
￼1

CIS 5560

Lecture 22
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s25

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Recap of last lecture

2

• What is a proof?

• Interactive Proofs

• Zero-knowledge interactive proofs

• Definition

• ZKP for Graph Isomorphism

• ZKP for Graph Non-Isomorphism

3

Prover
Verifier

Claim/Theorem

𝑎1
accept/
reject

Interactive Proofs for a Language ℒ

𝑞1

𝑎2…

Def: is an -language if there is a unbounded P and
probabilistic poly-time verifier where
• Completeness: If , V always accepts.

• Soundness: If regardless of the cheating

prover strategy, V accepts with negligible probability.

ℒ 𝖨𝖯
𝑉

x ∈ ℒ
x ∉ ℒ,

Prover Verifier

 Kb

1

2 5

3 4

6
7

8 9

10

1
2

3

4

5

9

6

8

10

7

IP for Graph Non-Isomorphism

Graph G Graph H

Sample random permutation ρ
Sample bit b
Set and K0 = ρ(G) K1 = ρ(H)

 b′￼

Accept if b = b′￼

Figure out which
graph is
isomorphic to.

Kb

Prover
Verifier

 𝐾 = 𝜌(𝐺)

1

2 5

3 4

6
7

8 9

10

1
2

3

4

5

9

6

8

10

7

IP for Graph Isomorphism

Graph G Graph H

𝐇 = 𝝅(𝑮)
where is a random permutation𝜌

 random challenge bit 𝑏

 send s.t. 𝑏 = 0: 𝜋0 K = 𝜋0(𝐺)

 send s.t. 𝑏 = 1: 𝜋1 H = 𝜋1(𝐾)

How to Define Zero-Knowledge?

After the interaction, knows:𝑽
• The theorem is true; and
• A view of the interaction

	 (= transcript + randomness of V)

 gives zero knowledge to :𝑷 𝑽

When the theorem is true, the view
gives V nothing that he couldn’t have
obtained on his own without interacting
with P.

Zero Knowledge: Definition
An Interactive Protocol (P,V) is zero-
knowledge for a language if there exists a
PPT algorithm S (a simulator) such that for
every , the following two distributions
are indistinguishable:

𝐿

𝒙 ∈ 𝑳

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉)
2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive protocol
if it is complete, sound and zero-knowledge.

Perfect Zero Knowledge: Definition
An Interactive Protocol (P,V) is perfect zero-
knowledge for a language if there exists a
PPT algorithm S (a simulator) such that for
every , the following two distributions
are identical:

𝐿

𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉)

2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive
protocol if it is complete, sound and zero-
knowledge.

Computational Zero Knowledge: Definition

An Interactive Protocol (P,V) is computational
zero-knowledge for a language if there exists a
PPT algorithm S (a simulator) such that for every

, the following two distributions are
computationally indistinguishable:

𝐿

𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉)

2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive
protocol if it is complete, sound and zero-
knowledge.

Today’s Lecture
• Malicious-verifier/“standard” ZK

• ZKPs for GI achieve standard ZK

• Commitment schemes

• Pedersen Commitments

• Rank-1 Constraint Systems

11

What if V is NOT HONEST?
An Interactive Protocol (P,V) is honest-verifier perfect
zero-knowledge for a language if there exists a PPT
simulator S such that for every , the following two
distributions are identical:

𝐿
𝑥 ∈ 𝐿

1. 𝗏𝗂𝖾𝗐V(P, V) 2. 𝑆(𝑥, 1𝜆)

An Interactive Protocol (P,V) is perfect zero-knowledge
for a language if for every PPT , there exists a
(expected) poly time simulator s.t. for every , the
following two distributions are identical:

𝐿 𝑽 ∗

S 𝑥 ∈ 𝐿

1. 𝗏𝗂𝖾𝗐V*(P, V*) 2. 𝑆(𝑥, 1𝜆)

OLD DEF

REAL DEF

Old: Honest-Verifier ZK
Claim: The GI protocol is honest-verifier zero knowledge.

 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉):
(K, b, ϕ)

Simulator S works as follows:

1. First pick a random bit .b
2. Sample random permutation .ϕ

3. Compute .K = ϕ(Gb)

Exercise: The simulated transcript is identically
distributed as the real transcript in the interaction (P,V).

4. output .(K, b, ϕ)

Now: Malicious Verifier ZK
Theorem: The GI protocol is (malicious verifier) zero knowledge.

Simulator S works as follows:

1. First pick a random
and and send to .

ϕ
b ϕ(Gb) V

2. Let .b′￼= V*(K)

Now what??? 𝑣𝑖𝑒𝑤𝑉∗(𝑃, 𝑉 ∗):
(K, b, ϕ)

Theorem: The GI protocol is (malicious verifier) zero knowledge.

Simulator S works as follows:
1. First set for a random and and feed to .K = ϕ(Gb) ϕ b K 𝑉 ∗

2. Let .b′￼= V*(s)

3. If , output and stop. b′￼= b (K, b, ϕ)

4. Otherwise, go back to step 1 and repeat. (also called “rewinding”).

Now: Malicious Verifier ZK

Simulator S works as follows:

Lemma:

(1) S runs in expected polynomial-time.

(2) When S outputs a view, it is identically distributed to the

view of in a real execution. 𝑉 ∗

1. First set for a random and and feed to .K = ϕ(Gb) ϕ b K 𝑉 ∗

2. Let .b′￼= V*(s)

3. If , output and stop. b′￼= b (K, b, ϕ)

4. Otherwise, go back to step 1 and repeat. (also called “rewinding”).

What Made it Possible?

1. Each statement had multiple proofs of which the
prover chooses one at random.

2. Each such proof is made of two parts: seeing
either one on its own gives the verifier no
knowledge; seeing both imply 100% correctness.

3. Verifier chooses to see either part, at random.
The prover’s ability to provide either part on
demand convinces the verifier.

Do all NP languages have Perfect ZK proofs?

We showed two NP languages with perfect ZK
proofs. Can we show this for all NP languages?

Theorem [Fortnow’89, Aiello-Hastad’87] No, unless
bizarre stuff happens in complexity theory
(technically: the polynomial hierarchy collapses.)

Do all NP languages have ZK proofs?
Nevertheless, today, we will show:
Theorem [Goldreich-Micali-Wigderson’87] Assuming
one-way functions exist, all of NP has computational
zero-knowledge proofs.

This theorem is amazing: it tells us that everything
that can be proved (in the sense of Euclid) can be
proved in zero knowledge!

Winner of 2024 Turing Award!

Examples of NP Assertions
• My public key is well-formed (e.g. in RSA, the

public key is , a product of two primes together
with an e that is relatively prime to)

𝑁
𝜑(𝑁) .

• Encrypted bitcoin (or Zcash): “I have enough
money to pay you.” (e.g. I will publish an
encryption of my bank account and prove to you
that my balance is ≥ $𝑋 .)

• Running programs on encrypted inputs: Given
Enc(x) and y, prove that y = PROG(x).

Examples of NP Assertions

• Running programs on encrypted inputs: Given
Enc(x) and y, prove that y = PROG(x).

More generally: A tool to enforce honest
behavior without revealing information.

22

Let’s pick a concrete NP relation

R1CS

23

An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

[A] [B] [C][]x
w

z := ∘ =[]z []z []z
(F := (𝔽, n ∈ ℕ, A, B, C), x, w)

24

Starting point: Trivial NP Protocol

w

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem: Not hiding at all!

Strawman 1

25

Prover(F, x, w) Verifier

(F, x)w

Az ∘ Bz = Cz

• Completeness and Soundness are trivial
• What about efficiency?

Az ∘ Bz ?= Cz

Strawman 1

26

Prover(F, x, w) Verifier

1. Compute .
2. Check

(F, x)

zM = Mz
zA ∘ zB = zC

w

Az ∘ Bz = Cz

• Completeness and Soundness are trivial
• What about efficiency?

O(n)

O(n)

What checks do we need?

27

Step 2: Correct matrix multiplication
check that Mz = zM ∀M ∈ {A, B, C}

Step 1: Correct element-wise product 
check that for each , i zA[i] ⋅ zB[i] = zC[i]

28

Attempt 1: Hash the witness

H(w)

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem 1: How to verify? 
Problem 2: Still might not be hiding!

We need a commitment scheme

Sender Receiver

Message m

mCommit to m:

1. Hiding: The locked box should completely hide m.

2. Binding: Sender shouldn’t be able to open to different msg m’.

m

Open: m,

ZKP MOOC

satisfying the following properties

• Binding: For all efficient adv. ,

(no adv can open commitment to two diff values)

• Hiding: For all , and all adv. ,

(no adv can learn committed value, i.e. comms are indistinguishable)

𝖢𝗈𝗆𝗆𝗂𝗍(w; r) → 𝖼𝗆

𝒜
Pr [𝖢𝗈𝗆𝗆𝗂𝗍(w; r) = 𝖢𝗈𝗆𝗆𝗂𝗍(w′￼; r′￼) : (w, r, w′￼, r′￼) ← 𝒜] ≈ 0

w, w′￼ 𝒜
𝒜(𝖢𝗈𝗆𝗆𝗂𝗍(w; r)) = 𝒜(𝖢𝗈𝗆𝗆𝗂𝗍(w′￼; r′￼))

30

Commitment Schemes

ZKP MOOC

A standard construction

Let be a cryptographic hash function. Then

is a commitment scheme

H
𝖢𝗈𝗆𝗆𝗂𝗍(w; r) := H(w, r)

31

Pedersen Commitments

32

1. Sample random elements

1. Output

𝖲𝖾𝗍𝗎𝗉(n ∈ ℕ) → 𝖼𝗄
g1, …, gn, h ← 𝔾

𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, m ∈ 𝔽n
p; r ∈ 𝔽p) → 𝖼𝗆

𝖼𝗆 := gm1
1 gm2

2 …gmn
n hr

Binding

33

Goal: For all efficient adv. ,

Proof: We will reduce to hardness of DL. Assume that did
indeed find breaking . Let’s construct that breaks
DL. Assume that .
Key idea: Let . Then

Can recover

𝒜
Pr [𝖢𝗈𝗆𝗆𝗂𝗍(m; r) = 𝖢𝗈𝗆𝗆𝗂𝗍(m′￼; r′￼) :

𝖼𝗄 ← 𝖲𝖾𝗍𝗎𝗉(n)
(m, r, m′￼, r′￼) ← 𝒜(𝖼𝗄)] ≈ 0

𝒜
(m, r, m′￼, r′￼) ℬ

n = 1
h = gx

gmhr = gm′￼hr′￼ ⟹ gm+xr = gm′￼+xr′￼

x =
m − m′￼

r′￼− r

1.

2. Output

ℬ(g, h)
(m, r, m′￼, r′￼) ← 𝒜(𝖼𝗄 = (g, h))

x =
m − m′￼
r′￼− r

Hiding

34

Goal: For all , and all adv. ,

Proof idea: Basically one-time pad!
Let Let .
Then, for any , there exists such that

We could compute it, if we knew :

[Note: this doesn’t break binding, because doesn’t know

m, m′￼ 𝒜
𝒜(𝖢𝗈𝗆𝗆𝗂𝗍(m; r)) = 𝒜(𝖢𝗈𝗆𝗆𝗂𝗍(m′￼; r′￼))

𝖼𝗆 := 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, m; r) . h = gx

m′￼ r′￼ 𝖼𝗆 := 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, m′￼; r′￼) .

x r′￼=
m − m′￼

x
+ r

𝒜 x

Additive Homomorphism

35

Let and be commitments to and wrt and .
Then is a commitment to wrt

𝖼𝗆 𝖼𝗆′￼ m m′￼ r r′￼

𝖼𝗆 + 𝖼𝗆′￼ m + m′￼ r + r′￼

𝖼𝗆 := gm1
1 …gmn

n hr + 𝖼𝗆′￼:= gm′￼1
1 …gm′￼n

n hr′￼

= gm1+m′￼1
1 …gmn+m′￼n

n hr+r′￼

= 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, m + m′￼; r + r′￼)

36

Attempt 2: Commit to the witness

COMM(w)

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem 1: How to verify? 
Solution 2: Hiding from COMM!

37

Attempt 3: Commit to the witness

COMM(w)

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Solution 1: Just check!  
Problem 2: No hiding again!

w; r

Performing checks on  
committed data?

