $k \leftarrow \{0,1\}^n$

Enc(k, m) with $\mathcal{M} = \{0,1\}^n$: Output $c = m \oplus k$

Dec(k, c): Output $m = c \oplus k$

Claim: One-time Pad achieves Perfect Indistinguishability (and therefore perfect secrecy).

Proof: For any $m, c \in \{0,1\}^n$,

$$\Pr_{k \leftarrow \mathcal{K}} [\text{Enc}(k, m) = c] = \Pr[k \oplus m = c] = \Pr[k = c \oplus m] = 1/2^n$$

Perfect Secrecy is Achievable

The One-time Pad Construction:

Gen: Choose an n -bit string k at random, i.e. $k \leftarrow \{0,1\}^n$

Enc(k, m): with $\mathcal{M} = \{0,1\}^n$: Output $c = m \oplus k$

Dec(k, c): Output $m = c \oplus k$

Claim: One-time Pad achieves Perfect Indistinguishability (and therefore perfect secrecy).

Proof: For any m, m'

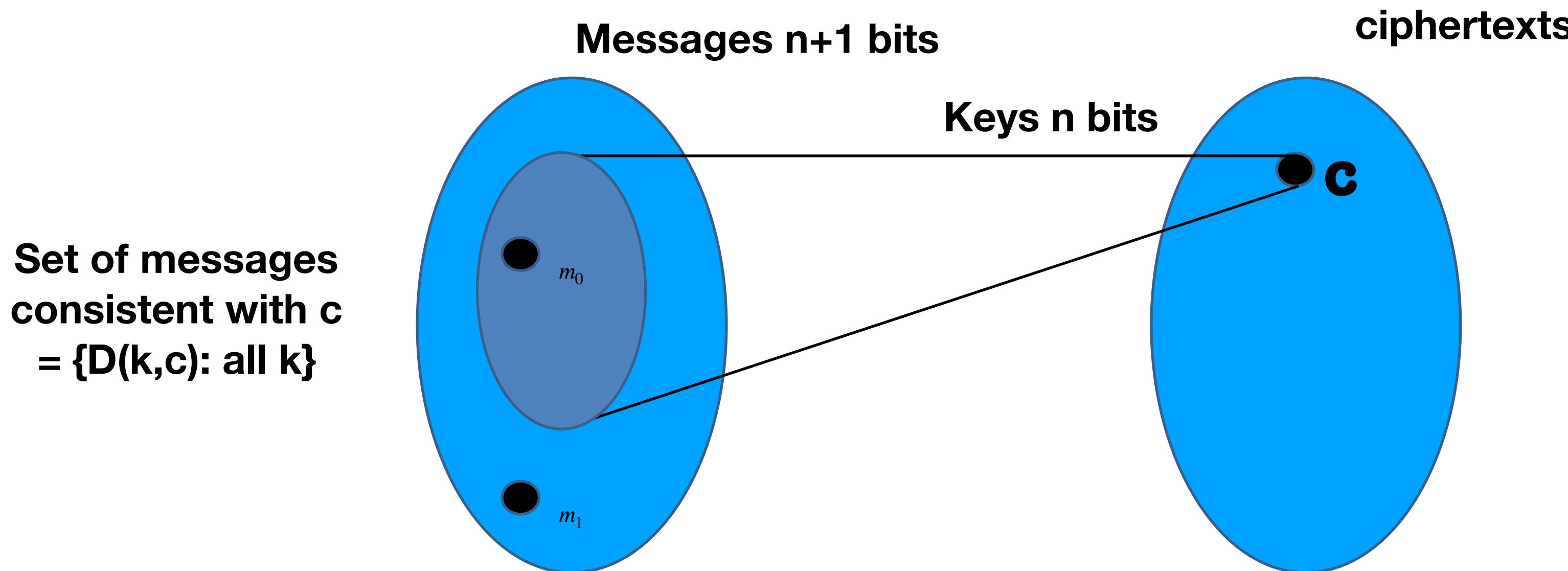
$$\Pr[\text{Enc}(k, m) = c] = 1/2^n = \Pr[\text{Enc}(k, m') = c]$$

Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption scheme,

$$|\mathcal{K}| \geq |\mathcal{M}|$$

Shannon's impossibility!



Each cipher text can correspond to at most 2^n messages, but message space contains 2^{n+1} possible messages!

So it is possible (and likely!) that a given cipher text can *never* decrypt to m_1 !

$$\Pr[\text{Enc}(\mathcal{K}, m_1) = c] = 0$$

Why is this bad?

- Exchanging large keys is difficult
- Need to keep large keys secure for a long time
- Generating truly random bits is kinda expensive!

So what can we do?