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CIS 5560

Lecture 23
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s25/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/


Recap of Last Lecture
• Malicious-verifier/“standard” ZK


• ZKPs for GI and for QR achieve standard ZK

• ZKP for 3-coloring
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Prover
Verifier

Claim/Theorem

𝑎1
accept/
reject

Interactive Proofs for a Language  ℒ

𝑞1

𝑎2…

Def:  is an -language if there is a unbounded P and  
probabilistic poly-time verifier  where 
• Completeness: If , V always accepts.

• Soundness: If  regardless of the cheating 

prover strategy, V accepts with negligible probability. 

ℒ 𝖨𝖯
𝑉

x ∈ ℒ
x ∉ ℒ,



Prover
Verifier

 𝐾 = 𝜌(𝐺)
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IP for Graph Isomorphism

Graph G Graph H

𝐇 = 𝝅(𝑮)
where  is a random permutation𝜌

 random challenge bit 𝑏

 send  s.t.  𝑏 = 0: 𝜋0 K = 𝜋0(𝐺)

 send  s.t.  𝑏 = 1: 𝜋1 H = 𝜋1(𝐾 )



Old: Honest-Verifier ZK
Claim: The GI protocol is honest-verifier zero knowledge.

 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 ):
(K, b, ϕ)

Simulator S works as follows:

1. First pick a random bit .b
2. Sample random permutation .ϕ

3. Compute .K = ϕ(Gb)

Exercise: The simulated transcript is identically 
distributed as the real transcript in the interaction (P,V).

4. output .(K, b, ϕ)



Theorem: The GI protocol is (malicious verifier) zero knowledge.

Simulator S works as follows:
1. First set  for a random  and  and feed  to .K = ϕ(Gb) ϕ b K 𝑉 ∗

2. Let .b′￼= V*(s)

3. If , output  and stop.  b′￼= b (K, b, ϕ)

4. Otherwise, go back to step 1 and repeat. (also called “rewinding”).

Now: Malicious Verifier ZK



Do all NP languages have ZK proofs?
Nevertheless, today, we will show:
Theorem [Goldreich-Micali-Wigderson’87] Assuming 
one-way functions exist, all of NP has computational 
zero-knowledge proofs.

This theorem is amazing: it tells us that everything 
that can be proved (in the sense of Euclid) can be 
proved in zero knowledge!

Winner of 2024 Turing Award!



R1CS
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An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

[A] [B] [C][ ]x
w

z := ∘ =[]z []z []z
(F := (𝔽, n ∈ ℕ, A, B, C), x, w)



Today’s Lecture
• Commitment Schemes

• Pedersen Commitment

• Complete proof of ZK for R1CS

• “Proof of Knowledge”

• Non-Interactive Zero-Knowledge
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R1CS
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An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

[A] [B] [C][ ]x
w

z := ∘ =[]z []z []z
(F := (𝔽, n ∈ ℕ, A, B, C), x, w)



What checks do we need?
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Step 1: Correct matrix multiplication 
check that Mz = zM ∀M ∈ {A, B, C}

Step 2: Correct element-wise product 
check that for each ,  i zA[i] ⋅ zB[i] = zC[i]

[A] [B] [C][ ]x
w

z := ∘ =[]z []z []z



Attempt 1: Trivial NP Protocol
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Prover(F, x, w) Verifier  
 
 

(F, x)w

Az ∘ Bz = Cz

• Completeness and Soundness are trivial 
• What about ZK?

Az ∘ Bz ?= Cz
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Attempt 1: Trivial NP Protocol

w

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem: Not hiding at all!
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Attempt 1: Hash the witness

H(w)

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem 1: How to verify? 
Problem 2: Still might not be hiding!



We need a commitment scheme

Sender Receiver

Message m

mCommit to m:

1. Hiding: The locked box should completely hide m.

2. Binding: Sender shouldn’t be able to open to different msg m’.

m

Open:  m,



ZKP MOOC

  
satisfying the following properties 

• Binding: For all efficient adv. , 
  

(no adv can open commitment to two diff values) 

• Hiding: For all , and all adv. , 
 

(no adv can learn committed value, i.e. comms are indistinguishable)

𝖢𝗈𝗆𝗆𝗂𝗍(w; r) → 𝖼𝗆

𝒜
Pr [𝖢𝗈𝗆𝗆𝗂𝗍(w; r) = 𝖢𝗈𝗆𝗆𝗂𝗍(w′￼; r′￼) : (w, r, w′￼, r′￼) ← 𝒜] ≈ 0

w, w′￼ 𝒜
𝒜(𝖢𝗈𝗆𝗆𝗂𝗍(w; r)) = 𝒜(𝖢𝗈𝗆𝗆𝗂𝗍(w′￼; r′￼))
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Commitment Schemes



ZKP MOOC

A standard construction

Let  be a cryptographic hash function. Then  
  

is a commitment scheme

H
𝖢𝗈𝗆𝗆𝗂𝗍(w; r) := H(w, r)
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Pedersen Commitments
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1. Sample random elements  

 
1. Output 

𝖲𝖾𝗍𝗎𝗉(n ∈ ℕ) → 𝖼𝗄
g1, …, gn, h ← 𝔾

𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, m ∈ 𝔽n
p; r ∈ 𝔽p) → 𝖼𝗆

𝖼𝗆 := gm1
1 gm2

2 …gmn
n hr



Binding
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Goal: For all efficient adv. , 
 

Proof: We will reduce to hardness of DL. Assume that  did 
indeed find breaking . Let’s construct  that breaks 
DL. Assume that . 
Key idea: Let . Then 

 

Can recover 

𝒜
Pr [𝖢𝗈𝗆𝗆𝗂𝗍(m; r) = 𝖢𝗈𝗆𝗆𝗂𝗍(m′￼; r′￼) :

𝖼𝗄 ← 𝖲𝖾𝗍𝗎𝗉(n)
(m, r, m′￼, r′￼) ← 𝒜(𝖼𝗄)] ≈ 0

𝒜
(m, r, m′￼, r′￼) ℬ

n = 1
h = gx

gmhr = gm′￼hr′￼ ⟹ gm+xr = gm′￼+xr′￼

x =
m − m′￼

r′￼− r

 
1.  

2. Output 

ℬ(g, h)
(m, r, m′￼, r′￼) ← 𝒜(𝖼𝗄 = (g, h))

x =
m − m′￼
r′￼− r



Hiding
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Goal: For all , and all adv. , 
 

Proof idea: Basically one-time pad! 
Let Let .  
Then, for any , there exists  such that  

We could compute it, if we knew :  

[Note: this doesn’t break binding, because  doesn’t know 

m, m′￼ 𝒜
𝒜(𝖢𝗈𝗆𝗆𝗂𝗍(m; r)) = 𝒜(𝖢𝗈𝗆𝗆𝗂𝗍(m′￼; r′￼))

𝖼𝗆 := 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, m; r) . h = gx

m′￼ r′￼ 𝖼𝗆 := 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, m′￼; r′￼) .

x r′￼=
m − m′￼

x
+ r

𝒜 x



Additive Homomorphism

21

Let  and  be commitments to  and  wrt  and . 
Then  is a commitment to  wrt  

 
 

𝖼𝗆 𝖼𝗆′￼ m m′￼ r r′￼

𝖼𝗆 ⋅ 𝖼𝗆′￼ m + m′￼ r + r′￼

𝖼𝗆 := gm1
1 …gmn

n hr ⋅ 𝖼𝗆′￼:= gm′￼1
1 …gm′￼n

n hr′￼

= gm1+m′￼1
1 …gmn+m′￼n

n hr+r′￼

= 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, m + m′￼; r + r′￼)
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Attempt 2: Commit to the witness

COMM(w)

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem 1: How to verify? 
Solution 2: Hiding from COMM!
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Attempt 3: Commit to the witness

cmw

pk proving key

x public input

w private witness

Prover

 

1. Check cmw = Commit(w; r) 
2. Construct z 
3. Check Az ○ Bz = Cz

vk verifying key

x public input

Verifier

Solution 1: Just check!  
Problem 2: No hiding again!

w; r



Performing checks on  
committed data?
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Attempt 3: Commit to the witness

cmw

pk proving key

x public input

w private witness

Prover

 

1. Check cmw = Commit(w; r) 
2. Construct z 
3. Check Az ○ Bz = Cz

vk verifying key

x public input

Verifier

Solution 1: Just check!  
Idea 2: Blind it!!

w; r



Examples of NP Assertions
• My public key is well-formed (e.g. in RSA, the 

public key is , a product of two primes together 
with an e that is relatively prime to )

𝑁
𝜑(𝑁 ) .

• Encrypted bitcoin (or Zcash):  “I have enough 
money to pay you.” (e.g. I will publish an 
encryption of my bank account and prove to you 
that my balance is ≥ $𝑋 . )

• Running programs on encrypted inputs: Given 
Enc(x) and y, prove that y = PROG(x).



Examples of NP Assertions

• Running programs on encrypted inputs: Given 
Enc(x) and y, prove that y = PROG(x).

More generally: A tool to enforce honest 
behavior without revealing information.



Zero Knowledge Proof for 3-Coloring
NP-Complete Problem:
Every other problem in NP can be 
reduced to it.



Zero Knowledge Proof for 3COL
Graph G 
=(V,E)

Graph G

1 2

4 3

1 2

4 3

Come up with a 
random perm 
of the colors

𝜌:𝑉 → {𝑅, 𝐵, 𝐺}

𝜌(1), …, 𝜌(𝑛)

 random edge (𝑖, 𝑗)

 open  and  ρ(𝑖) ρ(𝑗)

1. Check the openings 
2. Check:    
3.   Check:   .

ρ(𝑖), ρ(𝑗) ∈ {𝑅, 𝐵, 𝐺}
ρ(𝑖) ≠ ρ(𝑗)

𝜌(1) 𝜌(𝑛)
…



Zero Knowledge Proof for 3COL
Graph G

1 2

4 3

1 2

4 3

 random edge (𝑖, 𝑗)

 open  and  ρ(𝑖) ρ(𝑗)

Completeness: Exercise.

Graph G 
=(V,E)

𝜌(1) 𝜌(𝑛)
…



Zero Knowledge Proof for 3COL
Graph G

1 2

4 3

1 2

4 3

 random edge (𝑖, 𝑗)

 open  and  ρ(𝑖) ρ(𝑗)

Soundness: If the graph is not 3COL, in every 3-coloring (that P 
commits to), there is some edge whose end-points have the same color.
V will catch this edge and reject with probability . ≥ 1/ |𝐸 |

Graph G 
=(V,E)

𝜌(1) 𝜌(𝑛)
…



Zero Knowledge Proof for 3COL
Graph G

1 2

4 3

1 2

4 3

 random edge (𝑖, 𝑗)

 open  and  ρ(𝑖) ρ(𝑗)

Repeat  times to get the verifier to accept with probability 	 	
	

|𝑬 | ∙ 𝝀
≤ (1 − 1/ |𝐸 | )|𝐸|∙𝜆 ≤ 2−𝜆

Graph G 
=(V,E)

𝜌(1) 𝜌(𝑛)
…



Constructing 
Commitment Schemes



Back to ZK Proof for 3COL
Graph G

1 2

4 3

1 2

4 3

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

 random edge (𝑖, 𝑗)

 send openings  and  ρ(i), ri ρ( j), rj

Graph G 
=(V,E)



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Simulator S works as follows:

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to and get edge   𝑉 ∗  (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Color vertices  and  with 
random, different colors

 𝑖∗ 𝑗∗

Color all other vertices red.

4. If , output the commitments and 
openings  and  as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Lemma:  
(1) Assuming the commitment is 

hiding, S runs in expected 
polynomial-time.  

(2) When S outputs a view, it is 
comp. indist. from the view of 

 in a real execution. 𝑉 ∗



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Simulator S works as follows (call this Hybrid 0) 

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to and get edge   𝑉 ∗  (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Color vertices  and  with 
random, different colors

 𝑖∗ 𝑗∗

Color all other vertices red.

4. If , output the commitments and 
openings  and  as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to  and get edge   𝑉 ∗ (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Permute a legal coloring and 
color all vertices correctly.

4. If , output the commitments and 
openings  and  as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗



Why is this zero-knowledge?
Claim: Hybrids 0 and 1 are computationally 
indistinguishable, assuming the commitment scheme is 
computationally hiding.

Proof: By contradiction. Show a reduction that breaks the 
hiding property of the commitment scheme, assuming 
there is a distinguisher between hybrids 0 and 1.



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to  and get edge   𝑉 ∗ (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Permute a legal coloring and 
color all vertices correctly.

4. If , output the commitments and 
openings  and  as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Here is the real view of V* (Hybrid 2)

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to  and get edge   𝑉 ∗ (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Permute a legal coloring and 
color all edges correctly.

4. If , output the commitments and 
openings  and  as the transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗



Why is this zero-knowledge?
Claim: Hybrids 1 and 2 are identical.

Hybrid 1 merely samples from the same distribution as 
Hybrid 2 and, with probability , decides to 
throw it away and resample.

1 − 1/ |𝐸 |



Put together:
Theorem: The 3COL protocol is zero knowledge.


