CIS 5560

Cryptography
Lecture 22

Course website:
pratyushmishra.com/classes/cis-5560-s25

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Recap of last lecture

- What is a proof?

* Interactive Proofs

- Zero-knowledge interactive proofs
* Definition

« ZKP for Graph Isomorphism

- ZKP for Graph Non-Isomorphism

Interactive Proofs for a Language #

Claim/Theorem

aj
/ R accept/
. q reject

< v
a, Q

Verifier

Prover

Def: £ is an IP-language if there is a unbounded P and

probabilistic poly-time verifier 1V where

 Completeness: If x € &£, V always accepts.

* Soundness: If x & £, regardless of the cheating
prover strategy, V accepts with negligible probability.

IP for Graph Non-Isomorphism

2 6

Gu9 h7H
= - R

Prover Verifier

Sample random permutation p

. . Sample bit b
Figure out which
araph K, is . K, Set Ky = p(G) and K| = p(H)
iIsomorphic to. b’

» Acceptifb =>b’

IP for Graph Isomorphism

2 6

4 10

Graph G (fraph7H

K = p(G)

H=n(G) .
where p is a random permutation Q

Q . random challenge bit » Verifier

Prover

b =0: send r, S.t. K = 7,(G)

b=1:send r; s.t. H= 7(K)

How to Define Zero-Knowledge?

After the interaction, V knows:
- The theorem is true; and

- A view of the interaction
(= transcript + randomness of V)

P gives zero knowledge to V:

When the theorem is true, the view
gives V nothing that he couldn’t have

obtained on his own without interacting
with P.

Zero Knowledge: Definition

An Interactive Protocol (P,V) is zero-
knowledge for a language L if there exists a
PPT algorithm S (a simulator) such that for
every x € L, the following two distributions
are indistinguishable:

1. UiewV(P, V)
2. S(x, 1%

(PV) is a zero-knowledge interactive protocol
if it is complete, sound and zero-knowledge.

Perfect Zero Knowledge: Definition

An Interactive Protocol (PV) is perfect zero-
knowledge for a language L if there exists a
PPT algorithm S (a simulator) such that for
every x € L, the following two distributions

are identical:
1. viewy (P, V)

2. S(x, 1%

(PV) is a zero-knowledge interactive
protocol if it is complete, sound and zero-

Computational Zero Knowledge: Definition

An Interactive Protocol (P,V) is computational
zero-knowledge for a language L if there exists a
PPT algorithm S (a simulator) such that for every
x € L, the following two distributions are
computationally indistinguishable:

1. viewy (P, V)

2. S(x, 1%

(PV) is a zero-knowledge interactive
protocol if it is complete, sound and zero-

Today’s Lecture

« Malicious-verifier/“standard” ZK

- Z/KPs for Gl achieve standard ZK
« Commitment schemes

« Pedersen Commitments

« Rank-1 Constraint Systems

What if Vis NOT HONEST?

An Interactive Protocol (PV) is honest-verifier perfect
zero-knowledge for a language L if there exists a PPT
simulator S such that for every x € L, the following two
distributions are identical:

1. viewy (P, V) 2. .S(x, 1%

An Interactive Protocol (PV) is perfect zero-knowledge
for a language L if for every PPT V7, there exists a

(expected) poly time simulator § s.t. for every x € L, the
following two distributions are identical:

1. viewy«(P, V¥) 2. .S(x, 1%

Old: Honest-Verifier ZK

Claim: The Gl protocol is honest-verifier zero knowledge.
Simulator S works as follows:

1. First pick a random bit b.

2. Sample random permutation ¢.

3. Compute K = ¢(G,).

viewy(P,V): 4. output (K, b, ¢).

(K, b,)

Exercise: The simulated transcript is identically
distributed as the real transcript in the interaction (PV).

Now: Malicious Verifier ZK

Theorem: The Gl protocol is (malicious verifier) zero knowledge.

Simulator S works as follows:

1. First pick a random ¢
and b and send ¢(G,) to V.

2. Let b’ = V¥(K).
viewy-(P,V*): Now what???
(K, D, ®)

Now: Malicious Verifier ZK

Theorem: The Gl protocol is (malicious verifier) zero knowledge.

Simulator S works as follows:
1. First set K = ¢(G,) for a random ¢ and b and feed K to V*.

2. Let b’ = V*(s).
3. If b’ = b, output (K, b, ¢p) and stop.

4. Otherwise, go back to step 1 and repeat. (also called “rewinding”).

Simulator S works as follows:

1. First set K = ¢(G,) for a random ¢ and b and feed K to V*.
2. Let b’ = V*(s).

3. If b’ = b, output (K, b, ¢) and stop.

4. Otherwise, go back to step 1 and repeat. (also called “rewinding”).

Lemma:
(1) S runs in expected polynomial-time.
(2) When S outputs a view, it is identically distributed to the

view of V¥ in a real execution.

What Made it Possible?

1. Each statement had multiple proofs of which the
prover chooses one at random.

2. Each such proof is made of two parts: seeing
either one on its own gives the verifier no
knowledge; seeing both imply 100% correctness.

3. Verifier chooses to see either part, at random.
The prover’s ability to provide either part on
demand convinces the verifier.

Do all NP languages have Perfect ZK proofs?

We showed two NP languages with perfect ZK
proofs. Can we show this for all NP languages?

Theorem [Fortnow’89, Aiello-Hastad’87] No, unless
bizarre stuff happens in complexity theory
(technically: the polynomial hierarchy collapses.)

DO a” NP Ianguages haV Winner of 2024 Turing Award!

Nevertheless, today, we will sho

Theorem [Goldreich-Micali-Wigderson’87] Assuming
one-way functions exist, all of NP has computational
zero-knowledge proofs.

This theorem is amazing: it tells us that everything
that can be proved (in the sense of Euclid) can be
proved in zero knowledge!

Examples of NP Assertions

My public key is well-formed (e.g. in RSA, the
public key is N, a product of two primes together
with an e that is relatively prime to ¢(N).)

Encrypted bitcoin (or Zcash): “l have enough

money to pay you.” (e.g. | will publish an
encryption of my bank account and prove to you

that my balanceis > $X.)

Running programs on encrypted inputs: Given
Enc(x) and y, prove that y = PROG(x).

Examples of NP Assertions

Running programs on encrypted inputs: Given
Enc(x) and y, prove that y = PROG(x).

More generally: A tool to enforce honest
behavior without revealing information.

Let’s pick a concrete NP relation

R1CS

An rank-1 constraint system (R1CS) is a generalization of arithmetic circuits

(F.=FneN,A,B,C), x,w)

N

23

Starting point: Trivial NP Protocol

o

Prover
pk proving key

X public input

w private witness

)

N\

Verifier
vk verifying key
x public input

)

Problem: Not hiding at all!

24

Strawman 1

JAZ°BZ=CZ

Prover(F, x, %)

w

v

e Completeness and Soundness are trivial

e What about efficiency?

Verifier(F, x)

AZ°BZ;CZ

25

Strawman 1

JAzoBz=Cz

Prover(F, x,) Verifier(F, x)

w

v

_——1. Compute z,; = Mz.

O(n) |/ 2. Check 24 ° 25 = Z¢

|

omn) [

e Completeness and Soundness are trivial

e What about efficiency?

26

What checks do we need?

Step 1: Correct element-wise product
check that for each i, z,[i] - zgli] = z.[i]

Step 2: Correct matrix multiplication
check that Mz =z, VM € {A, B, C}

27

Attempt 1: Hash the withess

o

Prover
pk proving key

X public input

w private witness

)

N\

Verifier
vk verifying key
x public input

)

Problem 1: How to verify?
Problem 2: Still might not be hiding!

28

We need a commitment scheme

Message m

~——

Commit to m: m
x Y S

Sender Open: m 0—1 Receiver

1. Hiding: The locked box should completely hide m.

2. Binding: Sender shouldn’t be able to open to different msg m’.

Commitment Schemes

Commit(w; r) = cm
satistying the following properties

e Binding: For all efficient adv. &,
Pr |Commit(w; r) = Commit(w’; r') : (w,r,w,r) « 9| = 0
(no adv can open commitment to two diff values)

e Hiding: For all w, w’, and all adv. &,
A (Commit(w; r)) = A (Commit(w’; r'))

(no adv can learn committed value, i.e. comms are indistinguishable)

30

A standard construction

Let H be a cryptographic hash function. Then
Commit(w;r) := Hw, r)

IS a commitment scheme

31

Pedersen Commitments

Setup(n € N) — ck
1. Sample random elements g, ..., &,, 1 < G

Commit(ck,m € F;r €) — cm

1. Outputcm := g "g 2. .. g, "h'

Binding
Goal: For all efficient adv. <,
ck « Setup(n) -0
(m,r,m’,r") « d(ck) ~
Proof: We will reduce to hardness of DL. Assume that & did

indeed find breaking (m, r,m’, r’). Let's construct &% that breaks
DL. Assume thatn = 1.

Pr |Commit(m; r) = Commit(m’; r’) :

Key idea: Let h = g*. Then - P N
gmhl’ — gm hr — gm+xi” — gm +xr 1) (m, 7, m/, r/) — le(Ck — (g, h))
m—m' 2. Out utx—m_m/
Can recover x = — U =
r —r

\ J

Hiding
Goal: For all m, m’, and all adv. &,
A (Commit(m;r)) = A (Commit(m’; r'))

Proof idea: Basically one-time pad!
Let cm := Commit(ck, m;r).Leth = g*.
Then, for any m’, there exists r’ such that cm := Commit(ck, m’; r’) .

m—m'

We could compute it, if we knew x: r' = +r

X

[Note: this doesn'’t break binding, because & doesn’t know X

34

Additive Homomorphism

Let cm and cm’ be commitments to m and m’ wrt r and 7.
Thencm 4+ cm’is a commitmenttom +m’ wrt r + r’

cm:=g"...g,"h" +cm' :=g".. g "h"

m1+mi mn+mr’lh r+r’

=g g,
= Commit(ck,m +m'; r + r’)

35

Attempt 2: Commit to the withess

o

Prover | r
pk proving key
X public input - —
w private witness) CO|\/||\/|(W) |

Problem 1: How to verify?

Verifier
vk verifying key
x public input

)

Solution 2: Hiding from COMM!

36

Attempt 3: Commit to the withess

Prover
pk proving key

X public input
w private witness CO|\/||\/|(W)

— —

Wi r

Solution 1: Just check!

>

Verifier
vk verifying key
x public input

Problem 2: No hiding again!

37

Performing checks on
committed data?

