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CIS 5560

Lecture 22
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s25 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/


Recap of last lecture
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• What is a proof?

• Interactive Proofs

• Zero-knowledge interactive proofs


• Definition

• ZKP for Graph Isomorphism

• ZKP for Graph Non-Isomorphism
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Prover
Verifier

Claim/Theorem

𝑎1
accept/
reject

Interactive Proofs for a Language  ℒ

𝑞1

𝑎2…

Def:  is an -language if there is a unbounded P and  
probabilistic poly-time verifier  where 
• Completeness: If , V always accepts.

• Soundness: If  regardless of the cheating 

prover strategy, V accepts with negligible probability. 

ℒ 𝖨𝖯
𝑉

x ∈ ℒ
x ∉ ℒ,



Prover Verifier
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IP for Graph Non-Isomorphism

Graph G Graph H

Sample random permutation ρ
Sample bit b
Set  and K0 = ρ(G) K1 = ρ(H )

 b′￼

Accept if b = b′￼

Figure out which 
graph  is 
isomorphic to.

Kb



Prover
Verifier

 𝐾 = 𝜌(𝐺)
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IP for Graph Isomorphism

Graph G Graph H

𝐇 = 𝝅(𝑮)
where  is a random permutation𝜌

 random challenge bit 𝑏

 send  s.t.  𝑏 = 0: 𝜋0 K = 𝜋0(𝐺)

 send  s.t.  𝑏 = 1: 𝜋1 H = 𝜋1(𝐾 )



How to Define Zero-Knowledge?

After the interaction,  knows:𝑽
• The theorem is true; and
• A view of the interaction 


	 (= transcript + randomness of V)

 gives zero knowledge to :𝑷 𝑽

When the theorem is true, the view 
gives V nothing that he couldn’t have 
obtained on his own without interacting 
with P.



Zero Knowledge: Definition
An Interactive Protocol (P,V) is zero-
knowledge for a language if there exists a 
PPT algorithm S (a simulator) such that for 
every , the following two distributions 
are indistinguishable:

𝐿 

𝒙 ∈ 𝑳

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 )
2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive protocol 
if it is complete, sound and zero-knowledge.



Perfect Zero Knowledge: Definition
An Interactive Protocol (P,V) is perfect zero-
knowledge for a language if there exists a 
PPT algorithm S (a simulator) such that for 
every , the following two distributions 
are identical:

𝐿 

𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 )

2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive 
protocol if it is complete, sound and zero-
knowledge.



Computational Zero Knowledge: Definition

An Interactive Protocol (P,V) is computational 
zero-knowledge for a language if there exists a 
PPT algorithm S (a simulator) such that for every 

, the following two distributions are 
computationally indistinguishable:

𝐿 

𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 )

2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive 
protocol if it is complete, sound and zero-
knowledge.



Today’s Lecture
• Malicious-verifier/“standard” ZK


• ZKPs for GI achieve standard ZK

• Commitment schemes


• Pedersen Commitments

• Rank-1 Constraint Systems
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What if V is NOT HONEST?
An Interactive Protocol (P,V) is honest-verifier perfect 
zero-knowledge for a language if there exists a PPT 
simulator S such that for every , the following two 
distributions are identical:

𝐿 
𝑥 ∈ 𝐿

1. 𝗏𝗂𝖾𝗐V(P, V ) 2. 𝑆(𝑥, 1𝜆)

An Interactive Protocol (P,V) is perfect zero-knowledge 
for a language if for every PPT , there exists a 
(expected) poly time simulator  s.t. for every , the 
following two distributions are identical:

𝐿  𝑽 ∗

S 𝑥 ∈ 𝐿

1. 𝗏𝗂𝖾𝗐V*(P, V*) 2. 𝑆(𝑥, 1𝜆)

OLD DEF

REAL DEF



Old: Honest-Verifier ZK
Claim: The GI protocol is honest-verifier zero knowledge.

 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 ):
(K, b, ϕ)

Simulator S works as follows:

1. First pick a random bit .b
2. Sample random permutation .ϕ

3. Compute .K = ϕ(Gb)

Exercise: The simulated transcript is identically 
distributed as the real transcript in the interaction (P,V).

4. output .(K, b, ϕ)



Now: Malicious Verifier ZK
Theorem: The GI protocol is (malicious verifier) zero knowledge.

Simulator S works as follows:

1. First pick a random  
and  and send  to .

ϕ
b ϕ(Gb) V

2. Let .b′￼= V*(K )

Now what??? 𝑣𝑖𝑒𝑤𝑉∗(𝑃, 𝑉 ∗):
(K, b, ϕ)



Theorem: The GI protocol is (malicious verifier) zero knowledge.

Simulator S works as follows:
1. First set  for a random  and  and feed  to .K = ϕ(Gb) ϕ b K 𝑉 ∗

2. Let .b′￼= V*(s)

3. If , output  and stop.  b′￼= b (K, b, ϕ)

4. Otherwise, go back to step 1 and repeat. (also called “rewinding”).

Now: Malicious Verifier ZK



Simulator S works as follows:

Lemma: 

(1) S runs in expected polynomial-time. 

(2) When S outputs a view, it is identically distributed to the 

view of  in a real execution. 𝑉 ∗

1. First set  for a random  and  and feed  to .K = ϕ(Gb) ϕ b K 𝑉 ∗

2. Let .b′￼= V*(s)

3. If , output  and stop.  b′￼= b (K, b, ϕ)

4. Otherwise, go back to step 1 and repeat. (also called “rewinding”).



What Made it Possible?

1. Each statement had multiple proofs of which the 
prover chooses one at random.

2. Each such proof is made of two parts: seeing 
either one on its own gives the verifier no 
knowledge; seeing both imply 100% correctness.

3. Verifier chooses to see either part, at random. 
The prover’s ability to provide either part on 
demand convinces the verifier. 



Do all NP languages have Perfect ZK proofs?

We showed two NP languages with perfect ZK 
proofs. Can we show this for all NP languages?

Theorem [Fortnow’89, Aiello-Hastad’87] No, unless 
bizarre stuff happens in complexity theory 
(technically: the polynomial hierarchy collapses.)  



Do all NP languages have ZK proofs?
Nevertheless, today, we will show:
Theorem [Goldreich-Micali-Wigderson’87] Assuming 
one-way functions exist, all of NP has computational 
zero-knowledge proofs.

This theorem is amazing: it tells us that everything 
that can be proved (in the sense of Euclid) can be 
proved in zero knowledge!

Winner of 2024 Turing Award!



Examples of NP Assertions
• My public key is well-formed (e.g. in RSA, the 

public key is , a product of two primes together 
with an e that is relatively prime to )

𝑁
𝜑(𝑁 ) .

• Encrypted bitcoin (or Zcash):  “I have enough 
money to pay you.” (e.g. I will publish an 
encryption of my bank account and prove to you 
that my balance is ≥ $𝑋 . )

• Running programs on encrypted inputs: Given 
Enc(x) and y, prove that y = PROG(x).



Examples of NP Assertions

• Running programs on encrypted inputs: Given 
Enc(x) and y, prove that y = PROG(x).

More generally: A tool to enforce honest 
behavior without revealing information.
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Let’s pick a concrete NP relation



R1CS
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An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

[A] [B] [C][ ]x
w

z := ∘ =[]z []z []z
(F := (𝔽, n ∈ ℕ, A, B, C), x, w)
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Starting point: Trivial NP Protocol

w

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem: Not hiding at all!



Strawman 1
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Prover(F, x, w) Verifier  
 
 

(F, x)w

Az ∘ Bz = Cz

• Completeness and Soundness are trivial 
• What about efficiency?

Az ∘ Bz ?= Cz



Strawman 1
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Prover(F, x, w) Verifier  

1. Compute . 
2. Check 

(F, x)

zM = Mz
zA ∘ zB = zC

w

Az ∘ Bz = Cz

• Completeness and Soundness are trivial 
• What about efficiency?

O(n)

O(n)



What checks do we need?

27

Step 2: Correct matrix multiplication 
check that Mz = zM ∀M ∈ {A, B, C}

Step 1: Correct element-wise product 
check that for each ,  i zA[i] ⋅ zB[i] = zC[i]
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Attempt 1: Hash the witness

H(w)

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem 1: How to verify? 
Problem 2: Still might not be hiding!



We need a commitment scheme

Sender Receiver

Message m

mCommit to m:

1. Hiding: The locked box should completely hide m.

2. Binding: Sender shouldn’t be able to open to different msg m’.

m

Open:  m,



ZKP MOOC

  
satisfying the following properties 

• Binding: For all efficient adv. , 
  

(no adv can open commitment to two diff values) 

• Hiding: For all , and all adv. , 
 

(no adv can learn committed value, i.e. comms are indistinguishable)

𝖢𝗈𝗆𝗆𝗂𝗍(w; r) → 𝖼𝗆

𝒜
Pr [𝖢𝗈𝗆𝗆𝗂𝗍(w; r) = 𝖢𝗈𝗆𝗆𝗂𝗍(w′￼; r′￼) : (w, r, w′￼, r′￼) ← 𝒜] ≈ 0

w, w′￼ 𝒜
𝒜(𝖢𝗈𝗆𝗆𝗂𝗍(w; r)) = 𝒜(𝖢𝗈𝗆𝗆𝗂𝗍(w′￼; r′￼))
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Commitment Schemes



ZKP MOOC

A standard construction

Let  be a cryptographic hash function. Then  
  

is a commitment scheme

H
𝖢𝗈𝗆𝗆𝗂𝗍(w; r) := H(w, r)
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Pedersen Commitments
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1. Sample random elements  

 
1. Output 

𝖲𝖾𝗍𝗎𝗉(n ∈ ℕ) → 𝖼𝗄
g1, …, gn, h ← 𝔾

𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, m ∈ 𝔽n
p; r ∈ 𝔽p) → 𝖼𝗆

𝖼𝗆 := gm1
1 gm2

2 …gmn
n hr



Binding
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Goal: For all efficient adv. , 
 

Proof: We will reduce to hardness of DL. Assume that  did 
indeed find breaking . Let’s construct  that breaks 
DL. Assume that . 
Key idea: Let . Then 

 

Can recover 

𝒜
Pr [𝖢𝗈𝗆𝗆𝗂𝗍(m; r) = 𝖢𝗈𝗆𝗆𝗂𝗍(m′￼; r′￼) :

𝖼𝗄 ← 𝖲𝖾𝗍𝗎𝗉(n)
(m, r, m′￼, r′￼) ← 𝒜(𝖼𝗄)] ≈ 0

𝒜
(m, r, m′￼, r′￼) ℬ

n = 1
h = gx

gmhr = gm′￼hr′￼ ⟹ gm+xr = gm′￼+xr′￼

x =
m − m′￼

r′￼− r

 
1.  

2. Output 

ℬ(g, h)
(m, r, m′￼, r′￼) ← 𝒜(𝖼𝗄 = (g, h))

x =
m − m′￼
r′￼− r



Hiding
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Goal: For all , and all adv. , 
 

Proof idea: Basically one-time pad! 
Let Let .  
Then, for any , there exists  such that  

We could compute it, if we knew :  

[Note: this doesn’t break binding, because  doesn’t know 

m, m′￼ 𝒜
𝒜(𝖢𝗈𝗆𝗆𝗂𝗍(m; r)) = 𝒜(𝖢𝗈𝗆𝗆𝗂𝗍(m′￼; r′￼))

𝖼𝗆 := 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, m; r) . h = gx

m′￼ r′￼ 𝖼𝗆 := 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, m′￼; r′￼) .

x r′￼=
m − m′￼

x
+ r

𝒜 x



Additive Homomorphism
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Let  and  be commitments to  and  wrt  and . 
Then  is a commitment to  wrt  

 
 

𝖼𝗆 𝖼𝗆′￼ m m′￼ r r′￼

𝖼𝗆 + 𝖼𝗆′￼ m + m′￼ r + r′￼

𝖼𝗆 := gm1
1 …gmn

n hr + 𝖼𝗆′￼:= gm′￼1
1 …gm′￼n

n hr′￼

= gm1+m′￼1
1 …gmn+m′￼n

n hr+r′￼

= 𝖢𝗈𝗆𝗆𝗂𝗍(𝖼𝗄, m + m′￼; r + r′￼)
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Attempt 2: Commit to the witness

COMM(w)

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Problem 1: How to verify? 
Solution 2: Hiding from COMM!
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Attempt 3: Commit to the witness

COMM(w)

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Solution 1: Just check!  
Problem 2: No hiding again!

w; r



Performing checks on  
committed data?


