CIS 5560

Cryptography
Lecture 23

Course website:
pratyushmishra.com/classes/cis-5560-s25/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan


http://pratyushmishra.com/classes/cis-5560-s24/

Recap of Last Lecture

« Malicious-verifier/“standard” ZK
« ZKPs for Gl and for QR achieve standard ZK
- ZKP for 3-coloring



Interactive Proofs for a Language #

Claim/Theorem

aj
/ R accept/
. q reject

< v
a, Q

Verifier

Prover

Def: £ is an IP-language if there is a unbounded P and

probabilistic poly-time verifier 1V where

 Completeness: If x € &£, V always accepts.

* Soundness: If x & £, regardless of the cheating
prover strategy, V accepts with negligible probability.




IP for Graph Isomorphism

2 6

4 10

Graph G (fraph7H

K = p(G)

H=n(G) .
where p is a random permutation Q

Q . random challenge bit » Verifier

Prover

b =0: send r, S.t. K = 7,(G)

b=1:send r; s.t. H= 7(K)



Old: Honest-Verifier ZK

Claim: The Gl protocol is honest-verifier zero knowledge.
Simulator S works as follows:

1. First pick a random bit b.

2. Sample random permutation ¢.

3. Compute K = ¢(G,).

viewy(P,V): 4. output (K, b, ¢).

(K, b, )

Exercise: The simulated transcript is identically
distributed as the real transcript in the interaction (PV).



Now: Malicious Verifier ZK

Theorem: The Gl protocol is (malicious verifier) zero knowledge.

Simulator S works as follows:
1. First set K = ¢(G,) for a random ¢ and b and feed K to V*.

2. Let b’ = V*(s).
3. If b’ = b, output (K, b, ¢p) and stop.

4. Otherwise, go back to step 1 and repeat. (also called “rewinding”).



DO a” NP Ianguages haV Winner of 2024 Turing Award!

Nevertheless, today, we will sho

Theorem [Goldreich-Micali-Wigderson’87] Assuming
one-way functions exist, all of NP has computational
zero-knowledge proofs.

This theorem is amazing: it tells us that everything
that can be proved (in the sense of Euclid) can be
proved in zero knowledge!



R1CS

An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

(F.=FneN,A,B,C), x,w)

N




Today’s Lecture

« Commitment Schemes

« Pedersen Commitment

- Complete proof of ZK for R1CS
* “Proof of Knowledge”

* Non-Interactive Zero-Knowledge



R1CS

An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

(F.=FneN,A,B,C), x,w)

N

10



What checks do we need?

X
<
w

XN

1
2N
(o

Step 1: Correct matrix multiplication
check that Mz =z, VM € {A, B, C}

Step 2: Correct element-wise product
check that for each i, z,[i] - zglil = z.li]

11



Attempt 1: Trivial NP Protocol

JAZ°BZ=CZ

{ Prover(F, x,ﬂ/)T =

e Completeness and Soundness are trivial
e What about ZK?

Verifier(F, x)

AZ°BZ;CZ

12



Attempt 1: Trivial NP Protocol

o

Prover
pk proving key

X public input

w private witness

N\

Verifier
vk verifying key
x public input

)

Problem: Not hiding at all!

13



Attempt 1: Hash the withess

o

Prover
pk proving key

X public input

w private witness

)

N\

Verifier
vk verifying key
x public input

)

Problem 1: How to verify?
Problem 2: Still might not be hiding!

14



We need a commitment scheme

Message m

~——

Commit to m: m
x Y S

Sender Open: m 0—1 Receiver

1. Hiding: The locked box should completely hide m.

2. Binding: Sender shouldn’t be able to open to different msg m’.



Commitment Schemes

Commit(w; r) = cm
satistying the following properties

e Binding: For all efficient adv. &,
Pr |Commit(w; r) = Commit(w’; r') : (w,r,w,r) « 9| = 0
(no adv can open commitment to two diff values)

e Hiding: For all w, w’, and all adv. &,
A (Commit(w; r)) = A (Commit(w’; r'))

(no adv can learn committed value, i.e. comms are indistinguishable)

16



A standard construction

Let H be a cryptographic hash function. Then
Commit(w;r) := Hw, r)

IS a commitment scheme

17



Pedersen Commitments

Setup(n € N) — ck
1. Sample random elements g, ..., &,, 1 < G

Commit(ck,m € F;r € ) — cm

1. Outputcm := g "g 2. .. g, "h'



Binding
Goal: For all efficient adv. <,
ck « Setup(n) -0
(m,r,m’,r") « d(ck) ~
Proof: We will reduce to hardness of DL. Assume that & did

indeed find breaking (m, r,m’, r’). Let's construct &% that breaks
DL. Assume thatn = 1.

Key idea: Let 1 = g*. Then

Pr |Commit(m; r) = Commit(m’; r’) :

( B(g.h) A
mpr — m’hr’ m4xr — m'+xr’ T
8 =8 — g =8 1. (m,r,m', 1) « d(ck = (g, h))
m—m' _m—m
Can recover x = — 2. Output x = —2——
r'—r

\ J




Hiding
Goal: For all m, m’, and all adv. &,
A (Commit(m;r)) = A (Commit(m’; r'))

Proof idea: Basically one-time pad!
Let cm := Commit(ck, m;r).Leth = g*.
Then, for any m’, there exists r’ such that cm := Commit(ck, m’; r’) .

m—m'

We could compute it, if we knew x: r' = +r

X

[Note: this doesn'’t break binding, because & doesn’t know X

20



Additive Homomorphism

Let cm and cm’ be commitments to m and m’ wrt ¥ and 7’

Thencm - cm’is a commitmenttom +m' wrtr + r’

cm:=g"...g,"h"-cm":=g".. g ""h"
— gf"lJ“ml... g/ My T

= Commit(ck,m +m'; r + r’)

21



Attempt 2: Commit to the withess

o

Prover | r
pk proving key
X public input - —
w private witness ) CO|\/||\/|(W) |

Problem 1: How to verify?

Verifier
vk verifying key
x public input

)

Solution 2: Hiding from COMM!

22



Attempt 3: Commit to the withess

Prover r —
pk proving key Verifier
X public input vk verifying key
w private witness CMw x public input
» 1. Check cmw = Commit(w; r)
w;r 2. Construct z
3.Check Az o Bz =Cz
_ J

Solution 1: Just check!
Problem 2: No hiding again!

23



Performing checks on
committed data?



Attempt 3: Commit to the withess

Prover r —
pk proving key Verifier
X public input vk verifying key
w private witness CMw x public input
» 1. Check cmw = Commit(w; r)
w;r 2. Construct z
3.Check Azo Bz =Cz
_ J

Solution 1: Just check!
Idea 2: Blind it!!



Examples of NP Assertions

My public key is well-formed (e.g. in RSA, the
public key is N, a product of two primes together
with an e that is relatively prime to ¢(N).)

Encrypted bitcoin (or Zcash): “l have enough

money to pay you.” (e.g. | will publish an
encryption of my bank account and prove to you

that my balanceis > $X.)

Running programs on encrypted inputs: Given
Enc(x) and y, prove that y = PROG(x).



Examples of NP Assertions

Running programs on encrypted inputs: Given
Enc(x) and y, prove that y = PROG(x).

More generally: A tool to enforce honest
behavior without revealing information.



Zero Knowledge Proof for 3-Coloring

NP-Complete Problem:

Every other problem in NP can be
reduced to it.




Zero Knowledge Proof f9r 3COL

Graph G ]
Graph G
=(V,E) g
4 ces 4 3

p(1) o p(n)

]2 — 8

Come up with a random edge (i, j)
random perm <
of the colors

p:V— (R, B,G)

open p(i) and p(j)

[
>

1. Check the openings
2. Check: p(i), p(j) € {R, B,G)

3. Check: p(i) # p(J) -



Zero Knowledge Proof f9r 3COL

Graph G ]
G G
=(V,E) ap
4 ces 4 3

p(1) p(n)

= - R

random edge (i, j)

open p(i) and p(j)

Completeness: Exercise.



Zero Knowledge Proof f9r 3COL

Graph G ]
Graph G
~(V,E) g
4 ces 4 3

p(1) p(n)

= - R

random edge (i, j)

.
|

open p(i) and p(j)

[
>

Soundness: If the graph is not 3COL, in every 3-coloring (that P
commits to), there is some edge whose end-points have the same color.

V will catch this edge and reject with probability > 1/| E|.



Zero Knowledge Proof f9r 3COL

Graph G ]
Graph G
~(V,E) g
4 ces 4 3

p(1) p(n)

= - R

random edge (i, j)

.
|

open p(i) and p(j)

[
>

Repeat | E| « A times to get the verifier to accept with probability
<A -1/[EF* <274



Constructing
Commitment Schemes



Blaclg to ZK Proof for §CQL

Graph G
“(VE) Graph G
4 4 3
: (Com(p(k);r) }i_, Q

random edge (i, j)

send openings p(i), r; and p(j), r;




Why is this zero-knowledge?

Simulator S works as follows:

1. First pick a random edge (i, j*)

Color vertices i and j* with {Com(p(k);rk)}Zﬂ‘
random, different colors :
Color all other vertices red.

~ edge (la .]) Q
colors to V™ and get edge (i, j)

y

2. Feed the commitments of the

3 |If <i,j) ?é (i*,j*), go back and send openings ¥; and I‘j:
repeat.

4. If (i,j) = (i%, j¥), output the commitments and
openings r; and r;as the simulated transcript.



Why is this zero-knowledge?

Lemma: {Com(p(k);re) iz,
(1) Assuming the commitment is "
hiding, S runs in expected
polynomial-time. . edee Q. )) g
(2) When S outputs a view, it is

comp. indist. from the view of

% . . send openings r; and r;
V in a real execution. P ol AR




Why is this zero-knowledge?

Simulator S works as follows (call this Hybrid 0)

1. First pick a random edge (i, j*)

Color vertices i and j* with {Com(p(k); 1) Ve=1
random, different colors :
Color all other vertices red.

) edge (i, j) g
colors to V™ and get edge (i, j)

y

2. Feed the commitments of the

3 |If <i,j) ?é (i*,j*), go back and send openings r; and rj:
repeat.

4. If (i,j) = (i%, j¥), output the commitments and
openings r; and r;as the simulated transcript.



Why is this zero-knowledge?

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (i, j*)

Permute a legal coloring and {Com(p(k);ry) Yy
color all vertices correctly. g

~ edge (i, j) Q
colors to V™ and get edge (i, j) |

y

2. Feed the commitments of the

3 |If (i,j) ?é (i*,j*), go back and send openings ¥; and I‘j:
repeat.

4. If (i,j) = (i%, j¥), output the commitments and
openings r; and r;as the simulated transcript.



Why is this zero-knowledge?

Claim: Hybrids 0 and 1 are computationally
indistinguishable, assuming the commitment scheme is
computationally hiding.

Proof: By contradiction. Show a reduction that breaks the
hiding property of the commitment scheme, assuming
there is a distinguisher between hybrids 0 and 1.



Why is this zero-knowledge?

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (i, j*)

Permute a legal coloring and {Com(p(k);ry) Yy
color all vertices correctly. g

~ edge (i, j) Q
colors to V™ and get edge (i, j) |

y

2. Feed the commitments of the

3 |If (i,j) ?é (i*,j*), go back and send openings ¥; and I‘j:
repeat.

4. If (i,j) = (i%, j¥), output the commitments and
openings r; and r;as the simulated transcript.



Why is this zero-knowledge?

Here is the real view of V* (Hybrid 2)

1.F. l . I | | E.* .*;

Permute a legal coloring and {Com(p(k);re) Vi,
color all edges correctly. g
. ) edge (i, ])
2. Feed the commitments of the <
colors to V™ and get edge (i, j)
3. " 1 '*, [ : send openings ¥; and ri
repeat:

4. l—f—éiﬁ'}—;@*ﬂ'*%,—output the commitments and

openings r; and r;as the transcript.



Why is this zero-knowledge?

Claim: Hybrids 1 and 2 are identical.

Hybrid 1 merely samples from the same distribution as

Hybrid 2 and, with probability 1 -1/ | E | , decides to
throw it away and resample.



Put together:

Theorem: The 3COL protocol is zero knowledge.



