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CIS 5560

Lecture 20
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s25/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/


Recap of last lecture
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New primitive: Digital Signatures
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Dan Boneh
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Digital Signatures: Definition

Correctness: For all vk, sk, m: 
 𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m, 𝖲𝗂𝗀𝗇(𝗌𝗄, m)) = 1

A triple of PPT algorithms  such that


• Key generation: 

• Message signing: 

• Signature verification: 

(𝖦𝖾𝗇, 𝖲𝗂𝗀𝗇, 𝖵𝖾𝗋𝗂𝖿𝗒)

𝖦𝖾𝗇(1n) → (𝗌𝗄, 𝗉𝗄)
𝖲𝗂𝗀𝗇(𝗌𝗄, m) → σ

𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m, σ) → b ∈ {0,1}



Dan Boneh

EUF-CMA for Signatures
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Challenger Adversary𝗉𝗄

mi

σi

(m⋆, σ⋆)

Pr
m⋆ ∉ {mi}

 and 
𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m⋆, σ⋆) = 1

= 𝗇𝖾𝗀𝗅(λ)



Lamport (One-time) Signatures for arbitrary bits

Signing :             1.  

                            2. 

m z := H(m)
σ = (x1,z1

, x2,z2
, …, xn,zn

)

Public Key :𝗉𝗄 where . yi,b = f (xi,b)

Claim: Assuming  is CRH and  is a OWF, no PPT 
adv can produce a signature of  given a signature of 
a single .

H 𝑓
𝑚

𝑚′￼≠ 𝑚
Claim: Can forge signature on any message given the 
signatures on (some) two messages. 

(y1,0 y2,0 … yn,0
y1,1 y2,1 … yn,1)
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Secret Key :𝗌𝗄 (x1,0 x2,0 … xn,0
x1,1 x1,1 … xn,1)



(Many-time) Signature Scheme
In four+ steps

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.  
	 Idea: Pseudorandom Trees

Step 4. How to make Alice stateless.  
	 Idea: Randomization

Step 5 (optional). How to make Alice stateless and 
deterministic.  Idea: PRFs.

Step 1. Stateful, Growing Signatures. Idea: Signature Chains
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Today’s lecture
• RSA Signatures

• Proof systems


• What is a proof?

• Interactive Proofs

• Zero-knowledge interactive proofs
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“Vanilla” RSA Signatures
Start with any trapdoor permutation, e.g. RSA.

Gen( ): Pick primes  and let  Pick  
relatively prime to  and let   

1𝜆 (𝑃, 𝑄) 𝑁 = 𝑃𝑄 . 𝑒
𝜑(𝑁 ) 𝑑 = 𝑒−1 (mod 𝜑(𝑁 )) .

Sign( ): Output signature 𝗌𝗄, m 𝜎 = 𝑚𝑑 (mod 𝑁) .

Verify( ): Check if 𝗉𝗄, m, σ 𝜎𝑒 = 𝑚 (mod 𝑁) .

sk =    and   pk =  (𝑁, 𝑑) (𝑁, 𝑒)

Problem: Existentially forgeable! 



“Vanilla” RSA Signatures

Problem: Existentially forgeable! 

Attack: Pick a random   and output ( , ) as the 
forgery.  

𝜎 𝑚 = 𝜎𝑒 𝜎

Problem: Malleable! 
Attack: Given a signature of , you can produce a 
signature of 

𝑚
2𝑒 ∗ 𝑚, 3𝑒 ∗ 𝑚, …, 𝑚2, 𝑚3, …

Sign( ): Output signature 𝗌𝗄, m 𝜎 = 𝑚𝑑 (mod 𝑁) .

Verify( ): Check if 𝗉𝗄, m, σ 𝜎𝑒 = 𝑚 (mod 𝑁) .



Fundamental Issues:

1. Can ”reverse-engineer” the message starting 
from the signature  (Attack 1)

2. Algebraic structure allows malleability (Attack 2)  

Sign( ): Output signature 𝗌𝗄, m 𝜎 = 𝑚𝑑 (mod 𝑁) .

Verify( ): Check if 𝗉𝗄, m, σ 𝜎𝑒 = 𝑚 (mod 𝑁) .

“Vanilla” RSA Signatures



How to Fix Vanilla RSA
Start with any trapdoor permutation, e.g. RSA.

Gen( ): Pick primes  and let  Pick  
relatively prime to  and let   

1𝜆 (𝑃, 𝑄) 𝑁 = 𝑃𝑄 . 𝑒
𝜑(𝑁 ) 𝑑 = 𝑒−1 (mod 𝜑(𝑁 )) .

Sign( ): Output signature 𝗌𝗄, m 𝜎 = 𝑯(𝒎)𝑑 (mod 𝑁) .

Verify( ): Check if 𝗉𝗄, m, σ 𝜎𝑒 = 𝑯(𝒎) (mod 𝑁) .

sk =    and   pk =  (𝑁, 𝑑) (𝑁, 𝑒, 𝑯 )

So, what is H? Some very complicated “hash” function. 



How to Fix Vanilla RSA

H should be at least one-way to prevent Attack #1.

Start with any trapdoor permutation, e.g. RSA.

Gen( ): Pick primes  and let  Pick  
relatively prime to  and let   

1𝜆 (𝑃, 𝑄) 𝑁 = 𝑃𝑄 . 𝑒
𝜑(𝑁 ) 𝑑 = 𝑒−1 (mod 𝜑(𝑁 )) .

Sign( ): Output signature 𝗌𝗄, m 𝜎 = 𝑯(𝒎)𝑑 (mod 𝑁) .

Verify( ): Check if 𝗉𝗄, m, σ 𝜎𝑒 = 𝑯(𝒎) (mod 𝑁) .

sk =    and   pk =  (𝑁, 𝑑) (𝑁, 𝑒, 𝑯 )



How to Fix Vanilla RSA

Hard to “algebraically manipulate” H(m) into H(related m’).
(to prevent Attack #2.)

Start with any trapdoor permutation, e.g. RSA.

Gen( ): Pick primes  and let  Pick  
relatively prime to  and let   

1𝜆 (𝑃, 𝑄) 𝑁 = 𝑃𝑄 . 𝑒
𝜑(𝑁 ) 𝑑 = 𝑒−1 (mod 𝜑(𝑁 )) .

Sign( ): Output signature 𝗌𝗄, m 𝜎 = 𝑯(𝒎)𝑑 (mod 𝑁) .

Verify( ): Check if 𝗉𝗄, m, σ 𝜎𝑒 = 𝑯(𝒎) (mod 𝑁) .

sk =    and   pk =  (𝑁, 𝑑) (𝑁, 𝑒, 𝑯 )



How to Fix Vanilla RSA
Start with any trapdoor permutation, e.g. RSA.

Gen( ): Pick primes  and let  Pick  
relatively prime to  and let   

1𝜆 (𝑃, 𝑄) 𝑁 = 𝑃 𝑄 . 𝑒
𝜑(𝑁 ) 𝑑 = 𝑒−1 (mod 𝜑(𝑁 )) .

Sign( ): Output signature 𝗌𝗄, m 𝜎 = 𝑯(𝒎)𝑑 (mod 𝑁) .

Verify( ): Check if 𝗏𝗄, m, σ 𝜎𝑒 = 𝑯(𝒎) (mod 𝑁) .

sk =    and   pk =  (𝑁, 𝑑) (𝑁, 𝑒, 𝑯 )

Collision-resistance does not seem to be enough.  (Given a 
CRHF h(m), you may be able to produce h(m’) for related m’.)



How to Fix Vanilla RSA

Collision-resistance does not seem to be enough.  (Given a 
CRHF h(m), you may be able to produce H(m’) for related m’.)

Start with any trapdoor permutation, e.g. RSA.

Gen( ): Pick primes  and let  Pick  
relatively prime to  and let   

1𝜆 (𝑃, 𝑄) 𝑁 = 𝑃𝑄 . 𝑒
𝜑(𝑁 ) 𝑑 = 𝑒−1 (mod 𝜑(𝑁 )) .

Sign( ): Output signature 𝗌𝗄, m 𝜎 = 𝑯(𝒎)𝑑 (mod 𝑁) .

Verify( ): Check if 𝗉𝗄, m, σ 𝜎𝑒 = 𝑯(𝒎) (mod 𝑁) .

sk =    and   pk =  (𝑁, 𝑑) (𝑁, 𝑒, 𝑯 )



Beyond Secure Communication

Alice Bob

x y

Much more than communicating securely.

• Complex Interactions: proofs, computations, games. 

• Complex Adversaries: Alice or Bob, adaptively chosen.

• Complex Properties: Correctness, Privacy, Fairness.

• Many Parties: this class, Penn students, the internet.



Classical Proofs

Prover writes down a string (proof); Verifier checks. 

a

b

a2 + b2

Axiom 1

Axiom 2

Axiom 1⇒A

A⇒B

QED

Steve Cook Leonid Levin



Proofs

Prover Verifier

Claim/Theorem

proof

accept/
reject



Prover Verifier

Claim/Theorem

proof

Efficiently Verifiable Proofs: 𝖭𝖯

Works hard Polynomial-time

accept/
reject



Theorem:  is a product of two prime numbersN

Prover
Verifier

Proof = (𝑷, 𝑸)

Accept iff 

and  are prime 

N = PQ
P, Q



Prover Verifier

Claim/Theorem

proof

accept
/reject

Works hard Polynomial-time

Def: A language/decision procedure  is simply 
a set of strings. So, .

ℒ
ℒ ⊆ {0,1}∗

Efficiently Verifiable Proofs: 𝖭𝖯



Def:  is an -language if there is a poly-time verifier  where 
• Completeness: True theorems have (short) proofs.  

	 for all , there is a poly( )-long witness 
	 (proof)  s.t. 


• Soundness: False theorems have no short proofs.  
	 for all , there is no witness.  
      That is, for all polynomially long , 

ℒ 𝖭𝖯 𝑉

x ∈ ℒ |x |
w ∈ {0,1}* 𝑉(𝑥, 𝑤) = 1.

x ∉ ℒ
w 𝑉(𝑥, 𝑤) = 0.

Efficiently Verifiable Proofs: 𝖭𝖯

Prover Verifier

Claim/

proof

accept
/reject



Theorem:  is a product of two prime numbersN

Prover
Verifier

Proof = (𝑷, 𝑸)

Accept iff 

and  are prime 

N = PQ
P, Q

After interaction, the Verifier knows:

1)  is a product of two primes. N

2) Also, the two factors of . N



Theorem: Graphs  and  are isomorphic. G0 G1

Prover
Verifier

Proof , π : [N ] → [N ]

1

2 5

3 4

6
7

8 9

10

1
2

3

4

5

9

6

8

10

7

the isomorphism

Check 




iff .

∀𝑖, 𝑗:
(π(i), π( j)) ∈ E1

(i, j) ∈ E0



Theorem: Graphs  and  are isomorphic. G0 G1

Prover
Verifier

Proof , π : [N ] → [N ]

1

2 5

3 4

6
7

8 9

10

1
2

3

4

5

9

6

8

10

7

the isomorphism

Check 




iff .

∀𝑖, 𝑗:
(π(i), π( j)) ∈ E1

(i, j) ∈ E0

After interaction, Bob the Verifier knows:
1)  and  are isomorphic. 𝐺0 𝐺1

2) Also, the isomorphism. 



Theorem: Boolean Formula  is satisfiable φ

Prover
Verifier

Proof = Satisfying assignment
(x0, …, xn)

ϕ(X1, …, XN) := (X1 ∨ X3 ∨ XN) ∧ ⋯ ∧ (X5 ∨ XN−5 ∨ X10)

Check φ(x1, …, xn) = 1

After interaction, Bob the Verifier knows:
1)  is satisfiableφ

2) Also, the satisfying assignment 



Theorem: Boolean Formula  is satisfiable φ

Prover
Verifier

Proof = Satisfying assignment

NP-Complete Problem:
Every one of the other problems can be reduced to it

(x0, …, xn)

ϕ(X1, …, XN) := (X1 ∨ X3 ∨ XN) ∧ ⋯ ∧ (X5 ∨ XN−5 ∨ X10)

Check φ(x1, …, xn) = 1



Is there any other way?



Zero Knowledge Proofs

Prover

“I will prove to you that I 
could’ve sent you a proof  
if I felt like it.”



Zero Knowledge Proofs

Prover

“I will not give you the 
isomorphism, but will prove to you 
that I could have one.”



Two (Necessary) New Ingredients
1. Interaction: Rather than passively reading the proof, the 
verifier engages in a conversation with the prover.

2. Randomness: The verifier is randomized and can make 
a mistake with a (exponentially small) probability.



Marker example



Prover
Verifier

Claim/Theorem

𝑎1 accept
/reject

Interactive Proofs for a Language ℒ

Probabilistic  
Polynomial-timeComp. Unbounded

𝑞1

𝑎2

𝑞2
…



Prover
Verifier

Claim/Theorem

𝑎1 accept
/reject

Interactive Proofs for a Language  ℒ

𝑞1

𝑎2…

Def:  is an -language if there is a unbounded P and  
probabilistic poly-time verifier  where 
• Completeness: If , V always accepts.

• Soundness: If  regardless of the cheating 

prover strategy, V accepts with negligible probability. 

ℒ 𝖨𝖯
𝑉

x ∈ ℒ
x ∉ ℒ,



Interactive Proofs for a Language  ℒ

Def:  is an -language if there is a probabilistic poly-time 
verifier  where 
• Completeness: If ,  
	 	 

• Soundness: If  there is a negligible function  s.t. 

for every   
	 	

ℒ 𝖨𝖯
𝑉

x ∈ ℒ
Pr[(P, 𝑉 )(𝑥) = 𝑎𝑐𝑐𝑒𝑝𝑡] = 1.

x ∉ ℒ, negl
𝑷 ∗,
Pr[(𝑃∗, 𝑉)(𝑥) = 𝑎𝑐𝑐𝑒𝑝𝑡] = negl(𝜆) .



Prover
Verifier

 𝐾 = 𝜌(𝐺)
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IP for Graph Isomorphism

Graph G Graph H

𝐇 = 𝝅(𝑮)
where  is a random permutation𝜌

 random challenge bit 𝑏

 send  s.t.  𝑏 = 0: 𝜋0 K = 𝜋0(𝐺)

 send  s.t.  𝑏 = 1: 𝜋1 H = 𝜋1(𝐾 )



Prover
Verifier

 𝐾 = 𝜌(𝐺)

IP for Graph Isomorphism

𝐇 = 𝝅(𝑮)
where  is a random permutation𝜌

 random challenge bit 𝑏

 send 𝑏 = 0: 𝜋0 = 𝜌

 send 𝑏 = 1: 𝜋1 = 𝜋 ∘ 𝜌−1

Completeness? 



Prover
Verifier

 𝐾 = 𝜌(𝐺)

IP for Graph Isomorphism

𝐇 = 𝝅(𝑮)
where  is a random permutation𝜌

 random challenge bit 𝑏

 send 𝑏 = 0: 𝜋0 = 𝜌

 send 𝑏 = 1: 𝜋1 = 𝜋 ∘ 𝜌−1

Soundness: Suppose G and H are non-isomorphic, 
and a prover could answer both the verifier 
challenges. Then,  and K = π0(G) H = π1(K )

 In other words, , a contradiction!H = 𝜋1 ∘ 𝜋0(𝐺)



Prover Verifier

 Kb

1

2 5

3 4

6
7

8 9

10

1
2

3

4

5

9

6

8

10

7

IP for Graph Non-Isomorphism

Graph G Graph H

Sample random permutation ρ
Sample bit b
Set  and K0 = ρ(G) K1 = ρ(H )

 b′￼

Accept if b = b′￼

Figure out which 
graph  is 
isomorphic to.

Kb



Completeness? 

Prover Verifier

 Kb

Sample random permutation ρ
Sample bit b
Set  and K0 = ρ(G) K1 = ρ(H )

 b′￼

Accept if b = b′￼

Figure out which 
graph  is 
isomorphic to.

Kb

IP for Graph Non-Isomorphism



IP for Graph Non-Isomorphism
Soundness: Suppose G and H are isomorphic. 
Then  is isomorphic to both graphs. Prover can’t 
figure out which one it is isomorphic to

Kb

 So best it can do is guess!

Prover Verifier

 Kb

Sample random permutation ρ
Sample bit b
Set  and K0 = ρ(G) K1 = ρ(H )

 b′￼

Accept if b = b′￼

Figure out which 
graph  is 
isomorphic to.

Kb



What else does the verifier learn?

Prover Verifier

 Kb

Sample random permutation ρ
Sample bit b
Set  and K0 = ρ(G) K1 = ρ(H )

 b′￼

Accept if b = b′￼

Figure out which 
graph  is 
isomorphic to.

Kb

IP for Graph Non-Isomorphism



How to Define Zero-Knowledge?

After the interaction,  knows:𝑽
• The theorem is true; and
• A view of the interaction 


	 (= transcript + randomness of V)

 gives zero knowledge to :𝑷 𝑽

When the theorem is true, the view 
gives V nothing that he couldn’t have 
obtained on his own without interacting 
with P.



How to Define Zero-Knowledge?
 is zero-knowledge if  can 

generate his VIEW of the interaction all 
by himself in probabilistic polynomial 
time.   

(𝑃, 𝑉 ) 𝑉



How to Define Zero-Knowledge?
 is zero-knowledge if  can 

“simulate” his VIEW of the interaction all 
by himself in probabilistic polynomial 
time.   

(𝑃, 𝑉 ) 𝑉



The Simulation Paradigm



 


Coins = 

𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 ):
Transcript =  (𝑠, 𝑏, 𝑧),

𝑏

PPT “simulator” 𝑺

(𝑁, 𝑦)
sim S
(𝑠, 𝑏, 𝑧)


𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 ):
(𝑠, 𝑏, 𝑧)



Zero Knowledge: Definition
An Interactive Protocol (P,V) is zero-
knowledge for a language if there exists a 
PPT algorithm S (a simulator) such that for 
every , the following two distributions 
are indistinguishable:

𝐿 

𝒙 ∈ 𝑳

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 )
2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive protocol 
if it is complete, sound and zero-knowledge.



Perfect Zero Knowledge: Definition
An Interactive Protocol (P,V) is perfect zero-
knowledge for a language if there exists a 
PPT algorithm S (a simulator) such that for 
every , the following two distributions 
are identical:

𝐿 

𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 )

2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive 
protocol if it is complete, sound and zero-
knowledge.



Computational Zero Knowledge: Definition

An Interactive Protocol (P,V) is computational 
zero-knowledge for a language if there exists a 
PPT algorithm S (a simulator) such that for every 

, the following two distributions are 
computationally indistinguishable:

𝐿 

𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 )

2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive 
protocol if it is complete, sound and zero-
knowledge.



What if V is NOT HONEST.

An Interactive Protocol (P,V) is honest-verifier 
perfect zero-knowledge for a language if there 
exists a PPT simulator S such that for every , 
the following two distributions are identical:

𝐿 
𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 ) 2. 𝑆(𝑥, 1𝜆)

An Interactive Protocol (P,V) is perfect zero-
knowledge for a language if for every PPT , there 
exists a (expected) poly time simulator S s.t. for every 

, the following two distributions are identical:

𝐿  𝑽 ∗

𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉∗(𝑃, 𝑉 ∗) 2. 𝑆(𝑥, 1𝜆)

OLD DEF

REAL DEF


