

CIS 5560

Cryptography Lecture 21

Course website:
pratyushmishra.com/classes/cis-5560-s24/

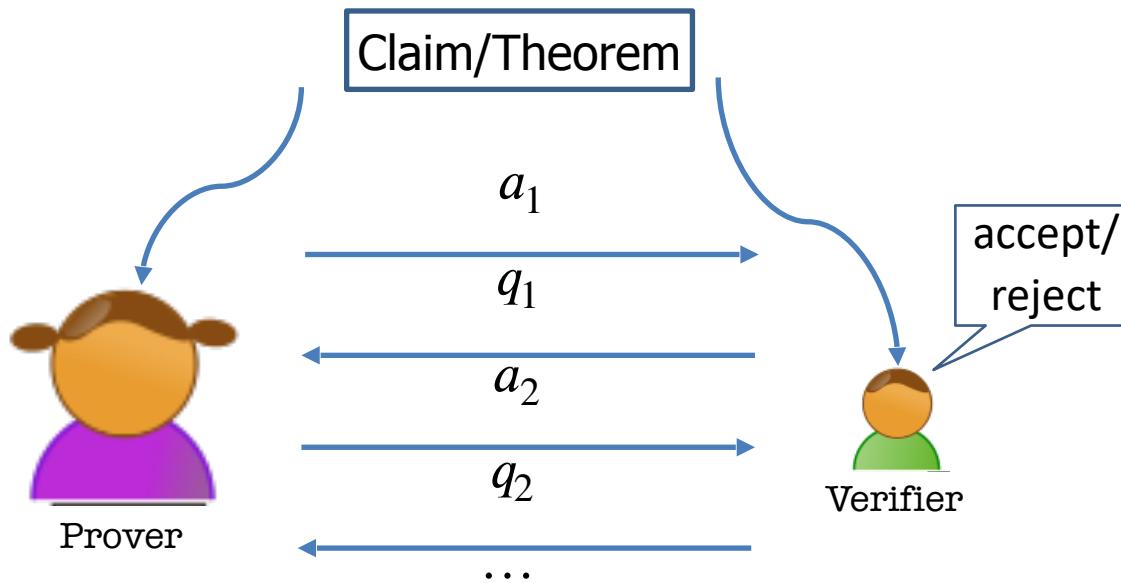
Announcements

- **HW 9 out**
 - Due **Wednesday Apr 17** at 11:59PM on Gradescope
 - Covers
 - One-time signatures
 - RSA-based signatures

Recap of last lecture

- What is a proof?
- Interactive Proofs
- *Zero-knowledge* interactive proofs

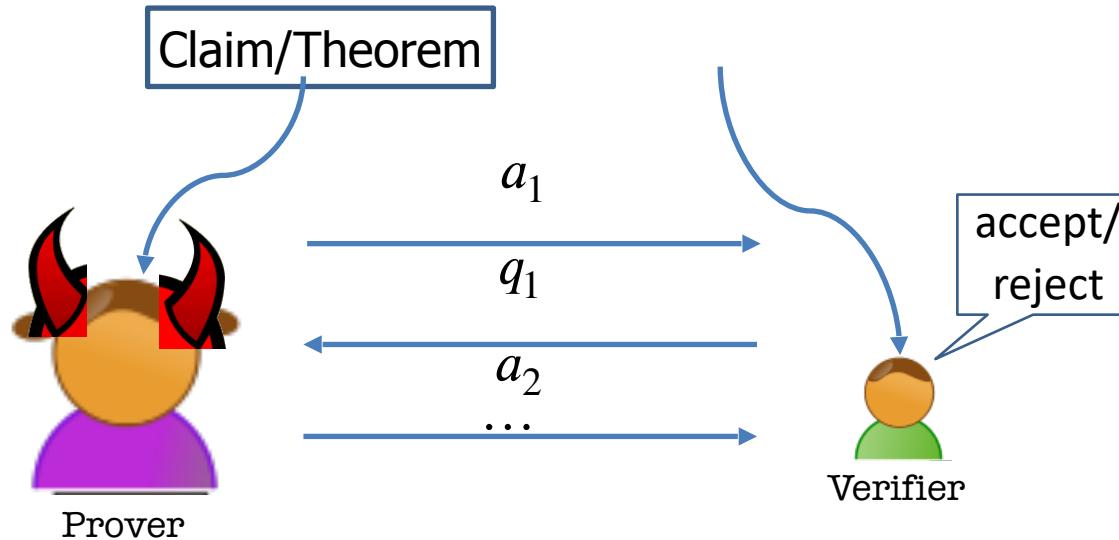
Interactive Proofs for a Language \mathcal{L}



Comp. Unbounded

Probabilistic
Polynomial-time

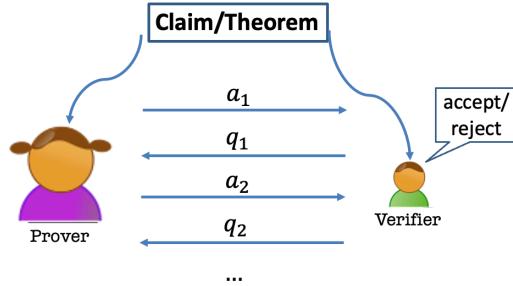
Interactive Proofs for a Language \mathcal{L}



Def: \mathcal{L} is an **IP**-language if there is an unbounded P and **probabilistic poly-time** verifier V where

- **Completeness:** If $x \in \mathcal{L}$, V always accepts.
- **Soundness:** If $x \notin \mathcal{L}$, regardless of the cheating prover strategy, V accepts with negligible probability.

Interactive Proofs for a Language \mathcal{L}



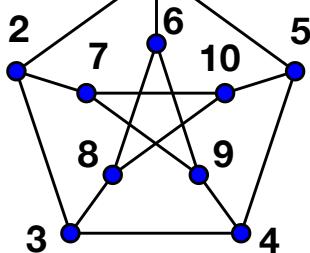
Def: \mathcal{L} is an IP-language if there is a **probabilistic poly-time** verifier V where

- **Completeness:** If $x \in \mathcal{L}$,
$$\Pr[(P, V)(x) = \text{accept}] = 1.$$
- **Soundness:** If $x \notin \mathcal{L}$, there is a negligible function negl s.t. for every P^* ,
$$\Pr[(P^*, V)(x) = \text{accept}] = \text{negl}(\lambda).$$

Today's Lecture

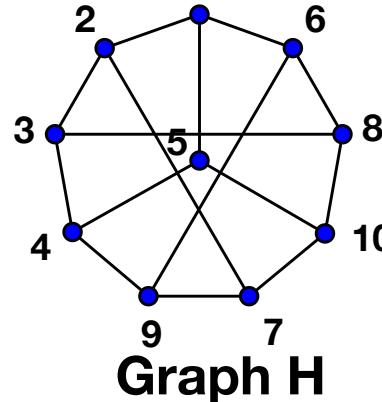
- Proof for Graph-Isomorphism
- Proof for Graph-Non-Isomorphism
- Look at “zero-knowledge” interactive proof for Graph Isomorphism
- Definition of Zero Knowledge
- Commitment Schemes
 - Pedersen Commitment Scheme

IP for Graph Non-Isomorphism



Graph G

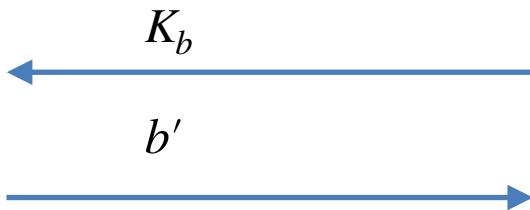
Prover



Graph H

Verifier

Figure out which graph K_b is isomorphic to.



Sample random permutation ρ
Sample bit b
Set $K_0 = \rho(G)$ and $K_1 = \rho(H)$

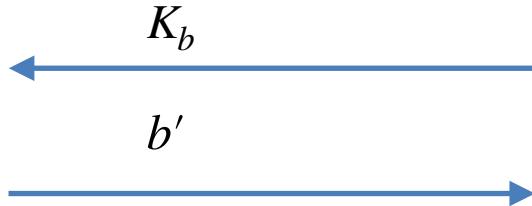
Accept if $b = b'$

IP for Graph Non-Isomorphism

Completeness?

Prover

Figure out which graph K_b is isomorphic to.



Verifier

Sample random permutation ρ
Sample bit b

Set $K_0 = \rho(G)$ and $K_1 = \rho(H)$

Accept if $b = b'$

IP for Graph Non-Isomorphism

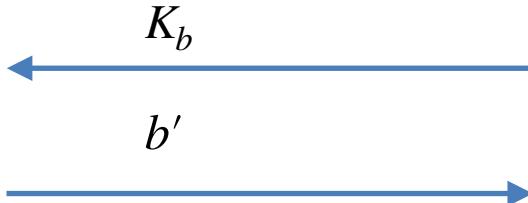
Soundness: Suppose G and H are isomorphic.

Then K_b is isomorphic to *both graphs*. Prover can't figure out which one it is isomorphic to

So best it can do is guess!

Prover

Figure out which graph K_b is isomorphic to.



Verifier

Sample random permutation ρ
Sample bit b

Set $K_0 = \rho(G)$ and $K_1 = \rho(H)$

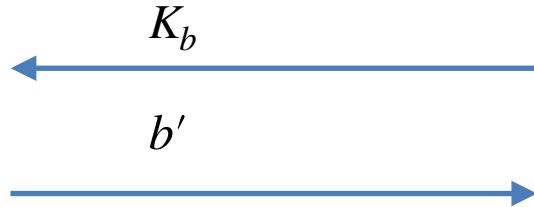
Accept if $b = b'$

IP for Graph Non-Isomorphism

What else does the verifier learn?

Prover

Figure out which graph K_b is isomorphic to.



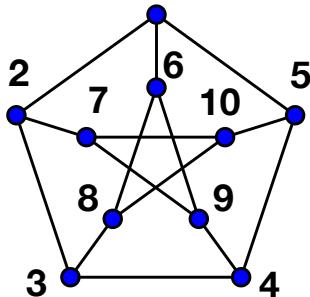
Verifier

Sample random permutation ρ
Sample bit b

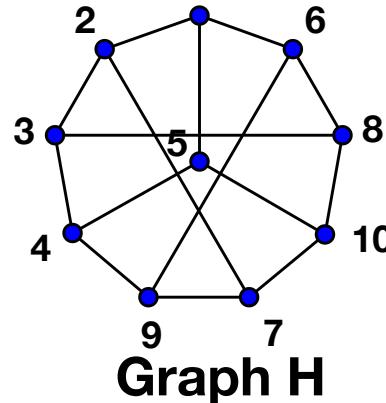
Set $K_0 = \rho(G)$ and $K_1 = \rho(H)$

Accept if $b = b'$

IP for Graph Isomorphism



Graph G



Graph H

$H = \pi(G)$ $\xrightarrow{K = \rho(G)}$
where ρ is a random permutation

Prover

Verifier

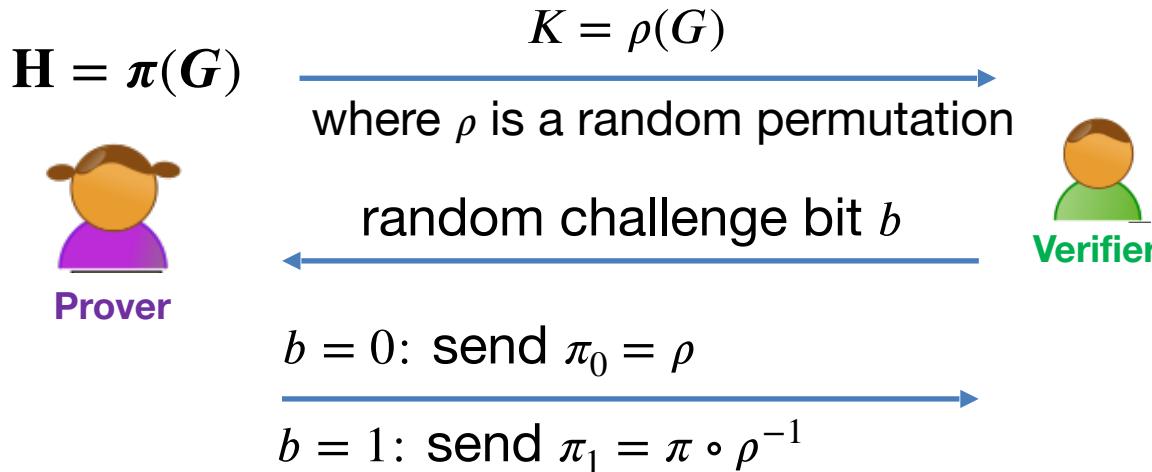
random challenge bit b

$b = 0$: send π_0 s.t. $K = \pi_0(G)$

$b = 1$: send π_1 s.t. $H = \pi_1(K)$

IP for Graph Isomorphism

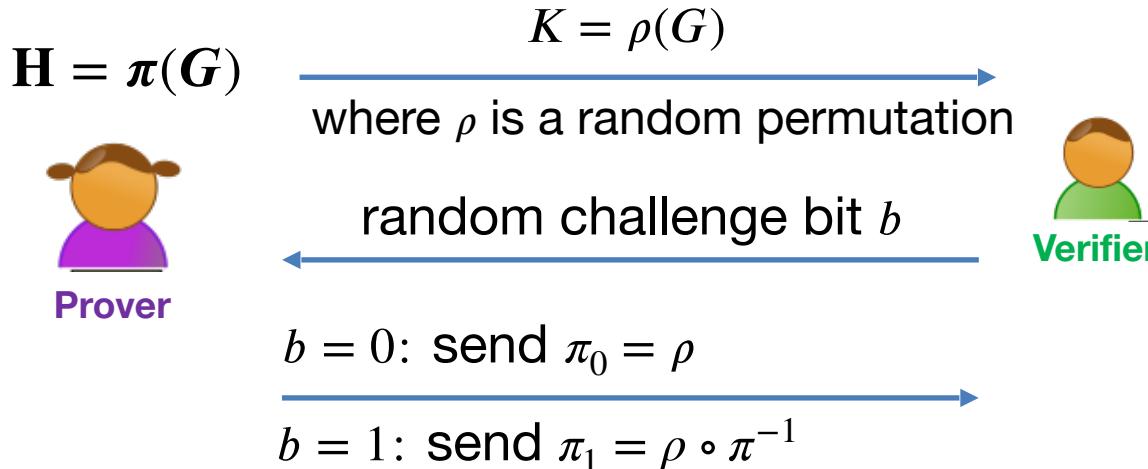
Completeness?



IP for Graph Isomorphism

Soundness: Suppose G and H are non-isomorphic, and a prover could answer both the verifier challenges. Then, $K = \pi_0(G)$ and $H = \pi_1(K)$

In other words, $H = \pi_1 \circ \pi_0(G)$, a contradiction!



How to Define Zero-Knowledge?

After the interaction, V knows:

- The theorem is true; and
- A **view** of the interaction
(= transcript + randomness of V)

P gives zero knowledge to V :

When the theorem is true, the view gives V nothing that he couldn't have obtained on his own without interacting with P .

How to Define Zero-Knowledge?

(P, V) is zero-knowledge if V can generate his **VIEW** of the interaction **all by himself** in **probabilistic polynomial time**.

How to Define Zero-Knowledge?

(P, V) is zero-knowledge if V can
“simulate” his **VIEW** of the interaction **all**
by himself in **probabilistic polynomial**
time.

The Simulation Paradigm

sim S
 (K, b, π')

$view_V(P, V)$:
Manuscript = (K, b, π')
Coins = b

PPT “simulator” S

(G, H)

$$s = r^2 \pmod{N}$$

$$b \leftarrow \{0,1\}$$

If $b=0$: $z = r$
If $b=1$: $z = rx$

Check:
 $z^2 = sy^b \pmod{N}$

Zero Knowledge: Definition

An Interactive Protocol (P, V) is zero-knowledge for a language L if there exists a **PPT** algorithm S (a simulator) such that **for every** $x \in L$, the following two distributions are indistinguishable:

1. $view_V(P, V)$
2. $S(x, 1^\lambda)$

(P, V) is a zero-knowledge interactive protocol if it is complete, sound and zero-knowledge.

Perfect Zero Knowledge: Definition

An Interactive Protocol (P, V) is **perfect zero-knowledge** for a language L if there exists a PPT algorithm S (a simulator) such that for every $x \in L$, the following two distributions are **identical**:

1. $view_V(P, V)$

2. $S(x, 1^\lambda)$

(P, V) is a zero-knowledge interactive protocol if it is complete, sound and zero-knowledge.

Computational Zero Knowledge: Definition

An Interactive Protocol (P, V) is **computational zero-knowledge** for a language L if there exists a PPT algorithm S (a simulator) such that for every $x \in L$, the following two distributions are **computationally indistinguishable**:

$$1. \ view_V(P, V)$$

$$2. \ S(x, 1^\lambda)$$

(P, V) is a zero-knowledge interactive protocol if it is complete, sound and zero-knowledge.

OLD DEF

What if V is NOT HONEST.

An Interactive Protocol (P, V) is **honest-verifier** perfect zero-knowledge for a language L if there exists a PPT simulator S such that for every $x \in L$, the following two distributions are identical:

1. $view_V(P, V)$
2. $S(x, 1^\lambda)$

REAL DEF

An Interactive Protocol (P, V) is **perfect zero-knowledge** for a language L if **for every PPT V^*** , there exists a (expected) poly time simulator S s.t. for every $x \in L$, the following two distributions are identical:

1. $view_{V^*}(P, V^*)$
2. $S(x, 1^\lambda)$