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CIS 5560

Lecture 19
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s25 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/


Recap of last lecture
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New primitive: Digital Signatures
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Dan Boneh
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Digital Signatures: Definition

Correctness: For all vk, sk, m:  𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m, 𝖲𝗂𝗀𝗇(𝗌𝗄, m)) = 1

A triple of PPT algorithms  such that 

• Key generation:  
• Message signing:  
• Signature verification: 

(𝖦𝖾𝗇, 𝖲𝗂𝗀𝗇, 𝖵𝖾𝗋𝗂𝖿𝗒)

𝖦𝖾𝗇(1n) → (𝗌𝗄, 𝗉𝗄)
𝖲𝗂𝗀𝗇(𝗌𝗄, m) → σ

𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m, σ) → b ∈ {0,1}



Dan Boneh

EUF-CMA for Signatures
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Challenger Adversary𝗉𝗄

mi

σi

(m⋆, σ⋆)

Pr
m⋆ ∉ {mi}

 and 
𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m⋆, σ⋆) = 1

= 𝗇𝖾𝗀𝗅(λ)



Today’s lecture
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Dan Boneh

Simpler Goal: EUF-CMA for 1-time Signatures
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Challenger Adversary𝗉𝗄

m1

σ1

(m⋆, σ⋆)

Pr
m⋆ ≠ m1
 and 

𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m⋆, σ⋆) = 1
= 𝗇𝖾𝗀𝗅(λ)



Lamport (One-time) Signatures from OWFs

Signing Key : 𝗌𝗄 (x0
x1)

Public Key : 𝗉𝗄 (y0 = f (x0)
y1 = f (x1))

Signing a bit : The signature is  b 𝜎 = 𝑥𝑏

Verifying : Check if (b, σ) 𝑓(𝜎) = 𝑦𝑏

Claim: Assuming  is a OWF, no PPT adversary 
can produce a signature of  given a signature of 
.

𝑓
𝑏̄

𝑏
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Signing :     m = (m1, …, mn) σ = (x1,m1
, x2,m2

, …, xn,mn
)

Public Key :𝗉𝗄 where . yi,b = f (xi,b)

Claim: Assuming  is a OWF, no PPT adv can produce 
a signature of  given a signature of a single .

𝑓
𝑚 𝑚′￼≠ 𝑚

Claim: Can forge signature on any message given the 
signatures on (some) two messages. 

(y1,0 y2,0 … yn,0
y1,1 y2,1 … yn,1)
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Secret Key :𝗌𝗄 (x1,0 x2,0 … xn,0
x1,1 x1,1 … xn,1)

Lamport One-time Signatures for -bit msgsn



Lamport (One-time) Signatures for arbitrary bits

Signing :             1.  

                            2. 

m z := H(m)
σ = (x1,z1

, x2,z2
, …, xn,zn

)

Public Key :𝗉𝗄 where . yi,b = f (xi,b)

Claim: Assuming  is CRH and  is a OWF, no PPT 
adv can produce a signature of  given a signature of 
a single .

H 𝑓
𝑚

𝑚′￼≠ 𝑚
Claim: Can forge signature on any message given the 
signatures on (some) two messages. 

(y1,0 y2,0 … yn,0
y1,1 y2,1 … yn,1)
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Secret Key :𝗌𝗄 (x1,0 x2,0 … xn,0
x1,1 x1,1 … xn,1)



So far, only one-time security…
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Constructing a Signature Scheme

Step 2. How to Shrink the signatures. 

Step 3. How to Shrink Alice’s storage.  
	
Step 4. How to make Alice stateless.  
	

Step 5 (optional). How to make Alice stateless and 
deterministic.  

Step 1. Many-time: Stateful, Growing Signatures. 

Step 0. Still one-time, but arbitrarily long messages. 
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Constructing a Signature Scheme

Theorem [Naor-Yung’89, Rompel’90]  
(EUF-CMA-secure) Signature schemes exist assuming 
that one-way functions exist. 

TODAY: 
(EUF-CMA-secure) Signature schemes exist assuming 
that collision-resistant hash functions exist. 
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(Many-time) Signature Scheme
In four+ steps

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.  
	 Idea: Pseudorandom Trees

Step 4. How to make Alice stateless.  
	 Idea: Randomization

Step 5 (optional). How to make Alice stateless and 
deterministic.  Idea: PRFs.

Step 1. Stateful, Growing Signatures. Idea: Signature Chains
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Step 1: Stateful Many-time Signatures
Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing a message   
	 Generate a new pair  

	 Produce signature	  

	 Output .  
	 Remember  as well as .

𝑚1:
(𝗌𝗄1, 𝗉𝗄1)

σ′￼1 ← 𝖲𝗂𝗀𝗇(𝗌𝗄0, m1 | |𝗉𝗄1)
𝗉𝗄1 | |σ′￼1

𝗉𝗄1 | |m1 | |σ1 𝗌𝗄1

To verify a signature  for message  

	 Run 

𝗉𝗄1 | |σ1 𝑚1:
𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄0, 𝗉𝗄1 | |m1, σ′￼1) = 1
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Step 1: Stateful Many-time Signatures
Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing a message   
	 Generate a new pair  

	 Produce signature	  

	 Output .  
	 Remember  as well as .

𝑚1:
(𝗌𝗄1, 𝗉𝗄1)

σ1 ← 𝖲𝗂𝗀𝗇(𝗌𝗄0, m1 | |𝗉𝗄1)
𝗉𝗄1 | |σ1

𝗉𝗄1 | |m1 | |σ1 𝗌𝗄1
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𝗉𝗄0 𝗉𝗄1

𝑚1𝜎1



Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing the next message   
	 Generate a new pair  

	 Produce signature	  

	 Output ???

m2
(𝗌𝗄2, 𝗉𝗄2)

σ2 ← 𝖲𝗂𝗀𝗇(𝗌𝗄1, m2 | |𝗉𝗄2)
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𝗉𝗄0 𝗉𝗄1

𝑚1𝜎1

Step 1: Stateful Many-time Signatures



Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing the next message   
	 Generate a new pair  

	 Produce signature	  

	 Output ??

m2
(𝗌𝗄2, 𝗉𝗄2)

σ2 ← 𝖲𝗂𝗀𝗇(𝗌𝗄1, m2 | |𝗉𝗄2)
𝗉𝗄2 | |σ2
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𝗉𝗄0 𝗉𝗄1

𝑚1𝜎1

Step 1: Stateful Many-time Signatures



Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing the next message   
	 Generate a new pair  

	 Produce signature	  

	 Output ??

m2
(𝗌𝗄2, 𝗉𝗄2)

σ2 ← 𝖲𝗂𝗀𝗇(𝗌𝗄1, m2 | |𝗉𝗄2)
𝗉𝗄1 | |𝗉𝗄2 | |σ2
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𝗉𝗄0 𝗉𝗄1

𝑚1𝜎1

Step 1: Stateful Many-time Signatures



Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing the next message   
	 Generate a new pair  

	 Produce signature	  

	 Output 

            (additionally) remember  as well as .

m2
(𝗌𝗄2, 𝗉𝗄2)

σ2 ← 𝖲𝗂𝗀𝗇(𝗌𝗄1, m2 | |𝗉𝗄2)
(𝗉𝗄1 | |m1 | |σ1) | |𝗉𝗄2 | |σ2

𝗉𝗄2 | |m2 | |σ2 𝗌𝗄2
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𝗉𝗄0 𝗉𝗄1

𝑚1𝜎1
𝗉𝗄2

m2σ2

Step 1: Stateful Many-time Signatures



𝗉𝗄2

𝜎2𝜎1

Idea: Signature Chains.

Two major problems:

1. Alice is stateful: Alice needs to remember a whole lot of 
things,  information after  steps.𝑂(𝑇 ) 𝑇

𝗉𝗄0 𝗉𝗄1 𝗉𝗄3

𝜎3

𝗉𝗄4

𝜎4 …

2. The signatures grow: Length of the signature of the -th 
message is .

𝑇
𝑂(𝑇 )

𝑚1𝜏1 𝑚2𝜏2 𝑚3𝜏3 𝑚4𝜏4
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Step 1: Stateful Many-time Signatures



(Many-time) Signature Scheme
In four+ steps

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 1. Stateful, Growing Signatures. Idea: Signature Chains
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𝗉𝗄ε

23

Step 2: Shrinking signatures



𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

Alice (the stateful signer) computes many  pairs 
and arranges them in a tree of depth = sec. param. 

(𝗉𝗄, 𝗌𝗄)
𝜆
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Step 2: Shrinking signatures



𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

Signature of the zeroth message 𝒎𝟎:
Use  to sign .  𝗌𝗄000 𝑚0

“Authenticate”  using the “signature path”.  𝗉𝗄000

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟎

τ0
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Step 2: Shrinking signatures



𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111
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𝝈𝝐

𝝈𝟎

𝝈𝟎𝟎

τ0

Signature of the zeroth message 𝒎𝟎:
( , , σε ← 𝖲𝗂𝗀𝗇(𝗌𝗄ϵ, 𝗉𝗄0∥𝗉𝗄1) σ0 ← 𝖲𝗂𝗀𝗇(𝗌𝗄0, 𝗉𝗄00∥𝗉𝗄01)

, ) σ00 ← 𝖲𝗂𝗀𝗇(𝗌𝗄00, 𝗉𝗄000∥𝗉𝗄001) τ0 ← 𝖲𝗂𝗀𝗇(𝗌𝗄000, m0)

Step 2: Shrinking signatures



𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111
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𝝈𝝐

𝝈𝟎

𝝈𝟎𝟎

τ0

Signature of the zeroth message 𝒎𝟎:

(Authentication path for , ) 𝗉𝗄000 τ0 ← 𝖲𝗂𝗀𝗇(𝗌𝗄000, m0)

Step 2: Shrinking signatures



𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111
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𝝈𝝐

𝝈𝟎

𝝈𝟎𝟎

τ1

Signature of message m1

(Authentication path for , ) 𝗉𝗄001 τ1 ← 𝖲𝗂𝗀𝗇(𝗌𝗄001, m1)

Step 2: Shrinking signatures



𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111
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𝝈𝝐

𝝈𝟎

σ01

τ2

Signature of message m2

(Authentication path for , ) 𝗉𝗄010 τ2 ← 𝖲𝗂𝗀𝗇(𝗌𝗄010, m2)

Step 2: Shrinking signatures



𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111
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𝝈𝝐

𝝈𝟎

σ01

τ2

GOOD NEWS:
Each verification key (incl. at the leaves) is used 
only once, so one-time security suffices!

Step 2: Shrinking signatures



𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111
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𝝈𝝐

𝝈𝟎

σ01

τ2

GOOD NEWS:
Signatures consist of  one-time signatures and do 
now grow with time!

𝜆

Step 2: Shrinking signatures



𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111
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𝝈𝝐

𝝈𝟎

σ01

τ2

BAD NEWS:
Signer generates and keeps the entire ( -size) 
signature tree in memory!

≈  2𝜆

Step 2: Shrinking signatures



Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.  
	 Idea: Pseudorandom Trees

Step 1. Stateful, Growing Signatures. Idea: Signature Chains
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(Many-time) Signature Scheme
In four+ steps



𝑟0

𝑟𝜖

𝑟1

𝑟00

𝑟000 𝑟001

𝑟01

𝑟010 𝑟011

𝑟10

𝑟100 𝑟101

𝑟11

𝑟110 𝑟111

Tree of pseudorandom values:

“Lazily” populate the nodes with .rx := 𝖯𝖱𝖥(k, x)
The signing key is a PRF key .k

Use  to derive the keys . 𝑟𝑥 (𝗉𝗄x, 𝗌𝗄x) ← 𝖦𝖾𝗇(1λ; rx)

(𝗉𝗄ε, 𝗌𝗄ε)

(𝗉𝗄0, 𝗌𝗄0) (𝗉𝗄1, 𝗌𝗄1)

… … … …
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Step 3: Pseudorandom signature trees



GOOD NEWS:
Short signatures and small storage for the signer

35

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

Step 3: Pseudorandom signature trees



BAD NEWS:
Signer needs to keep a counter indicating which 
leaf (which tells her which secret key) to use next.

𝑚2

𝜏2
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𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

Step 3: Pseudorandom signature trees



Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.  
	 Idea: Pseudorandom Trees

Step 4. How to make Alice stateless.  
	 Idea: Randomization

Step 1. Stateful, Growing Signatures. Idea: Signature Chains
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(Many-time) Signature Scheme
In four+ steps



𝝈𝟏
𝝈𝟏𝟎

Signature of a message 𝒎:
Pick a random leaf . Use  to sign .  𝑟 𝗉𝗄r 𝑚

Output  authentication path for ) (r, σr, 𝗉𝗄r

σr ← 𝖲𝗂𝗀𝗇(𝗌𝗄r, m)

𝝈𝝐

𝝈𝟎
𝝈𝟎𝟏

𝗉𝗄010 𝗉𝗄101
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𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

Step 4: Statelessness via randomization



GOOD NEWS:

No need to keep state. 

39

𝝈𝟏
𝝈𝟏𝟎

𝝈𝝐

𝝈𝟎
𝝈𝟎𝟏

𝗉𝗄010 𝗉𝗄101

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

Step 4: Statelessness via randomization



Key Idea:
If the signer produces  signatures, the probability she 
picks the same leaf twice is .

𝑞
≤ 𝑞2/2𝜆
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𝝈𝟏
𝝈𝟏𝟎

𝝈𝝐

𝝈𝟎
𝝈𝟎𝟏

𝗉𝗄010 𝗉𝗄101

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

Step 4: Statelessness via randomization



In four+ steps

Step 5 (optional). How to make Alice stateless and 
deterministic.  Idea: PRFs. 41

(Many-time) Signature Scheme

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.  
	 Idea: Pseudorandom Trees

Step 4. How to make Alice stateless.  
	 Idea: Randomization

Step 1. Stateful, Growing Signatures. Idea: Signature Chains



Key Idea:
Generate  pseudo-randomly.𝑟
Have another PRF key  and let k′￼ r = 𝖯𝖱𝖥(k′￼, m)
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𝝈𝟏
𝝈𝟏𝟎

𝝈𝝐

𝝈𝟎
𝝈𝟎𝟏

𝗉𝗄010 𝗉𝗄101

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

Step 4: Deterministic signer



That’s it for the 
construction.
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Digital Signature Construction 

• Historically regarded as inefficient; therefore, never used 
in practice. 

• However, this signature scheme (or variants thereof) are 
now called “hash-based signatures” and seeing a re-
emergence as a candidate post-quantum secure 
signature scheme.  E.g. https://sphincs.org/


