CIS 5560

Cryptography
Lecture 20

Course website:
pratyushmishra.com/classes/cis-5560-s25/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Recap of last lecture

New primitive: Digital Signatures

Digital Signatures: Definition

A triple of PPT algorithms (Gen, Sign, Verify) such that

- Key generation: Gen(1") — (sk, pk)
- Message signing: Sign(sk, m) — o
- Signature verification: Verify(pk,m,c) —» b € {0,1}

Correctness: For all vk, sk, m:
Verify(pk, m, Sign(sk, m)) = 1

EUF-CMA for Signatures

Challenger

Pr

and
Verify(pk, m*,6*) = 1

Adversary

= negl(1)

Lamport (One-time) Signatures for arbitrary bits

Secret Key sk: 10 Y20 -
xl,l 'xl,l ..

: Y10 Y20 -
Public Key pk: <y1’1 Va1 -
Signing m: 1.7 := H(m)

. xn’o
. xn,l

' in’0> where y, , = f(x;,)-
. n,l

2.0 = (xl’zl,xz,zz, ...,xn’zn)

Claim: Assuming H is CRH and fis a OWF, no PPT
adv can produce a signature of m given a signature of

a single m’ # m.

Claim: Can forge signature on any message given the
signatures on (some) two messages.

(Many-time) Signhature Scheme

In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.
|dea: Pseudorandom Trees

Step 4. How to make Alice stateless.
|dea: Randomization

Step 5 (optional). How to make Alice stateless and
deterministic. Idea: PRFs.

Today’s lecture

- RSA Signatures

* Proof systems

- What is a proof?

* Interactive Proofs

« Zero-knowledge interactive proofs

“Vanilla” RSA Signatures

Start with any trapdoor permutation, e.g. RSA.

Gen(1%): Pick primes (P,Q) and let N = PQ . Pick e
relatively prime to @(N) and let d = e~ (mod @(N)).

sk=(N,d) and pk=(N,e)
Sign(sk, m): Output signature ¢ = m“ (mod N) .
Verify(pk, m, 6): Check if 6° = m (mod N) .

Problem: Existentially forgeable!

“Vanilla” RSA Signatures

Sign(sk, m): Output signature ¢ = m? (mod N) .

Verify(pk, m, 6): Check if ¢* = m (mod N).

Problem: Existentially forgeable!

Attack: Pick a random o and output (m = o¢, o) as the
forgery.

Problem: Malleable!

Attack: Given a signature of m, you can produce a

signature of 2¢ s« m, 3% m, ...,m>, m>, ...

“Vanilla” RSA Signatures

Sign(sk, m): Output signature ¢ = m? (mod N) .

Verify(pk, m, 6): Check if ¢* = m (mod N).

Fundamental Issues:

1. Can "reverse-engineer” the message starting
from the signature (Attack 1)

2. Algebraic structure allows malleability (Attack 2)

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1%): Pick primes (P,Q) and let N = PQ . Pick e
relatively prime to @(N) and let d = e~ (mod @(N)).

sk=(N,d) and pk=(N,e, H)
Sign(sk, m): Output signature ¢ = H(m)? (mod N) .
Verify(pk, m, 6): Check if 6¢ = H(m) (mod N) .

So, what is H? Some very complicated “hash” function.

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1%): Pick primes (P,Q) and let N = PQ . Pick e
relatively prime to @(N) and let d = e~ (mod @(N)).

sk=(N,d) and pk=(N,e, H)
Sign(sk, m): Output signature ¢ = H(m)? (mod N) .
Verify(pk, m, 6): Check if 6¢ = H(m) (mod N) .

H should be at least one-way to prevent Attack #1.

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1%): Pick primes (P,Q) and let N = PQ . Pick e
relatively prime to @(N) and let d = e~ (mod @(N)).

sk=(N,d) and pk=(N,e, H)
Sign(sk, m): Output signature ¢ = H(m)? (mod N) .
Verify(pk, m, 6): Check if 6¢ = H(m) (mod N) .

Hard to “algebraically manipulate” H(m) into H(related m’).
(to prevent Attack #2.)

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1%): Pick primes (P,Q) and let N = PO . Pick e
relatively prime to @(N) and let d = e~! (mod @(N)).

sk =(N,d) and pk=(N,e H)
Sign(sk, m): Output signature ¢ = H(m)? (mod N).

Verify(vk, m, 6): Check if ¢ = H(m) (mod N) .

Collision-resistance does not seem to be enough. (Given a
CRHF h(m), you may be able to produce h(m’) for related m’.)

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1%): Pick primes (P,Q) and let N = PQ . Pick e
relatively prime to @(N) and let d = e~ (mod @(N)).

sk=(N,d) and pk=(N,e, H)
Sign(sk, m): Output signature ¢ = H(m)? (mod N) .
Verify(pk, m, 6): Check if 6¢ = H(m) (mod N) .

Collision-resistance does not seem to be enough. (Given a
CRHF h(m), you may be able to produce H(m’) for related m’.)

Beyond Secure Communication
Ix Iy
= —8

|

Alice Bob

Much more than communicating securely.

Complex Interactions: proofs, computations, games.

Complex Adversaries: Alice or Bob, adaptively chosen.

Complex Properties: Correctness, Privacy, Fairness.

Many Parties: this class, Penn students, the internet.

Classical Proofs

V. ii i ‘
Steve Cook Leonid Levin

Prover writes down a string (proof); Verifier checks.

(@)
Axiom 1
Axiom 2

a Va*+ b? Axiom 1=A

A=DB
QED
©,

Proofs

accept/
reject

/ Claim/Theorem \
’Q‘ proof)

Prover Verifier

Efficiently Verifiable Proofs: NP

Claim/Theorem

4/ \ accept/
reject
| S
proof ‘

Prover Verifier

Works hard Polynomial-time

Theorem: N is a product of two prime numbers

=

Prover

Proof = (P, Q) Q

Verifier

Accept iff N = PQ
and P, O are prime

Efficiently Verifiable Proofs: NP

Claim/Theorem.

4/ \ accept
R /reject
proof) Q

Prover Verifier

Works hard Polynomial-time

Def: A language/decision procedure & is simply
a set of strings. So, £ C {0.1}".

Efficiently Verifiable Proofs: NP

Claim/

4/ accept
/reject
| 3
proof Q

Prover Verifier

Def: £ is an NP-language if there is a poly-time verifier 1 where
Completeness: True theorems have (short) proofs.
for all x € Z, there is a poly(| x |)-long witness
(proof) w € {0,1}* s.t. V(x, w) = 1.
Soundness: False theorems have no short proofs.
for all x &€ &£, there is no witness.
That is, for all polynomially long w, V(x, w) = 0.

Theorem: N is a product of two prime numbers

Proof = (P, Q) Q

Verifier
Prover
Accept iff N = PQ
and P, Q are prime

After interaction, the Verifier knows:

1) N is a product of two primes.

2) Also, the two factors of V.

Theorem: Graphs G, and G, are isomorphic.
1 1

2 6
3 8
4 10
9 7
Proof = : [N] — [N], Q
the isomorphism Verifier
Prover
Check Vi, j:

(z(i), =(j)) € E,
iff (i, j) € E,.

Theorem: Graphs G, and G, are isomorphic.
1 1

2 6

-
»

Proof = : [N] — [N], Q

the isomorphism Verifier

Prover

Check Vi, j:

| , (n(i), 7(j)) € E,
1) G, and G, are isomorphic. iff (i, /) € E,

After interaction, Bob the Verifier knows:

2) Also, the isomorphism.

Theorem: Boolean Formula ¢ is satisfiable

PXps .. Xy) =X VX VXD A AXsV Xy_s VX))

-
»

Proof = Satisfying assignment Q

(XO, Y x”) Verifier

Prover Check ¢(x,...,x,) =1

After interaction, Bob the Verifier knows:
1) @ is satisfiable

2) Also, the satisfying assignment

Theorem: Boolean Formula ¢ is satisfiable

PXps .. Xy) =X VX VXD A AXsV Xy_s VX))

»

Proof = Satisfying assignment Q

(XO, Y x”) Verifier

Prover Check ¢(x,...,x,) =1

NP-Complete Problem:

Every one of the other problems can be reduced to it

Is there any other way?

Zero Knowledge Proofs

“I will prove to you that |
could’ve sent you a proof
if | felt like it.”

Prover

Zero Knowledge Proofs

“I will not give you the
isomorphism, but will prove to you
that | could have one.”

Prover

Two (Necessary) New Ingredients

1. Interaction: Rather than passively reading the proof, the
verifier engages in a conversation with the prover.

2. Randomness: The verifier is randomized and can make
a mistake with a (exponentially small) probability.

A 4

A

\ 4

- 2

A

v

Marker example

Interactive Proofs for a Language £

Claim/Theorem

/ a
. accept
\4 .
q /reject
< v
d; < :
75 Verifier

Prover

Comp. Unbounded Probablll_s t'c.
Polynomial-time

Interactive Proofs for a Language #

Claim/'_l' heorem

/ a \ accept
a0 /reject

< v
a, - Q

Verifier

Prover

Def: £ is an IP-language if there is a unbounded P and

probabilistic poly-time verifier 1V where
Completeness: If x € £, V always accepts.
Soundness: If x ¢ £, regardless of the cheating
prover strategy, V accepts with negligible probability.

Interactive Proofs for a Language &«

Claim/Theorem
/ a accept/
: ¢ reject

ifi
_P PPPPP q2 Verifier

Def: £ is an IP-language if there is a probabilistic poly-time
verifier V where
Completeness: If X € <,
Pr [(P, Vx) = accept] = 1.
Soundness: If X & £, there is a negligible function negl s.t.
for every P~,

Pr[(P*, V) (x) = accept] = negl(4).

IP for Graph Isomorphism

2 6

4 10

Graph G (fraph7H

K = p(G)

H=n(G) .
where p is a random permutation Q

Q . random challenge bit » Verifier

Prover

b =0: send r, S.t. K = 7,(G)

b=1:send r; s.t. H= 7(K)

IP for Graph Isomorphism

Completeness?

K = p(G)

H=n(G) .
where p is a random permutation Q

Q . random challenge bit » Verifier

Prover

b=0:send z,=p

v

b=1:send z, =mop!

IP for Graph Isomorphism

Soundness: Suppose G and H are non-isomorphic,
and a prover could answer both the verifier

challenges. Then, K = 7,(G) and H = =;(K)
In other words, H = 7| » 7y(G), a contradiction!

K = p(G)
H=n(G) .
where p is a random permutation Q

Q . random challenge bit » Verifier

Prover

b=0:send z,=p

v

b=1:sendn, =nmop~!

IP for Graph Non-Isomorphism

2 6

Gu9 h7H
= - R

Prover Verifier

Sample random permutation p

. . Sample bit b
Figure out which
araph K, is . K, Set Ky = p(G) and K| = p(H)
iIsomorphic to. X

» Acceptifb =>b’

IP for Graph Non-lsomorphism

Completeness?

=

Prover

Figure out which
graph K, is
iIsomorphic to.

b/

2

Verifier

Sample random permutation p
Sample bit b
Set Ky = p(G) and K| = p(H)

Accept if b = b’

IP for Graph Non-lsomorphism

Soundness: Suppose G and H are isomorphic.
Then K is isomorphic to both graphs. Prover can’t
figure out which one it is isomorphic to

So best it can do is guess!

Verifier

Prover

Sample random permutation p

. . Sample bit b
Figure out which
araph K, is . K, Set Ky = p(G) and K| = p(H)
iIsomorphic to. b’

» Acceptifb =>b’

IP for Graph Non-lsomorphism

What else does the verifier learn?

=

Prover

Figure out which
graph K, is
iIsomorphic to.

b/

2

Verifier

Sample random permutation p
Sample bit b
Set Ky = p(G) and K| = p(H)

Accept if b = b’

How to Define Zero-Knowledge?

After the interaction, V knows:
- The theorem is true; and

- A view of the interaction
(= transcript + randomness of V)

P gives zero knowledge to V:

When the theorem is true, the view
gives V nothing that he couldn’t have

obtained on his own without interacting
with P.

How to Define Zero-Knowledge?

(P, V) is zero-knowledge if V' can
generate his VIEW of the interaction all
by himself in probabilistic polynomial
time.

How to Define Zero-Knowledge?

(P, V) is zero-knowledge if V' can
“simulate” his VIEW of the interaction all
by himself in probabilistic polynomial
time.

The Simulation Paradigm

PPT “simulator” S
o

- sim S
\' (s, b, z)

s =712 (mod N)
viewy(P,V): b < {01} (N'é)
Gramscoxipt = (s, b, z),
) _ If b=0:z =r Check:
Coins = b fb=1:z=rx |2z =sy” (mod N)

Zero Knowledge: Definition

An Interactive Protocol (P,V) is zero-
knowledge for a language L if there exists a
PPT algorithm S (a simulator) such that for
every x € L, the following two distributions
are indistinguishable:

1. UiewV(P, V)
2. S(x, 1%

(PV) is a zero-knowledge interactive protocol
if it is complete, sound and zero-knowledge.

Perfect Zero Knowledge: Definition

An Interactive Protocol (PV) is perfect zero-
knowledge for a language L if there exists a
PPT algorithm S (a simulator) such that for
every x € L, the following two distributions

are identical:
1. viewy (P, V)

2. S(x, 1%

(PV) is a zero-knowledge interactive
protocol if it is complete, sound and zero-

Computational Zero Knowledge: Definition

An Interactive Protocol (P,V) is computational
zero-knowledge for a language L if there exists a
PPT algorithm S (a simulator) such that for every
x € L, the following two distributions are
computationally indistinguishable:

1. viewy (P, V)

2. S(x, 1%

(PV) is a zero-knowledge interactive
protocol if it is complete, sound and zero-

\>

&

\V

&« Whatif Vis NOT HONEST.

An Interactive Protocol (PV) is honest-verifier
perfect zero-knowledge for a language L if there
exists a PPT simulator S such that for every x € L,
the following two distributions are identical:

é viewy(P,V) 2. S(x, 1%

An Interactive Protocol (PV) is perfect zero-
knowledge for a language L if for every PPT V*, there
exists a (expected) poly time simulator S s.t. for every
x € L, the following two distributions are identical:

1. viewy(P, V™) 2. S(x, 1%

