CIS 5560

Cryptography
Lecture 19

Course website:
pratyushmishra.com/classes/cis-5560-s25

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Recap of last lecture

New primitive: Digital Signatures

Digital Signatures: Definition

A triple of PPT algorithms (Gen, Sign, Verify) such that

e Key generation: Gen(1") — (sk, pk)
e Message signing: Sign(sk, m) — o
e Signature verification: Verify(pk, m,o) — b € {0,1}

Correctness: For all vk, sk, m: Verify(pk, m, Sign(sk, m)) = 1

EUF-CMA for Signatures

Challenger

Pr

Verify(pk, m*,6*) = 1

Adversary

= negl(1)

Today'’s lecture

Simpler Goal: EUF-CMA for 7-time Signatures

Challenger pk Adversary

(m*, o)

m* # m,
Pr and = negl(1)
Verify(pk,m*,6*) = 1

Lamport (One-time) Signatures from OWFs

Signing Key sk: <§0>

1

Yo :f(xo)>
v =fx)

Signing a bit b: The signature is ¢ = x,

Public Key pk: (

Verifying (b, 6): Check if f(o) = y,

Claim: Assuming f is a OWF, no PPT adversary
can produce a signature of b given a signature of
b.

Lamport One-time Signatures for n-bit msgs

Secret Key sk: X0 %20 - a0
xl’l xl’l e oo xn’l
Y10 Y20 -+ Yno
' ; T ’ where y,, = f(x;,).
Public Key pk: <y1’1 Voi - ym) i.b ib
Signing m = (my, ...,m,): 6 = (X 1, X s Xy)

Claim: Assuming f is a OWF, no PPT adv can produce
a signature of m given a signature of a single m’ # m.

Claim: Can forge signature on any message given the
signatures on (some) two messages.

Lamport (One-time) Signatures for arbitrary bits

Secret Key sk: 10 Y20 -
xl,l 'xl,l ..

: Y10 Y20 -
Public Key pk: <y1’1 Va1 -
Signing m: 1.7 := H(m)

X0

L Xy

' yn’0> where y; , = f(x; ;).
. yn,l ’ ’

2.0 = (xl’zl,xz,zz, ...,xn’zn)

Claim: Assuming H is CRH and fis a OWF, no PPT
adv can produce a signature of m given a signature of

a single m’ # m.

Claim: Can forge signature on any message given the
signatures on (some) two messages.

So far, only one-time security...

Constructing a Signature Scheme

Step 0. Still one-time, but arbitrarily long messages.

Constructing a Signature Scheme

Theorem [Naor-Yung’89, Rompel’90]
(EUF-CMA-secure) Signature schemes exist assuming
that one-way functions exist.

TODAY:
(EUF-CMA-secure) Signature schemes exist assuming
that collision-resistant hash functions exist.

(Many-time) Signhature Scheme

In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 1: Stateful Many-time Signatures

Idea: Signature Chains.

Alice starts with a secret signing Key sk
When signing a message m;:
Generate a new pair (ski, pk,)
Produce signature o1 < Sign(sko, my | | pk))
Output pk, || o7.
Remember pk, | |m, || o, as well as sk;.

To verify a signature pk, || 6, for message m;:
Run Verify(pk, pk, [|m,01) =1

Step 1: Stateful Many-time Signatures

Idea: Signature Chains.

Alice starts with a secret signing Key sk

When signing a message m;:
Generate a new pair (ski, pk,)
Produce signature o) < Sign(sko, my | | pk,)
Output pk, || ;.
Remember pk, | |m, || o, as well as sk;.

m
o 1

pkO > pkl

Step 1: Stateful Many-time Signatures

Idea: Signature Chains.

Alice starts with a secret signing Key sk

When signing the next message m,
Generate a new pair (skz, pk,)
Produce signature o, < Sign(sky, m, || pk,)
Output ?77?

m
o 1

pkO > pkl

17

Step 1: Stateful Many-time Signatures

Idea: Signature Chains.

Alice starts with a secret signing Key sk

When signing the next message m,
Generate a new pair (sky, pk,)

Produce signature o, < Sign(sky, m, || pk,)
Output pk, | [6,27

m
o 1

pkO > pkl

18

Step 1: Stateful Many-time Signatures

Idea: Signature Chains.

Alice starts with a secret signing Key sk

When signing the next message m,
Generate a new pair (sky, pk,)

Produce signature o, < Sign(sky, m, || pk,)
Output pk, [|pk, || 06,27

m
o 1

pkO > pkl

19

Step 1: Stateful Many-time Signatures

Idea: Signature Chains.
Alice starts with a secret signing Key sk

When signing the next message m,
Generate a new pair (skz, pk,)

Produce signature 0o, < Sign(sky, m, || pk,)
Output (pk, | [m |[o))|[pk, | [0
(additionally) remember pk, | |m, | | o, as well as sk,.

my m,

0 0y

Pk, - pk, - pk,

20

Step 1: Stateful Many-time Signatures

Idea: Signature Chains.

Two major problems:

1. Alice is stateful: Alice needs to remember a whole lot of
things, O(T') information after T steps.

2. The signatures grow: Length of the signature of the T-th
message is O(T).
hnoom o, my 13 My omy
O-/' ?/v yv O-/v

21

(Many-time) Signhature Scheme

In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 2: Shrinking signatures

pk,

Step 2: Shrinking signatures

pk,
pk,, / T pk,
Poo PKo, Pkyg Ky
PN A NERPAN N

Pkooo PKoor PKoro PKor1 PKigo PKjg o S PK, 4

Alice (the stateful signer) computes many (pk, sk) pairs
and arranges them in a tree of depth = sec. param. A

Step 2: Shrinking signatures

pk,
pk, ‘/\0'/6\ pk,
Poo Popky, Pkyg Ky

e AN RN N

Pkooo PKoor PKoro PKor1 PKigo PKjg o S PK, 4

)

Signature of the zeroth message m,:
Use sk to sign my,.

“Authenticate” pk, , using the “signature path”.

Step 2: Shrinking signatures

pk,
pko 4/\0./6\. pkl
4/\0-/\A / \.
Poo Popky, Pkyg Ky

e AN RN N

Pkooo PKoor PKoro PKor1 PKigo PKjg o S PK, 4

)

Signature of the zeroth message m,:

(0, < Sign(ske, pk,lIpk,), oy < Sign(sko, Pk, lIpk,,),

Opp < Sign(SkOO, pkooollpkom), Tp < Sign(SkOOOa mO))

26

Step 2: Shrinking signatures

pk,
pk, ‘/\0'/6\ pk,
Poo Popky, Pkyg Ky

e AN RN N\

Pkooo PKoor PKoro PKor1 PKigo PKjg o S PK, 4

)

Signature of the zeroth message m,:

(Authentication path for PKooo To < Sign(skooos M)

Step 2: Shrinking signatures

Pk, Pk, PK1,
) /<>&k"00) O\ VRN RN
PXooo PRoor PXoro PKoyp PKige PKjo; o S PK, 4

71

Signature of message m,

(Authentication path for pk,,.,, 7| < Sign(skom,ml))

001’

Step 2: Shrinking signatures

pk,
P
Pk, O, Pk,
Poo Popky, Pkyg Ky
) /\k 01 XX N\ 7\
PXooo PXoor PKoig PKyyg Pkigo PKigp o S PK, 4
%)

Signature of message m,

(Authentication path for pk 7, < Sign(skoio, mz))

010’

Step 2: Shrinking signatures

pk,
pk, ‘/\0'/6\‘ pk,
4/\0-/\A / \
Poo Popky, Pkyg Ky

) 7\ 001)<= O\ O\
Pkooo PKoor PKgig PKor1 PKigo PKjg o S PK, 4

(%)

GOOD NEWS: %

Each verification key (incl. at the leaves) is used
only once, so one-time security suffices!

Step 2: Shrinking signatures

pk,
pk, ‘/\0'/6\ pk,
Poo Popky, Pkyg Ky

) 7\ 001)<= O\ O\
Pkooo PKoor PKgig PKor1 PKigo PKjg o S PK, 4

(%)

GOOD NEWS: 0},

Signatures consist of 4 one-time signatures and do
now grow with time!

Step 2: Shrinking signatures

pk,
pk, ‘/\0'/6\ pk,
Poo Popky, Pkyg Ky

) 7\ 001)<= O\ O\
Pkooo PKoor PKgig PKor1 PKigo PKjg o S PK, 4

(%)

BAD NEWS: (/~

Signer generatés and keeps the entire (~ 2
signature tree in memory!

A_size)

(Many-time) Signhature Scheme

In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.
|dea: Pseudorandom Trees

33

Step 3: Pseudorandom signature trees

I’
- (pk Ske)

/\

— (pky sko) — (PKpsk)

/\”61 /\.
O\ O\ 7\ /\

Y000 Y001 Fo10 Foi1 Ti00 F101 110 111

Tree of pseudorandom values:
The signing key is a PRF key k.
“Lazily” populate the nodes with r, := PRF(k, x).

Use r, to derive the keys (pk , sk,) < Gen(1%;r,).

Step 3: Pseudorandom signature trees

pk,
pk,, / \ pk,
_— \A / \
Poo PKo, Pkyg Ky
PN A NERPAN N

Pkooo PKoor PKoro PKor1 PKigo PKjg o S PK, 4

GOOD NEWS: *°*

Short signatures and small storage for the signer

Step 3: Pseudorandom signature trees

N 8 AN N

PKooo PKgoy pkon PKoi1 PKigo PKyoy o S Pk,
)
h,

BAD NEWS: (~

Signer needs to keep a counter indicating which
leaf (which tells her which secret key) to use next.

(Many-time) Signhature Scheme

In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains
Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.
|dea: Pseudorandom Trees

Step 4. How to make Alice stateless.
|dea: Randomization

37

Step 4: Statelessness via randomization

pk,
4/\/ > k
pk() O, P 1
k 4/\'0>\A ‘/\O-/\
PXoo PRo1 6, PKio 6, 1 Pk
RN =< X N\

Pkooo PKoor PKgro Pkorr PKigo Py o S PK, 4

Signature of a message m:
Pick a random leaf r. Use pk to sign m.

o, < Sign(sk,, m)

Output (7, 6,, authentication path for pk)

38

Step 4: Statelessness via randomization

pk,
e
pk() O, pkl
4/\'>\ ./\/\
Poo o0 PRo1 6, Pk} o Ky

N\ XX PSP

Pkooo PKoor PKgro Pkorr PKigo Py o S PK, 4

00
GOOD NEWS:

No need to keep state.

Step 4: Statelessness via randomization

pk,
0 €
‘/\->\A N
pk 0_0 k /O-I\‘k
00 PKo1 pk PKy4
(0] 10
N 01 010

RN =X X N

Pkooo PKoor PKgro Pkorr PKigo Py o S PK, 4

Key Idea:

If the signer produces g signatures, the probability she
picks the same leaf twice is < g*/2".

(Many-time) Sighature Scheme

In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.
|dea: Pseudorandom Trees

Step 4. How to make Alice stateless.
|dea: Randomization

Step 5 (optional). How to make Alice stateless and
deterministic. ldea: PRFs. "

Step 4: Deterministic signer

pkoo Oy

N\ =X KX PN

Pkooo Pkoor PKgio Pk pklO‘O Pkt pk

Key Idea:
Generate r pseudo-randomly.

Have another PRF key k' and let r = PRF(k’, m)

That’s it for the
construction.

Digital Signature Construction

* Historically regarded as inefficient; therefore, never used
in practice.

* However, this signature scheme (or variants thereof) are
now called “hash-based signatures” and seeing a re-
emergence as a candidate post-quantum secure
signature scheme. E.g. https://sphincs.org/

