

CIS 5560

Cryptography Lecture 23

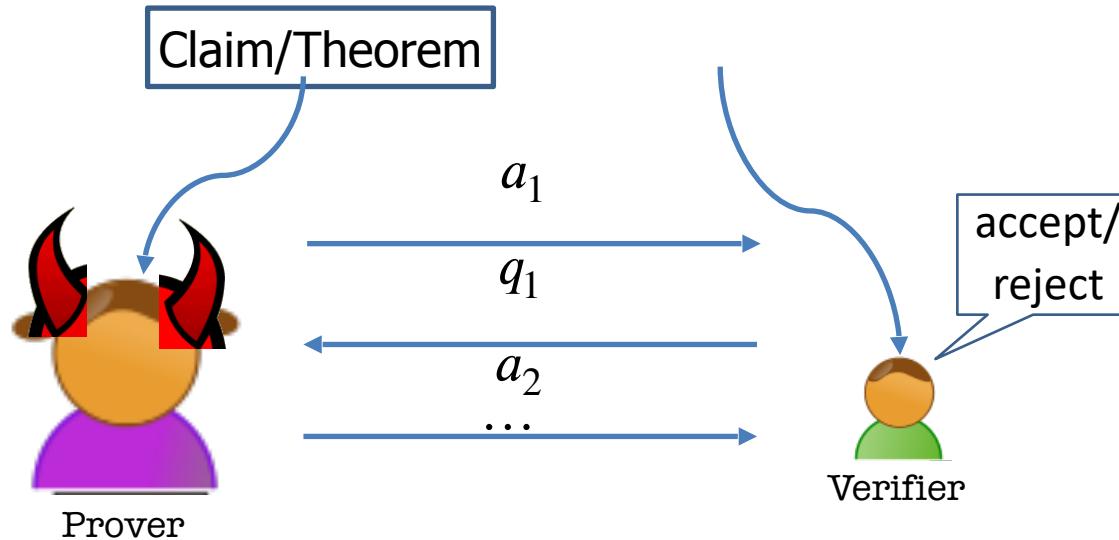
Course website:

pratyushmishra.com/classes/cis-5560-s25/

Recap of Last Lecture

- Malicious-verifier/“standard” ZK
 - ZKPs for GI and for QR achieve standard ZK
 - ZKP for 3-coloring

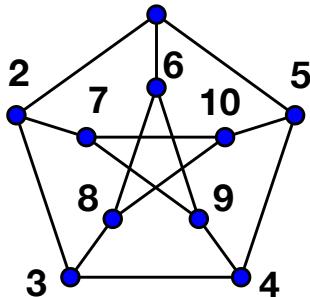
Interactive Proofs for a Language \mathcal{L}



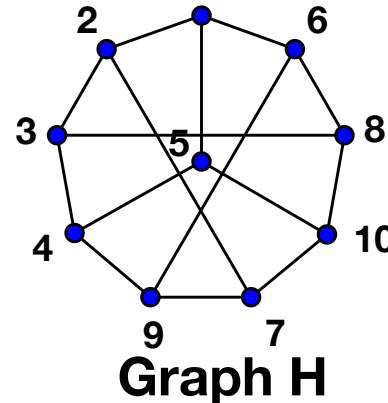
Def: \mathcal{L} is an **IP**-language if there is an unbounded P and **probabilistic poly-time** verifier V where

- **Completeness:** If $x \in \mathcal{L}$, V always accepts.
- **Soundness:** If $x \notin \mathcal{L}$, regardless of the cheating prover strategy, V accepts with negligible probability.

IP for Graph Isomorphism



Graph G



Graph H

$H = \pi(G)$ $\xrightarrow{K = \rho(G)}$
where ρ is a random permutation

Prover

Verifier

random challenge bit b

$b = 0$: send π_0 s.t. $K = \pi_0(G)$

$b = 1$: send π_1 s.t. $H = \pi_1(K)$

Old: Honest-Verifier ZK

Claim: The GI protocol is honest-verifier zero knowledge.

Simulator S works as follows:

$view_V(P, V)$:
 (K, b, ϕ)

1. First pick a random bit b .
2. Sample random permutation ϕ .
3. Compute $K = \phi(G_b)$.
4. output (K, b, ϕ) .

Exercise: The simulated transcript is identically distributed as the real transcript in the interaction (P, V) .

Now: Malicious Verifier ZK

Theorem: The GI protocol is (malicious verifier) zero knowledge.

Simulator S works as follows:

1. First set $K = \phi(G_b)$ for a random ϕ and b and feed K to V^* .
2. Let $b' = V^*(s)$.
3. If $b' = b$, output (K, b, ϕ) and stop.
4. Otherwise, go back to step 1 and repeat. (also called “rewinding”).

Do all NP languages have

Winner of 2024 Turing Award!

Nevertheless, today, we will show

Theorem [Goldreich-Micali-Wigderson'87] Assuming one-way functions exist, all of NP has computational zero-knowledge proofs.

This theorem is amazing: it tells us that everything that can be proved (in the sense of Euclid) can be proved in zero knowledge!

R1CS

An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

$$(F := (\mathbb{F}, n \in \mathbb{N}, A, B, C), x, w)$$

$$z := \begin{bmatrix} x \\ w \end{bmatrix} \quad n \left\{ \begin{bmatrix} A \\ \vdots \\ z \end{bmatrix} \circ \begin{bmatrix} B \\ \vdots \\ z \end{bmatrix} \right\} = \begin{bmatrix} C \\ \vdots \\ z \end{bmatrix}$$

Today's Lecture

- Commitment Schemes
- Pedersen Commitment
- Complete proof of ZK for R1CS
- “Proof of Knowledge”
- Non-Interactive Zero-Knowledge

R1CS

An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

$$(F := (\mathbb{F}, n \in \mathbb{N}, A, B, C), x, w)$$

$$z := \begin{bmatrix} x \\ w \end{bmatrix} \quad n \left\{ \begin{bmatrix} A \\ \vdots \\ z \end{bmatrix} \circ \begin{bmatrix} B \\ \vdots \\ z \end{bmatrix} \right\} = \begin{bmatrix} C \\ \vdots \\ z \end{bmatrix}$$

What checks do we need?

$$z := \begin{bmatrix} x \\ w \end{bmatrix} \begin{bmatrix} A \\ \vdots \end{bmatrix}^z \circ \begin{bmatrix} B \\ \vdots \end{bmatrix}^z = \begin{bmatrix} C \\ \vdots \end{bmatrix}^z$$

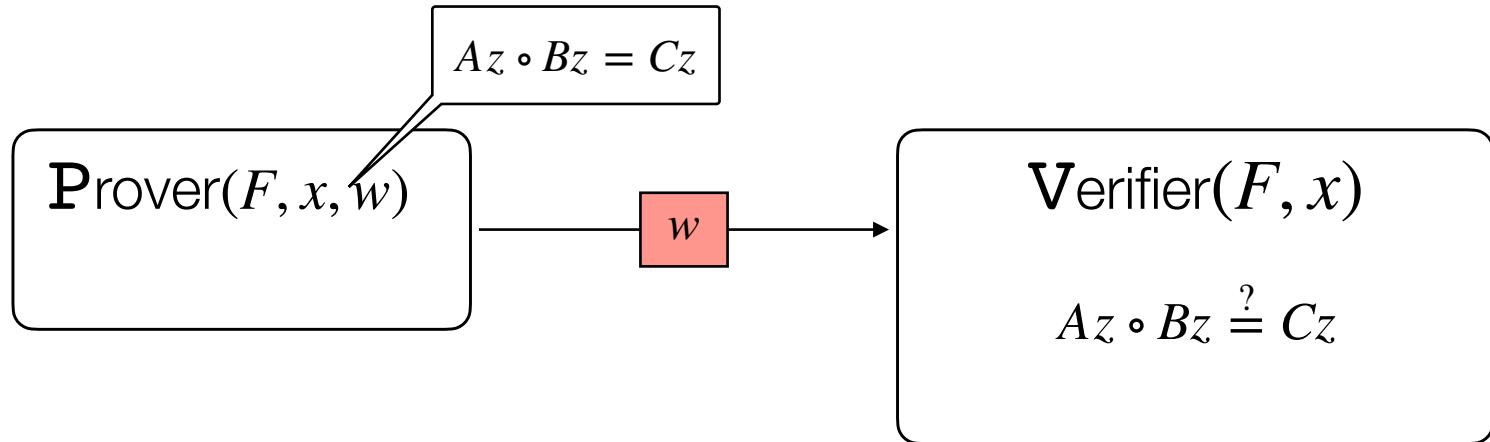
Step 1: Correct matrix multiplication

check that $Mz = z_M \quad \forall M \in \{A, B, C\}$

Step 2: Correct element-wise product

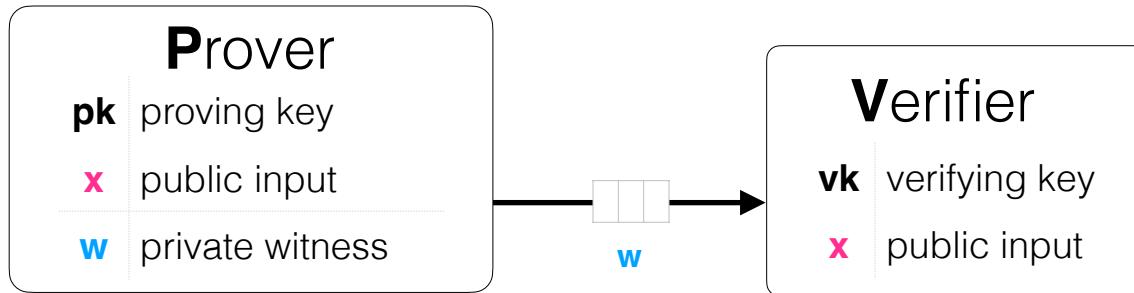
check that for each i , $z_A[i] \cdot z_B[i] = z_C[i]$

Attempt 1: Trivial NP Protocol



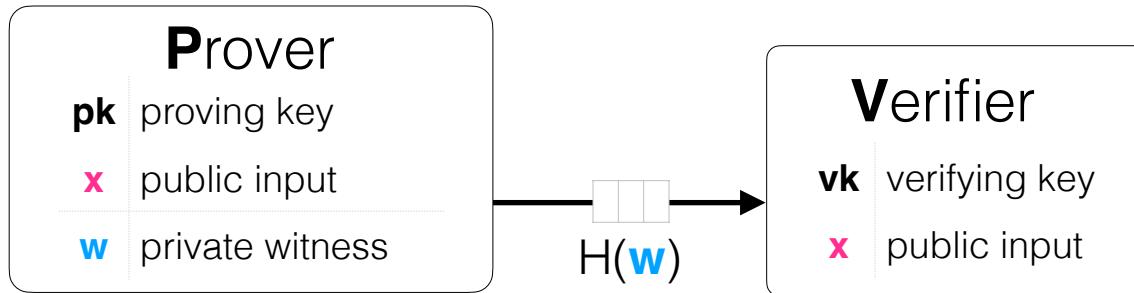
- **Completeness and Soundness are trivial**
- **What about ZK?**

Attempt 1: Trivial NP Protocol



Problem: Not hiding at all!

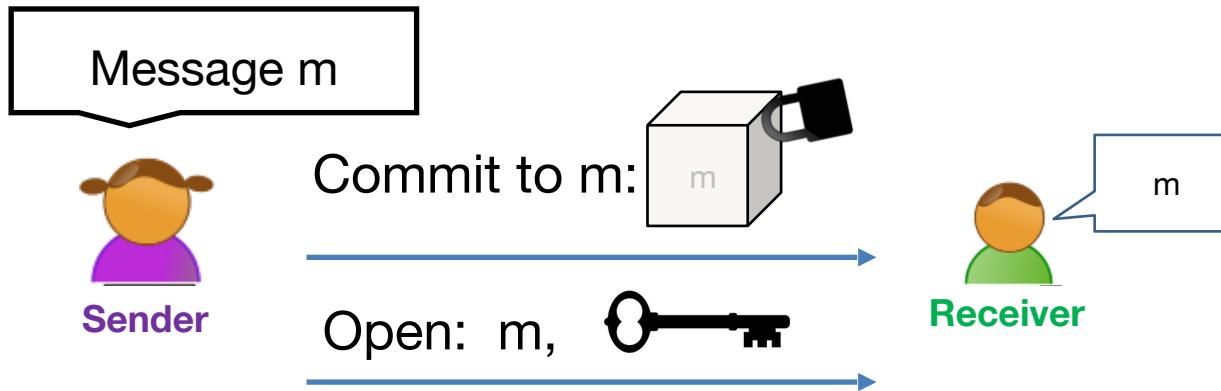
Attempt 1: Hash the witness



Problem 1: How to verify?

Problem 2: Still might not be hiding!

We need a *commitment scheme*



- 1. Hiding:** The locked box should completely hide m .
- 2. Binding:** Sender shouldn't be able to open to different msg m' .

Commitment Schemes

$\text{Commit}(w; r) \rightarrow \text{cm}$

satisfying the following properties

- **Binding:** For all efficient adv. \mathcal{A} ,
 $\Pr [\text{Commit}(w; r) = \text{Commit}(w'; r') : (w, r, w', r') \leftarrow \mathcal{A}] \approx 0$
(no adv can open commitment to two diff values)
- **Hiding:** For all w, w' , and all adv. \mathcal{A} ,
 $\mathcal{A}(\text{Commit}(w; r)) = \mathcal{A}(\text{Commit}(w'; r'))$
(no adv can learn committed value, i.e. comms are indistinguishable)

A standard construction

Let H be a cryptographic hash function. Then

$$\text{Commit}(w; r) := H(w, r)$$

is a commitment scheme

Pedersen Commitments

$\text{Setup}(n \in \mathbb{N}) \rightarrow \text{ck}$

1. Sample random elements $g_1, \dots, g_n, h \leftarrow \mathbb{G}$

$\text{Commit}(\text{ck}, m \in \mathbb{F}_p^n; r \in \mathbb{F}_p) \rightarrow \text{cm}$

1. Output $\text{cm} := g_1^{m_1} g_2^{m_2} \dots g_n^{m_n} h^r$

Binding

Goal: For all efficient adv. \mathcal{A} ,

$$\Pr \left[\text{Commit}(m; r) = \text{Commit}(m'; r') : \begin{array}{c} \text{ck} \leftarrow \text{Setup}(n) \\ (m, r, m', r') \leftarrow \mathcal{A}(\text{ck}) \end{array} \right] \approx 0$$

Proof: We will reduce to hardness of DL. Assume that \mathcal{A} did indeed find breaking (m, r, m', r') . Let's construct \mathcal{B} that breaks DL. Assume that $n = 1$.

Key idea: Let $h = g^x$. Then

$$g^m h^r = g^{m'} h^{r'} \implies g^{m+xr} = g^{m'+xr'}$$

Can recover $x = \frac{m - m'}{r' - r}$

$\mathcal{B}(g, h)$

1. $(m, r, m', r') \leftarrow \mathcal{A}(\text{ck} = (g, h))$
2. Output $x = \frac{m - m'}{r' - r}$

Hiding

Goal: For all m, m' , and all adv. \mathcal{A} ,
 $\mathcal{A}(\text{Commit}(m; r)) = \mathcal{A}(\text{Commit}(m'; r'))$

Proof idea: Basically one-time pad!

Let $\text{cm} := \text{Commit}(\text{ck}, m; r)$. Let $h = g^x$.

Then, for any m' , there exists r' such that $\text{cm} := \text{Commit}(\text{ck}, m'; r')$.

We could compute it, if we knew x : $r' = \frac{m - m'}{x} + r$

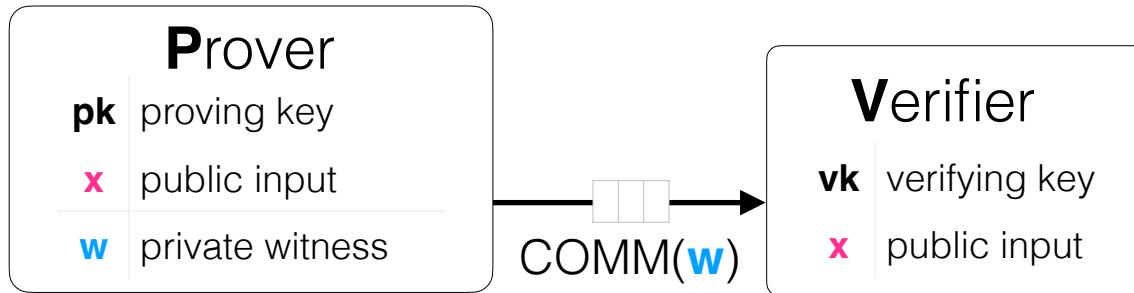
[Note: this doesn't break binding, because \mathcal{A} doesn't know x

Additive Homomorphism

Let \mathbf{cm} and \mathbf{cm}' be commitments to m and m' wrt r and r' .
Then $\mathbf{cm} \cdot \mathbf{cm}'$ is a commitment to $m + m'$ wrt $r + r'$

$$\begin{aligned}\mathbf{cm} &:= g_1^{m_1} \dots g_n^{m_n} h^r \cdot \mathbf{cm}' := g_1^{m'_1} \dots g_n^{m'_n} h^{r'} \\ &= g_1^{m_1+m'_1} \dots g_n^{m_n+m'_n} h^{r+r'} \\ &= \text{Commit}(\mathbf{ck}, m + m'; r + r')\end{aligned}$$

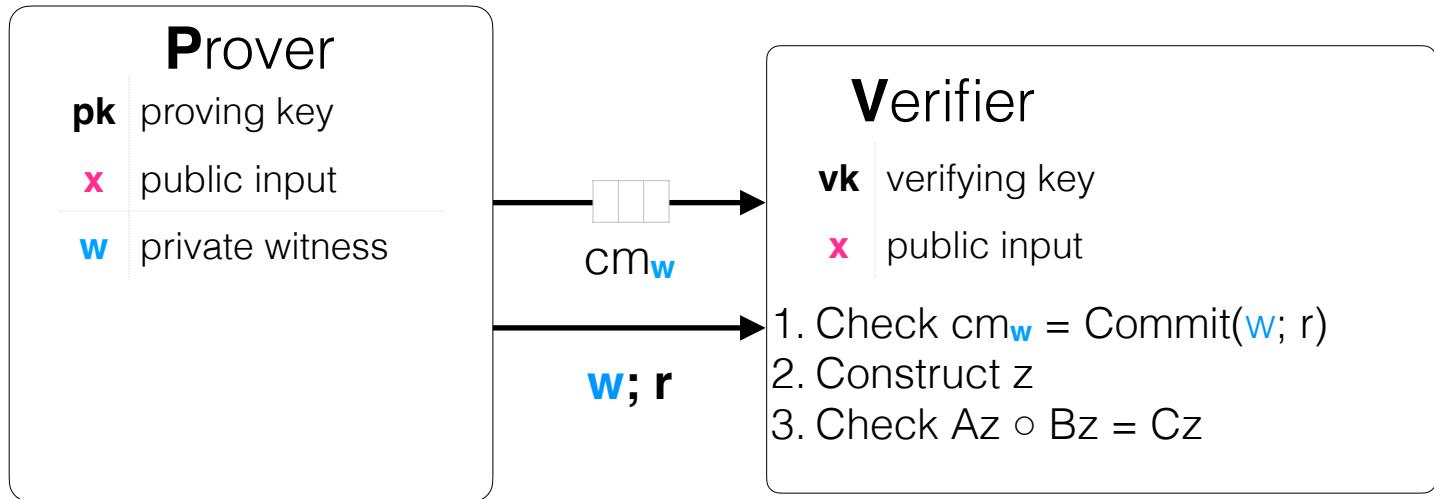
Attempt 2: Commit to the witness



Problem 1: How to verify?

Solution 2: Hiding from COMM!

Attempt 3: Commit to the witness

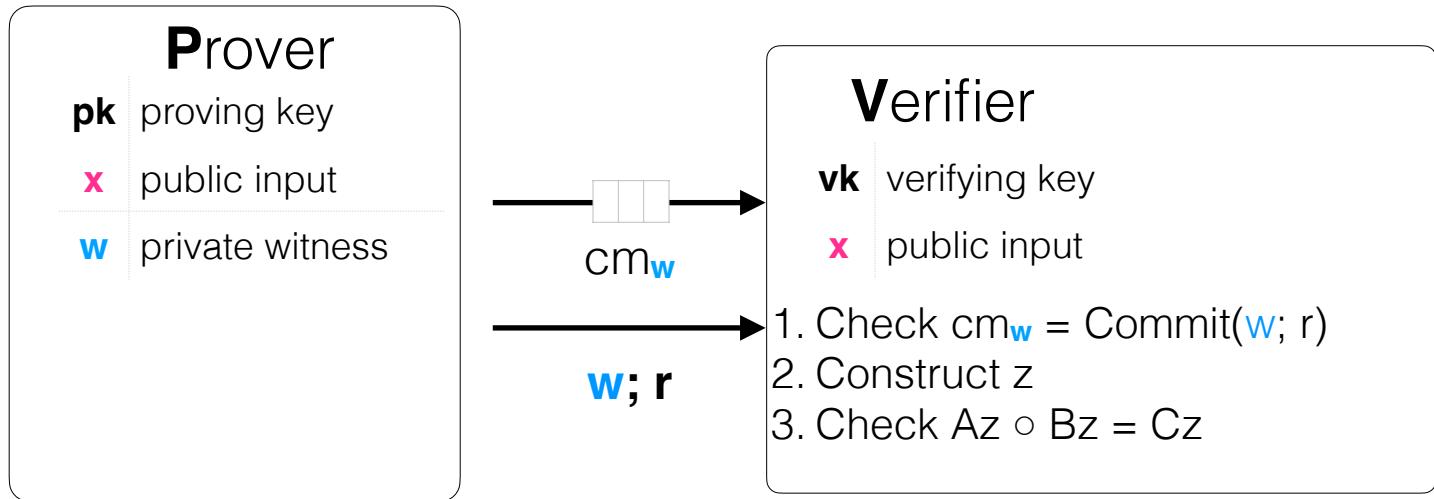


Solution 1: Just check!

Problem 2: No hiding again!

Performing checks on
committed data?

Attempt 3: Commit to the witness



Solution 1: Just check!

Idea 2: Blind it!!

Examples of NP Assertions

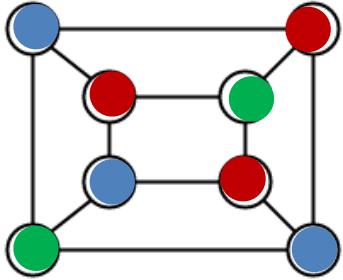
- **My public key is well-formed** (e.g. in RSA, the public key is N , a product of two primes together with an e that is relatively prime to $\varphi(N)$.)
- **Encrypted bitcoin (or Zcash): “I have enough money to pay you.”** (e.g. I will publish an encryption of my bank account and prove to you that my balance is $\geq \$X$.)
- **Running programs on encrypted inputs:** Given $\text{Enc}(x)$ and y , prove that $y = \text{PROG}(x)$.

Examples of NP Assertions

- **Running programs on encrypted inputs:** Given $\text{Enc}(x)$ and y , prove that $y = \text{PROG}(x)$.

More generally: A tool to enforce honest behavior without revealing information.

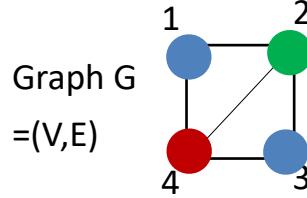
Zero Knowledge Proof for 3-Coloring



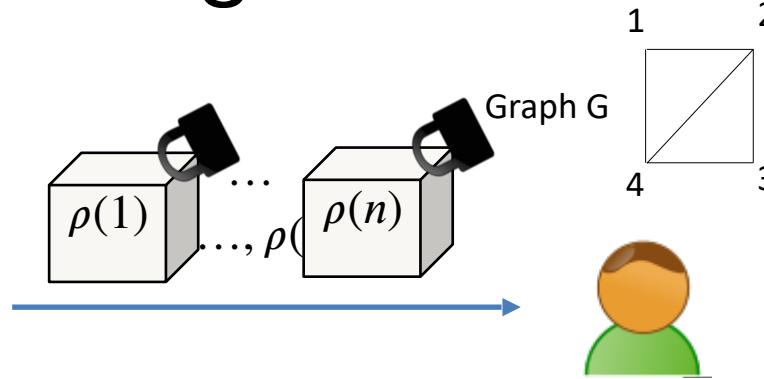
NP-Complete Problem:

Every other problem in NP can be reduced to it.

Zero Knowledge Proof for 3COL



Come up with a
random perm
of the colors
 $\rho: V \rightarrow \{R, B, G\}$

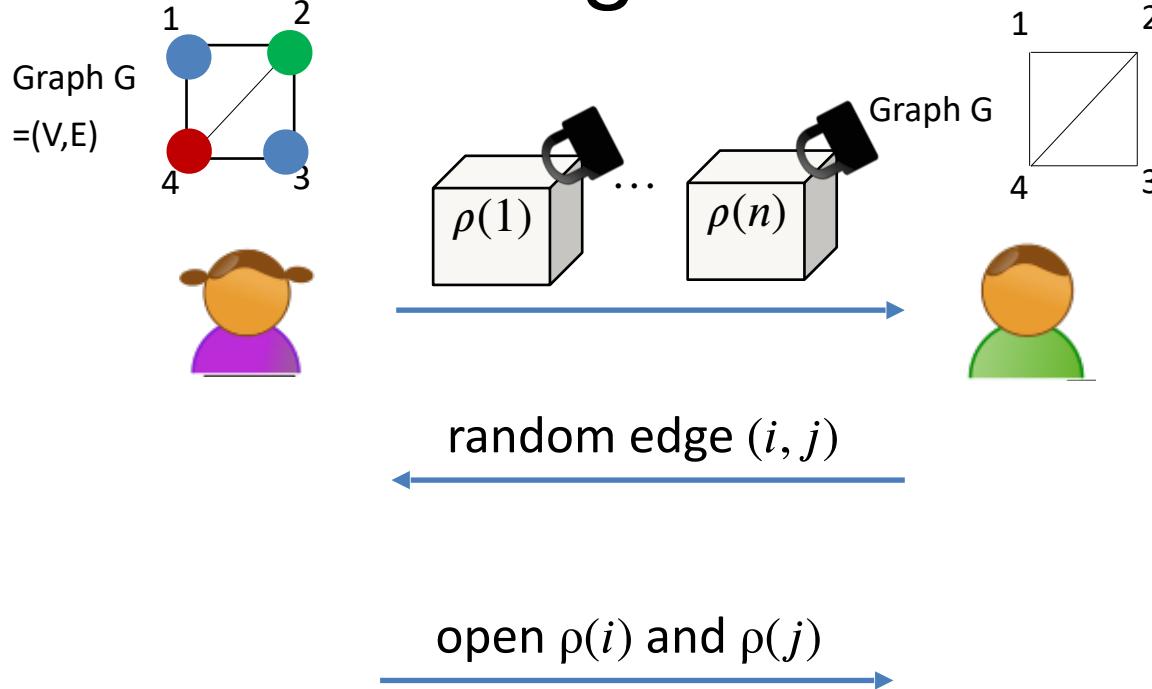


random edge (i, j)

open $\rho(i)$ and $\rho(j)$

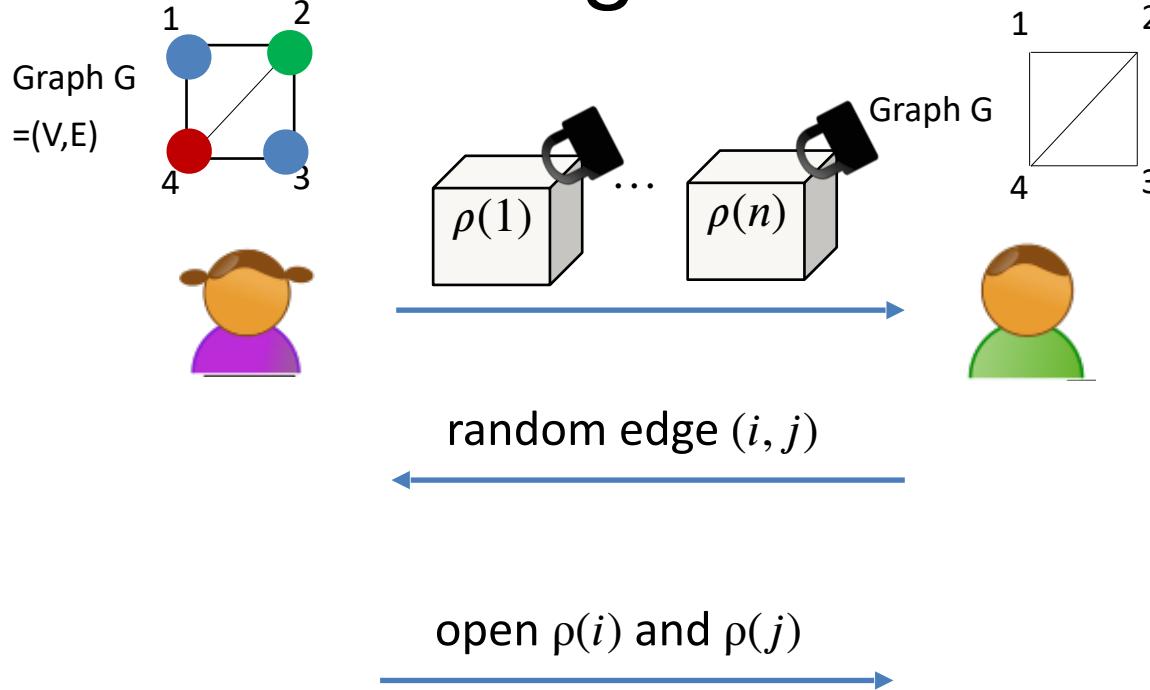
1. Check the openings
2. Check: $\rho(i), \rho(j) \in \{R, B, G\}$
3. Check: $\rho(i) \neq \rho(j)$.

Zero Knowledge Proof for 3COL



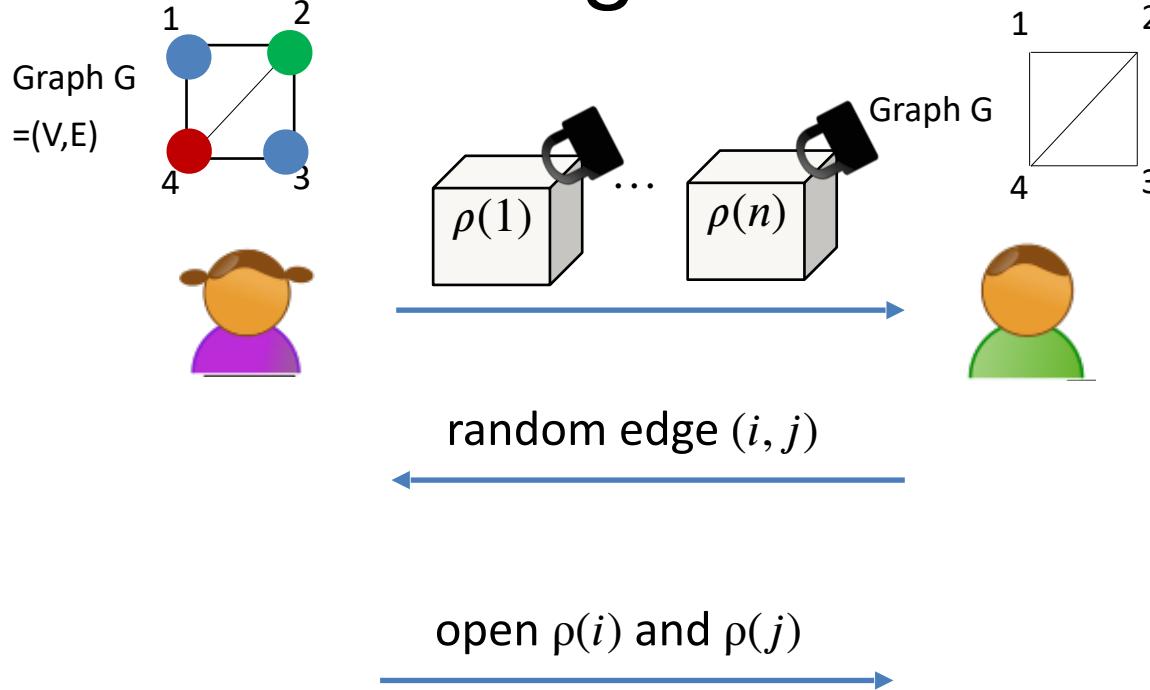
Completeness: Exercise.

Zero Knowledge Proof for 3COL



Soundness: If the graph is not 3COL, in every 3-coloring (that P commits to), there is some edge whose end-points have the same color. V will catch this edge and reject with probability $\geq 1/|E|$.

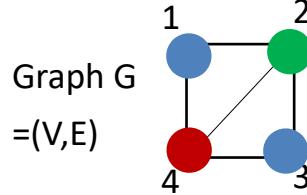
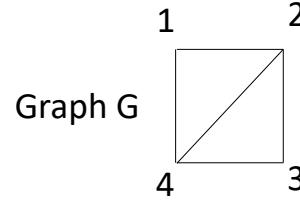
Zero Knowledge Proof for 3COL



Repeat $|E| \cdot \lambda$ times to get the verifier to accept with probability
 $\leq (1 - 1/|E|)^{|E| \cdot \lambda} \leq 2^{-\lambda}$

Constructing Commitment Schemes

Back to ZK Proof for 3COL


$$\{Com(\rho(k); r_k)\}_{k=1}^n$$

random edge (i, j)

send openings $\rho(i), r_i$ and $\rho(j), r_j$

Why is this zero-knowledge?

Simulator S works as follows:

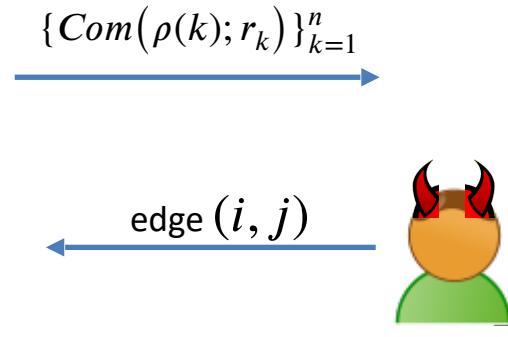
1. First pick a random edge (i^*, j^*)

Color vertices i^* and j^* with
random, different colors
Color all other vertices red.

2. Feed the commitments of the
colors to V^* and get edge (i, j)

3. If $(i, j) \neq (i^*, j^*)$, go back and
repeat.

4. If $(i, j) = (i^*, j^*)$, output the commitments and
openings r_i and r_j as the simulated transcript.

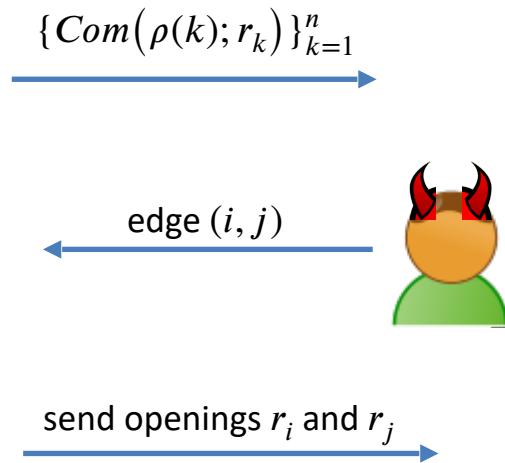


send openings r_i and r_j

Why is this zero-knowledge?

Lemma:

- (1) Assuming the commitment is hiding, S runs in expected polynomial-time.
- (2) When S outputs a view, it is comp. indist. from the view of V^* in a real execution.



Why is this zero-knowledge?

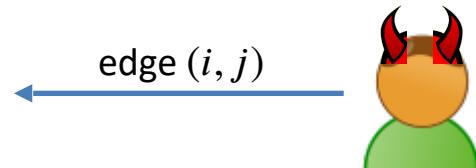
Simulator S works as follows (call this Hybrid 0)

1. First pick a random edge (i^*, j^*)

Color vertices i^* and j^* with
random, different colors
Color all other vertices red.

$$\{\text{Com}(\rho(k); r_k)\}_{k=1}^n$$

2. Feed the commitments of the
colors to V^* and get edge (i, j)



3. If $(i, j) \neq (i^*, j^*)$, go back and
repeat.

send openings r_i and r_j

4. If $(i, j) = (i^*, j^*)$, output the commitments and
openings r_i and r_j as the simulated transcript.

Why is this zero-knowledge?

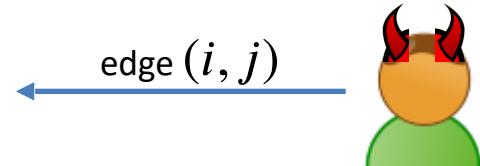
Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (i^*, j^*)

Permute a legal coloring and
color all vertices correctly.

$$\{Com(\rho(k); r_k)\}_{k=1}^n$$

2. Feed the commitments of the
colors to V^* and get edge (i, j)



3. If $(i, j) \neq (i^*, j^*)$, go back and
repeat.

send openings r_i and r_j

4. If $(i, j) = (i^*, j^*)$, output the commitments and
openings r_i and r_j as the simulated transcript.

Why is this zero-knowledge?

Claim: Hybrids 0 and 1 are computationally indistinguishable, assuming the commitment scheme is computationally hiding.

Proof: By contradiction. Show a reduction that breaks the hiding property of the commitment scheme, assuming there is a distinguisher between hybrids 0 and 1.

Why is this zero-knowledge?

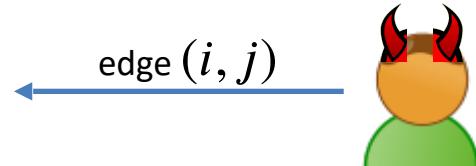
Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (i^*, j^*)

Permute a legal coloring and
color all vertices correctly.

$$\{\text{Com}(\rho(k); r_k)\}_{k=1}^n$$

2. Feed the commitments of the
colors to V^* and get edge (i, j)



3. If $(i, j) \neq (i^*, j^*)$, go back and
repeat.

send openings r_i and r_j

4. If $(i, j) = (i^*, j^*)$, output the commitments and
openings r_i and r_j as the simulated transcript.

Why is this zero-knowledge?

Here is the real view of V^* (Hybrid 2)

1. First pick a random edge (i^*, j^*)

Permute a legal coloring and
color all edges correctly.

$$\{\text{Com}(\rho(k); r_k)\}_{k=1}^n$$

2. Feed the commitments of the
colors to V^* and get edge (i, j)

edge (i, j)

3. If $(i, j) \neq (i^*, j^*)$, go back and
repeat.

send openings r_i and r_j

4. If $(i, j) = (i^*, j^*)$, output the commitments and
openings r_i and r_j as the transcript.

Why is this zero-knowledge?

Claim: Hybrids 1 and 2 are identical.

Hybrid 1 merely samples from the same distribution as Hybrid 2 and, with probability $1 - 1/|E|$, decides to throw it away and resample.

Put together:

Theorem: The 3COL protocol is zero knowledge.