

CIS 5560

Cryptography Lecture 20

Course website:

pratyushmishra.com/classes/cis-5560-s25/

Recap of last lecture

New primitive: Digital Signatures

Digital Signatures: Definition

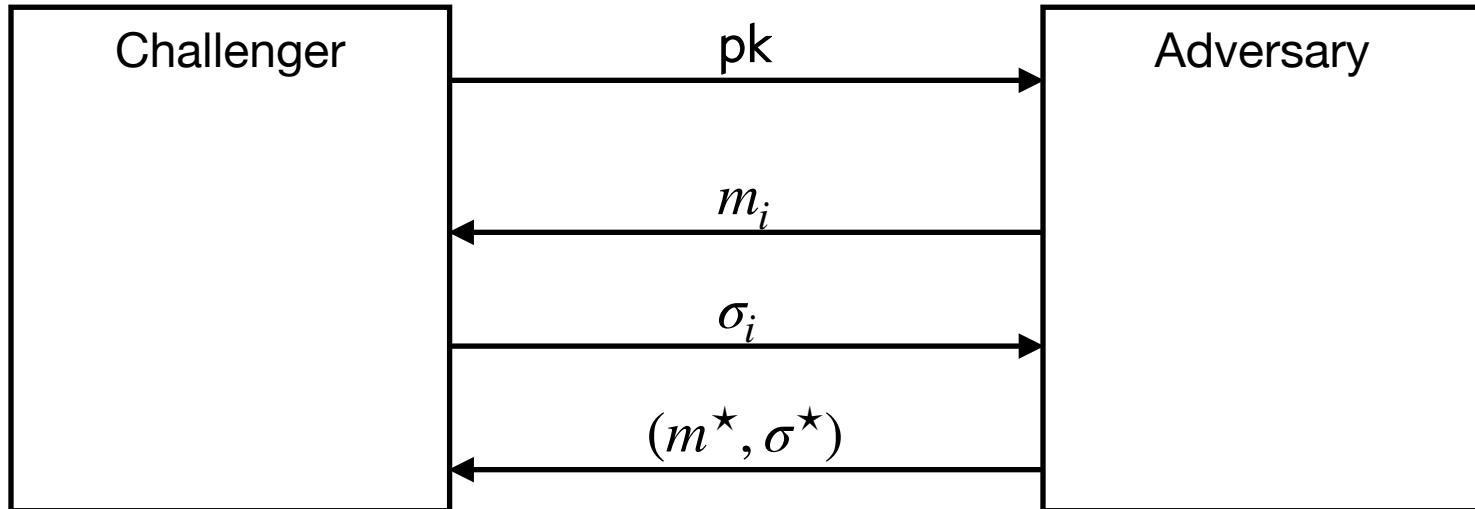
A triple of PPT algorithms (Gen , Sign , Verify) such that

- Key generation: $\text{Gen}(1^n) \rightarrow (\text{sk}, \text{pk})$
- Message signing: $\text{Sign}(\text{sk}, m) \rightarrow \sigma$
- Signature verification: $\text{Verify}(\text{pk}, m, \sigma) \rightarrow b \in \{0,1\}$

Correctness: For all vk , sk , m :

$$\text{Verify}(\text{pk}, m, \text{Sign}(\text{sk}, m)) = 1$$

EUF-CMA for Signatures



$$\Pr \left[\begin{array}{c} m^{\star} \notin \{m_i\} \\ \text{and} \\ \text{Verify}(pk, m^{\star}, \sigma^{\star}) = 1 \end{array} \right] = \text{negl}(\lambda)$$

Lamport (One-time) Signatures for arbitrary bits

Secret Key sk:

$$\begin{pmatrix} x_{1,0} & x_{2,0} & \dots & x_{n,0} \\ x_{1,1} & x_{1,1} & \dots & x_{n,1} \end{pmatrix}$$

Public Key pk:

$$\begin{pmatrix} y_{1,0} & y_{2,0} & \dots & y_{n,0} \\ y_{1,1} & y_{2,1} & \dots & y_{n,1} \end{pmatrix}$$

where $y_{i,b} = f(x_{i,b})$.

Signing m :

1. $z := H(m)$
2. $\sigma = (x_{1,z_1}, x_{2,z_2}, \dots, x_{n,z_n})$

Claim: Assuming H is CRH and f is a OWF, no PPT adv can produce a signature of \underline{m} given a signature of a single $\underline{m}' \neq \underline{m}$.

Claim: Can forge signature on any message given the signatures on (some) two messages.

(Many-time) Signature Scheme

In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature ***Chains***

Step 2. How to Shrink the signatures. Idea: Signature ***Trees***

Step 3. How to Shrink Alice's storage.

Idea: ***Pseudorandom Trees***

Step 4. How to make Alice stateless.

Idea: ***Randomization***

Step 5 (*optional*). How to make Alice stateless and deterministic. Idea: ***PRFs***.

Today's lecture

- RSA Signatures
- Proof systems
 - What is a proof?
 - Interactive Proofs
 - *Zero-knowledge* interactive proofs

“Vanilla” RSA Signatures

Start with any trapdoor permutation, e.g. RSA.

Gen(1^λ): Pick primes (P, Q) and let $N = PQ$. Pick e relatively prime to $\varphi(N)$ and let $d = e^{-1} \pmod{\varphi(N)}$.

$$\text{sk} = (N, d) \quad \text{and} \quad \text{pk} = (N, e)$$

Sign(sk, m): Output signature $\sigma = m^d \pmod{N}$.

Verify(pk, m, σ): Check if $\sigma^e = m \pmod{N}$.

Problem: Existentially forgeable!

“Vanilla” RSA Signatures

$\text{Sign}(\text{sk}, m)$: Output signature $\sigma = m^d \pmod{N}$.

$\text{Verify}(\text{pk}, m, \sigma)$: Check if $\sigma^e = m \pmod{N}$.

Problem: Existentially forgeable!

Attack: Pick a random σ and output $(m = \sigma^e, \sigma)$ as the forgery.

Problem: Malleable!

Attack: Given a signature of m , you can produce a signature of $2^e * m, 3^e * m, \dots, m^2, m^3, \dots$

“Vanilla” RSA Signatures

$\text{Sign}(\text{sk}, m)$: Output signature $\sigma = m^d \pmod{N}$.

$\text{Verify}(\text{pk}, m, \sigma)$: Check if $\sigma^e = m \pmod{N}$.

Fundamental Issues:

1. Can “reverse-engineer” the message starting from the signature (Attack 1)
2. Algebraic structure allows malleability (Attack 2)

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1^λ): Pick primes (P, Q) and let $N = PQ$. Pick e relatively prime to $\varphi(N)$ and let $d = e^{-1} \pmod{\varphi(N)}$.

$$\text{sk} = (N, d) \quad \text{and} \quad \text{pk} = (N, e, \textcolor{blue}{H})$$

Sign(sk, m): Output signature $\sigma = \textcolor{blue}{H(m)}^d \pmod{N}$.

Verify(pk, m, σ): Check if $\sigma^e = \textcolor{blue}{H(m)} \pmod{N}$.

So, what is H ? Some very complicated “hash” function.

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1^λ): Pick primes (P, Q) and let $N = PQ$. Pick e relatively prime to $\varphi(N)$ and let $d = e^{-1} \pmod{\varphi(N)}$.

$$\text{sk} = (N, d) \quad \text{and} \quad \text{pk} = (N, e, \textcolor{blue}{H})$$

Sign(sk, m): Output signature $\sigma = \textcolor{blue}{H(m)}^d \pmod{N}$.

Verify(pk, m, σ): Check if $\sigma^e = \textcolor{blue}{H(m)} \pmod{N}$.

H should be at least one-way to prevent Attack #1.

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1^λ): Pick primes (P, Q) and let $N = PQ$. Pick e relatively prime to $\varphi(N)$ and let $d = e^{-1} \pmod{\varphi(N)}$.

$$\text{sk} = (N, d) \quad \text{and} \quad \text{pk} = (N, e, \textcolor{blue}{H})$$

Sign(sk, m): Output signature $\sigma = \textcolor{blue}{H(m)}^d \pmod{N}$.

Verify(pk, m, σ): Check if $\sigma^e = \textcolor{blue}{H(m)} \pmod{N}$.

**Hard to “algebraically manipulate” $\text{H}(m)$ into $\text{H}(\text{related } m')$.
(to prevent Attack #2.)**

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1^λ): Pick primes (P, Q) and let $N = PQ$. Pick e relatively prime to $\varphi(N)$ and let $d = e^{-1} \pmod{\varphi(N)}$.

$$\text{sk} = (N, d) \quad \text{and} \quad \text{pk} = (N, e, \mathbf{H})$$

Sign(sk, m): Output signature $\sigma = \mathbf{H}(\mathbf{m})^d \pmod{N}$.

Verify(vk, m, σ): Check if $\sigma^e = \mathbf{H}(\mathbf{m}) \pmod{N}$.

Collision-resistance does not seem to be enough. (Given a CRHF $h(m)$, you may be able to produce $h(m')$ for related m' .)

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1^λ): Pick primes (P, Q) and let $N = PQ$. Pick e relatively prime to $\varphi(N)$ and let $d = e^{-1} \pmod{\varphi(N)}$.

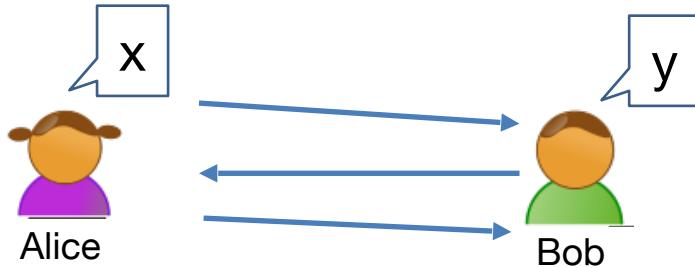
$$\text{sk} = (N, d) \quad \text{and} \quad \text{pk} = (N, e, \textcolor{blue}{H})$$

Sign(sk, m): Output signature $\sigma = \textcolor{blue}{H(m)}^d \pmod{N}$.

Verify(pk, m, σ): Check if $\sigma^e = \textcolor{blue}{H(m)} \pmod{N}$.

Collision-resistance does not seem to be enough. (Given a CRHF $h(m)$, you may be able to produce $H(m')$ for related m' .)

Beyond Secure Communication

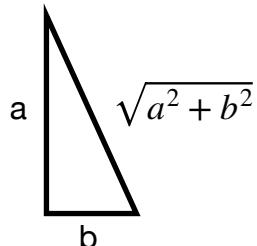
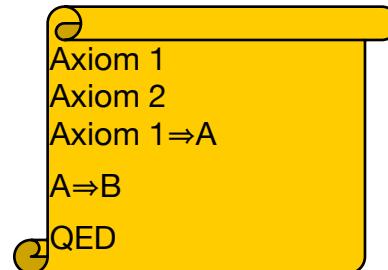


Much more than communicating securely.

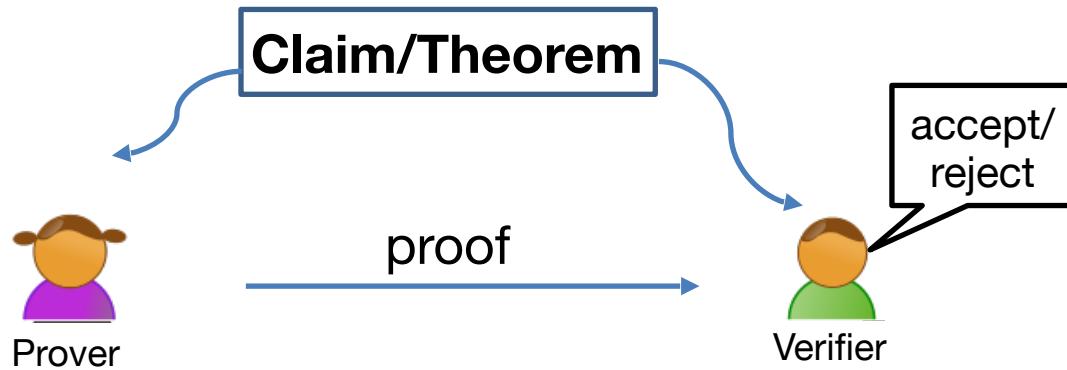
- Complex Interactions: proofs, computations, games.
- Complex Adversaries: Alice or Bob, adaptively chosen.
- Complex Properties: Correctness, Privacy, Fairness.
- Many Parties: this class, Penn students, the internet.

Classical Proofs

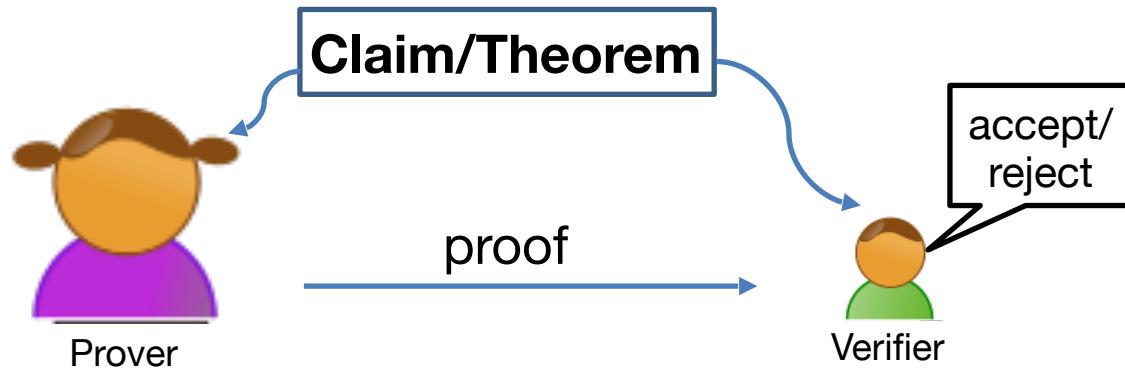
Prover writes down a string (proof); Verifier checks.



Proofs



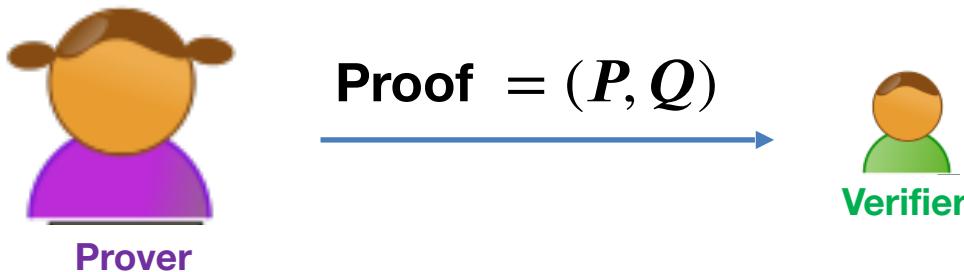
Efficiently Verifiable Proofs: NP



Works hard

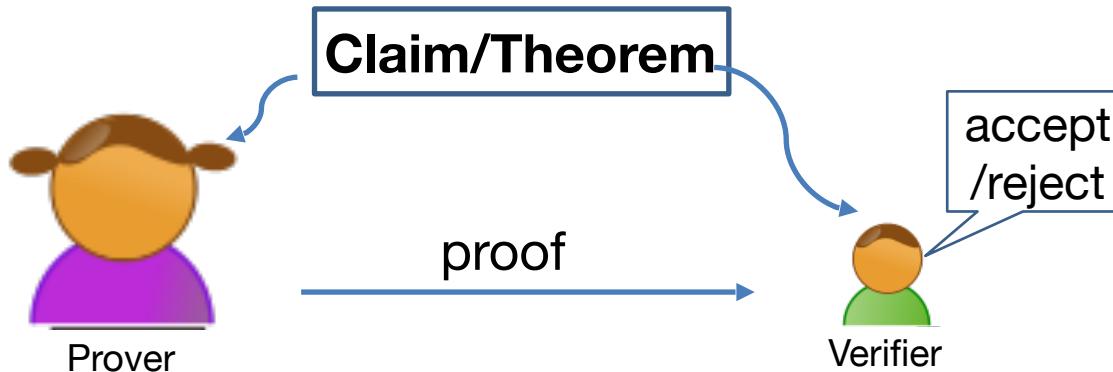
Polynomial-time

Theorem: N is a product of two prime numbers



Accept *iff* $N = PQ$
and P, Q are prime

Efficiently Verifiable Proofs: NP

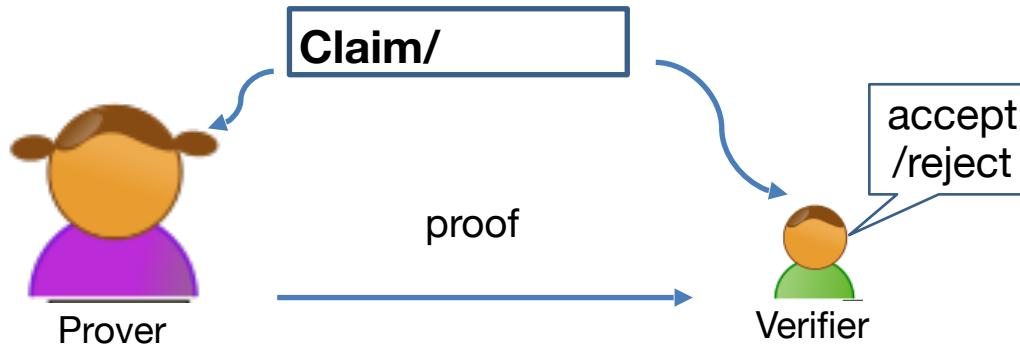


Works hard

Polynomial-time

Def: A language/decision procedure \mathcal{L} is simply a set of strings. So, $\mathcal{L} \subseteq \{0,1\}^*$.

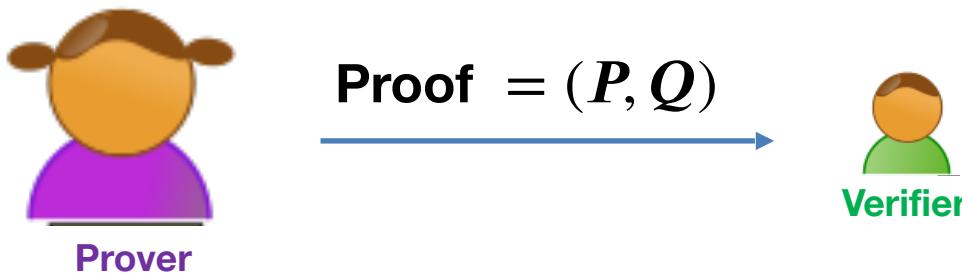
Efficiently Verifiable Proofs: NP



Def: \mathcal{L} is an **NP**-language if there is a **poly-time** verifier V where

- **Completeness:** True theorems have (short) proofs.
for all $x \in \mathcal{L}$, there is a **poly($|x|$)-long** witness
(proof) $w \in \{0,1\}^*$ s.t. $V(x, w) = 1$.
- **Soundness:** False theorems have no short proofs.
for all $x \notin \mathcal{L}$, there is no witness.
That is, for all polynomially long w , $V(x, w) = 0$.

Theorem: N is a product of two prime numbers

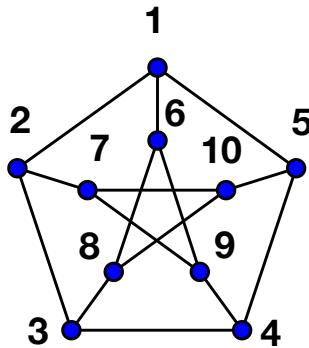
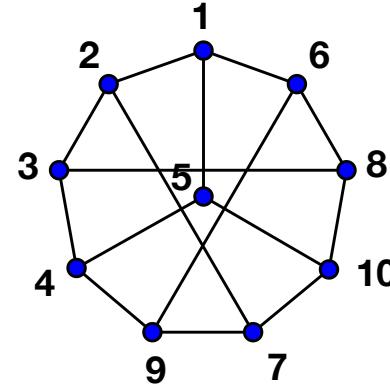
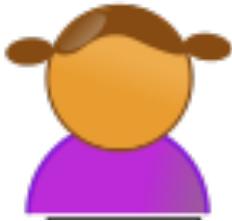


Accept *iff* $N = PQ$
and P, Q are prime

After interaction, the Verifier knows:

- 1) N is a product of two primes.
- 2) Also, the two factors of N .

Theorem: Graphs G_0 and G_1 are isomorphic.



Prover

Proof $\pi : [N] \rightarrow [N]$,

the isomorphism

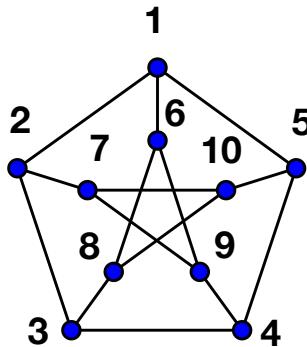
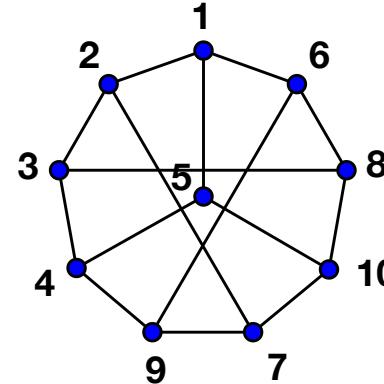
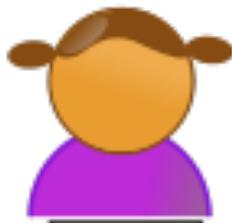
Verifier

Check $\forall i, j$:

$(\pi(i), \pi(j)) \in E_1$

iff $(i, j) \in E_0$.

Theorem: Graphs G_0 and G_1 are isomorphic.



Prover

Proof $\pi : [N] \rightarrow [N]$,

the isomorphism

Verifier

After interaction, Bob the Verifier knows:

- 1) G_0 and G_1 are isomorphic.
- 2) **Also**, the isomorphism.

Check $\forall i, j :$
 $(\pi(i), \pi(j)) \in E_1$
iff $(i, j) \in E_0$.

Theorem: Boolean Formula φ is satisfiable

$$\phi(X_1, \dots, X_N) := (X_1 \vee X_3 \vee X_N) \wedge \dots \wedge (X_5 \vee X_{N-5} \vee X_{10})$$

Proof = Satisfying assignment

$$(x_0, \dots, x_n)$$

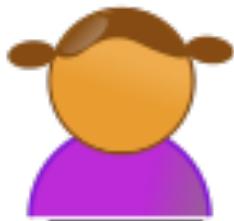
Check $\varphi(x_1, \dots, x_n) = 1$

After interaction, Bob the Verifier knows:

- 1) φ is satisfiable
- 2) **Also**, the satisfying assignment

Theorem: Boolean Formula φ is satisfiable

$$\phi(X_1, \dots, X_N) := (X_1 \vee X_3 \vee X_N) \wedge \dots \wedge (X_5 \vee X_{N-5} \vee X_{10})$$



Prover

Proof = Satisfying assignment

$$(x_0, \dots, x_n)$$

Verifier

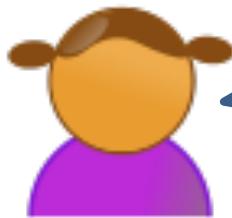
Check $\varphi(x_1, \dots, x_n) = 1$

NP-Complete Problem:

Every one of the other problems can be reduced to it

Is there any other way?

Zero Knowledge Proofs



Prover

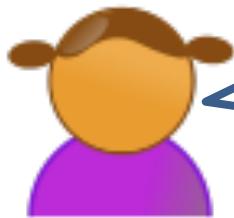
“I will prove to you that I could've sent you a proof if I felt like it.”

Micali

Goldwasser

Rackoff

Zero Knowledge Proofs



Prover

“I will not give you the isomorphism, but will prove to you that I could have one.”

Micali

Goldwasser

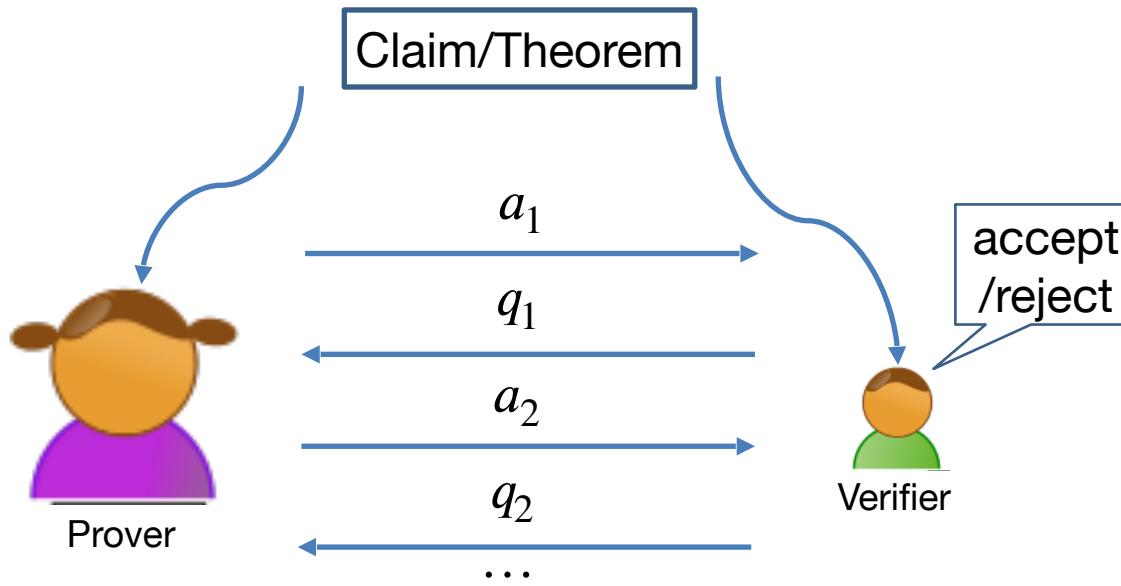
Rackoff

Two (Necessary) New Ingredients

1. **Interaction:** Rather than passively reading the proof, the verifier engages in a conversation with the prover.
2. **Randomness:** The verifier is randomized and can make a mistake with a (exponentially small) probability.

Marker example

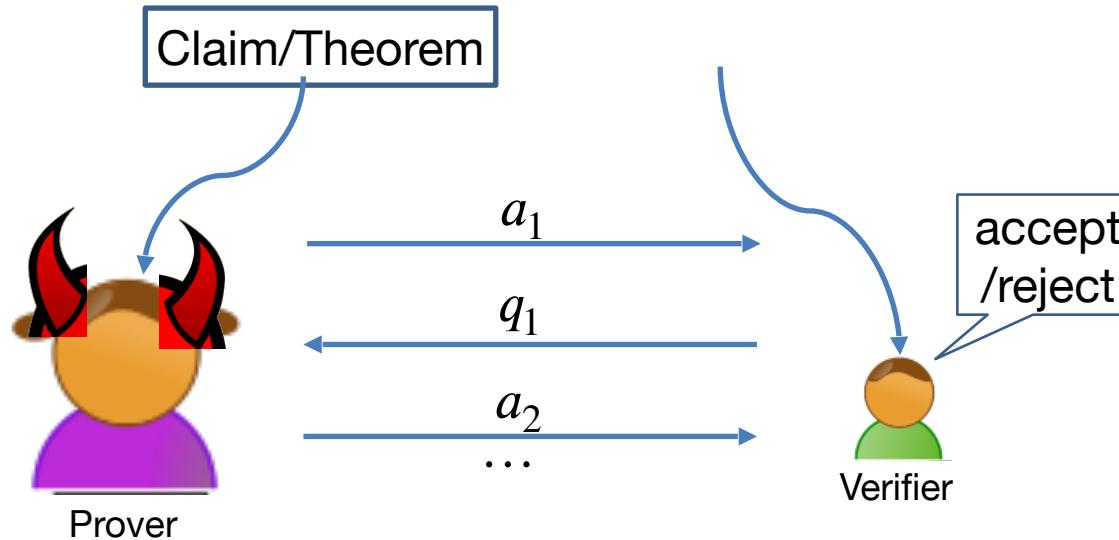
Interactive Proofs for a Language \mathcal{L}



Comp. Unbounded

Probabilistic
Polynomial-time

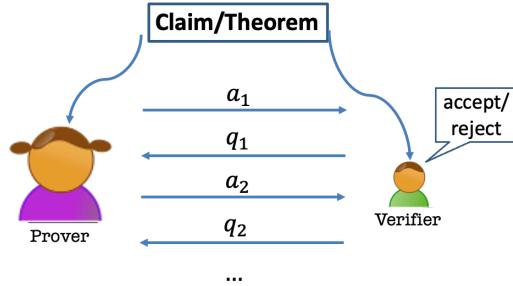
Interactive Proofs for a Language \mathcal{L}



Def: \mathcal{L} is an **IP**-language if there is an unbounded P and **probabilistic poly-time** verifier V where

- **Completeness:** If $x \in \mathcal{L}$, V always accepts.
- **Soundness:** If $x \notin \mathcal{L}$, regardless of the cheating prover strategy, V accepts with negligible probability.

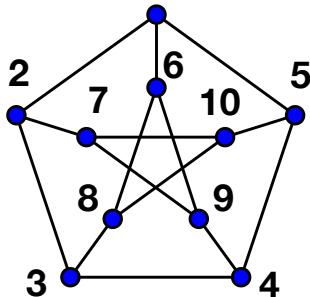
Interactive Proofs for a Language \mathcal{L}



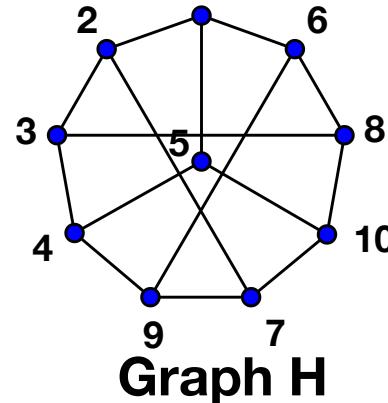
Def: \mathcal{L} is an IP-language if there is a **probabilistic poly-time** verifier V where

- **Completeness:** If $x \in \mathcal{L}$,
$$\Pr[(P, V)(x) = \text{accept}] = 1.$$
- **Soundness:** If $x \notin \mathcal{L}$, there is a negligible function negl s.t.
for every P^* ,
$$\Pr[(P^*, V)(x) = \text{accept}] = \text{negl}(\lambda).$$

IP for Graph Isomorphism



Graph G



Graph H

$H = \pi(G)$ $\xrightarrow{K = \rho(G)}$
where ρ is a random permutation

Prover

Verifier

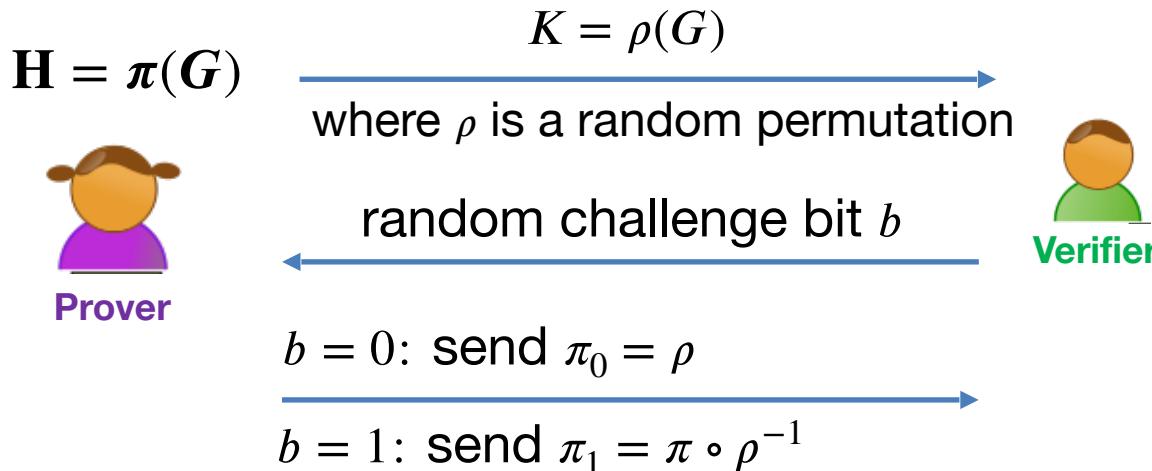
random challenge bit b

$b = 0$: send π_0 s.t. $K = \pi_0(G)$

$b = 1$: send π_1 s.t. $H = \pi_1(K)$

IP for Graph Isomorphism

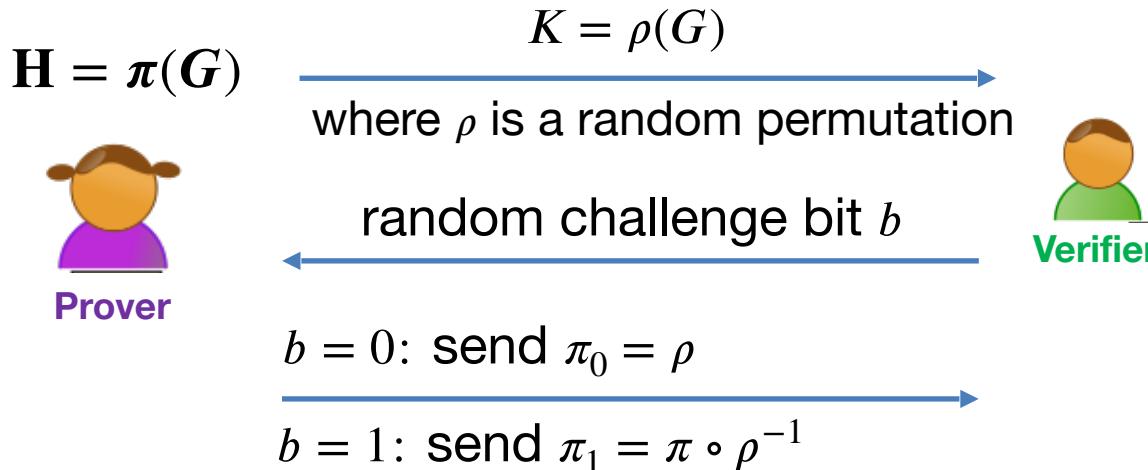
Completeness?



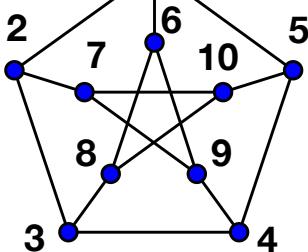
IP for Graph Isomorphism

Soundness: Suppose G and H are non-isomorphic, and a prover could answer both the verifier challenges. Then, $K = \pi_0(G)$ and $H = \pi_1(K)$

In other words, $H = \pi_1 \circ \pi_0(G)$, a contradiction!

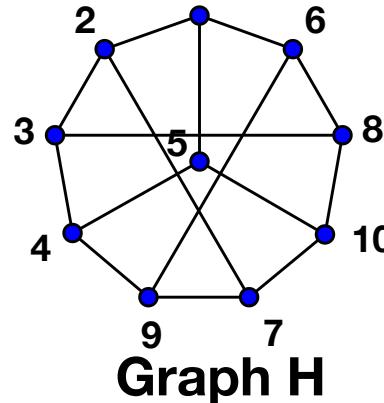


IP for Graph Non-Isomorphism



Graph G

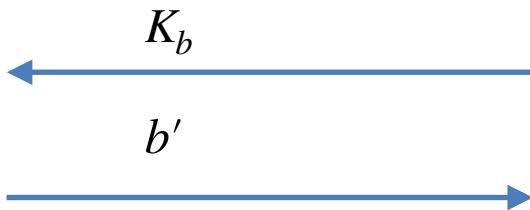
Prover



Graph H

Verifier

Figure out which graph K_b is isomorphic to.



Sample random permutation ρ
Sample bit b
Set $K_0 = \rho(G)$ and $K_1 = \rho(H)$

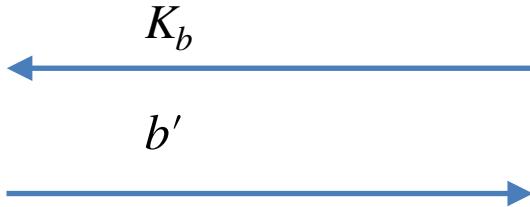
Accept if $b = b'$

IP for Graph Non-Isomorphism

Completeness?

Prover

Figure out which graph K_b is isomorphic to.



Verifier

Sample random permutation ρ
Sample bit b

Set $K_0 = \rho(G)$ and $K_1 = \rho(H)$

Accept if $b = b'$

IP for Graph Non-Isomorphism

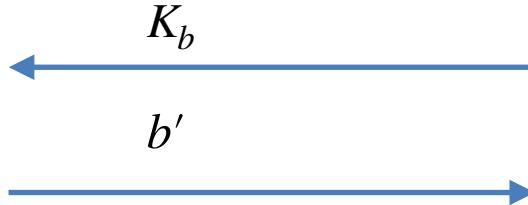
Soundness: Suppose G and H are isomorphic.

Then K_b is isomorphic to *both graphs*. Prover can't figure out which one it is isomorphic to

So best it can do is guess!

Prover

Figure out which graph K_b is isomorphic to.



Verifier

Sample random permutation ρ
Sample bit b

Set $K_0 = \rho(G)$ and $K_1 = \rho(H)$

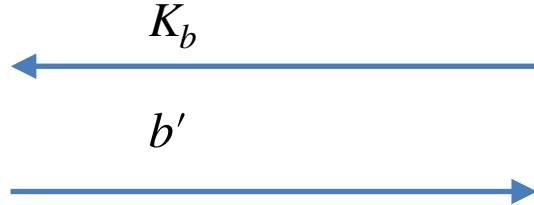
Accept if $b = b'$

IP for Graph Non-Isomorphism

What else does the verifier learn?

Prover

Figure out which graph K_b is isomorphic to.



Verifier

Sample random permutation ρ
Sample bit b

Set $K_0 = \rho(G)$ and $K_1 = \rho(H)$

Accept if $b = b'$

How to Define Zero-Knowledge?

After the interaction, V knows:

- The theorem is true; and
- A **view** of the interaction
(= transcript + randomness of V)

P gives zero knowledge to V :

When the theorem is true, the view gives V nothing that he couldn't have obtained on his own without interacting with P .

How to Define Zero-Knowledge?

(P, V) is zero-knowledge if V can generate his **VIEW** of the interaction **all by himself** in **probabilistic polynomial time**.

How to Define Zero-Knowledge?

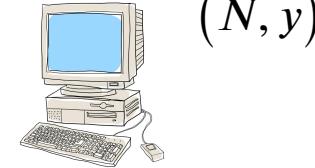
(P, V) is zero-knowledge if V can
“simulate” his **VIEW** of the interaction **all**
by himself in **probabilistic polynomial**
time.

The Simulation Paradigm

$\text{sim } S$
 (s, b, z)

$\text{view}_V(P, V)$:
Transcript = (s, b, z) ,
Coins = b

PPT “simulator” S



$$s = r^2 \pmod{N}$$

$$b \leftarrow \{0,1\}$$

If $b=0$: $z = r$
If $b=1$: $z = rx$

Check:
 $z^2 = sy^b \pmod{N}$

Zero Knowledge: Definition

An Interactive Protocol (P, V) is zero-knowledge for a language L if there exists a **PPT** algorithm S (a simulator) such that **for every** $x \in L$, the following two distributions are indistinguishable:

1. $view_V(P, V)$
2. $S(x, 1^\lambda)$

(P, V) is a zero-knowledge interactive protocol if it is complete, sound and zero-knowledge.

Perfect Zero Knowledge: Definition

An Interactive Protocol (P, V) is **perfect zero-knowledge** for a language L if there exists a PPT algorithm S (a simulator) such that for every $x \in L$, the following two distributions are **identical**:

1. $view_V(P, V)$

2. $S(x, 1^\lambda)$

(P, V) is a zero-knowledge interactive protocol if it is complete, sound and zero-knowledge.

Computational Zero Knowledge: Definition

An Interactive Protocol (P, V) is **computational zero-knowledge** for a language L if there exists a PPT algorithm S (a simulator) such that for every $x \in L$, the following two distributions are **computationally indistinguishable**:

$$1. \ view_V(P, V)$$

$$2. \ S(x, 1^\lambda)$$

(P, V) is a zero-knowledge interactive protocol if it is complete, sound and zero-knowledge.

OLD DEF

What if V is NOT HONEST.

An Interactive Protocol (P, V) is **honest-verifier** perfect zero-knowledge for a language L if there exists a PPT simulator S such that for every $x \in L$, the following two distributions are identical:

1. $view_V(P, V)$
2. $S(x, 1^\lambda)$

REAL DEF

An Interactive Protocol (P, V) is **perfect zero-knowledge** for a language L if **for every PPT V^*** , there exists a (expected) poly time simulator S s.t. for every $x \in L$, the following two distributions are identical:

1. $view_{V^*}(P, V^*)$
2. $S(x, 1^\lambda)$