
￼1

CIS 5560

Lecture 19
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s25

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Recap of last lecture

2

New primitive: Digital Signatures

3

Dan Boneh
4

Digital Signatures: Definition

Correctness: For all vk, sk, m: 𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m, 𝖲𝗂𝗀𝗇(𝗌𝗄, m)) = 1

A triple of PPT algorithms such that

• Key generation:
• Message signing:
• Signature verification:

(𝖦𝖾𝗇, 𝖲𝗂𝗀𝗇, 𝖵𝖾𝗋𝗂𝖿𝗒)

𝖦𝖾𝗇(1n) → (𝗌𝗄, 𝗉𝗄)
𝖲𝗂𝗀𝗇(𝗌𝗄, m) → σ

𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m, σ) → b ∈ {0,1}

Dan Boneh

EUF-CMA for Signatures

5

Challenger Adversary𝗉𝗄

mi

σi

(m⋆, σ⋆)

Pr
m⋆ ∉ {mi}

 and
𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m⋆, σ⋆) = 1

= 𝗇𝖾𝗀𝗅(λ)

Today’s lecture

6

Dan Boneh

Simpler Goal: EUF-CMA for 1-time Signatures

7

Challenger Adversary𝗉𝗄

m1

σ1

(m⋆, σ⋆)

Pr
m⋆ ≠ m1
 and

𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m⋆, σ⋆) = 1
= 𝗇𝖾𝗀𝗅(λ)

Lamport (One-time) Signatures from OWFs

Signing Key : 𝗌𝗄 (x0
x1)

Public Key : 𝗉𝗄 (y0 = f (x0)
y1 = f (x1))

Signing a bit : The signature is b 𝜎 = 𝑥𝑏

Verifying : Check if (b, σ) 𝑓(𝜎) = 𝑦𝑏

Claim: Assuming is a OWF, no PPT adversary
can produce a signature of given a signature of
.

𝑓
𝑏̄

𝑏
8

Signing : m = (m1, …, mn) σ = (x1,m1
, x2,m2

, …, xn,mn
)

Public Key :𝗉𝗄 where . yi,b = f (xi,b)

Claim: Assuming is a OWF, no PPT adv can produce
a signature of given a signature of a single .

𝑓
𝑚 𝑚′￼≠ 𝑚

Claim: Can forge signature on any message given the
signatures on (some) two messages.

(y1,0 y2,0 … yn,0
y1,1 y2,1 … yn,1)

9

Secret Key :𝗌𝗄 (x1,0 x2,0 … xn,0
x1,1 x1,1 … xn,1)

Lamport One-time Signatures for -bit msgsn

Lamport (One-time) Signatures for arbitrary bits

Signing : 1.

 2.

m z := H(m)
σ = (x1,z1

, x2,z2
, …, xn,zn

)

Public Key :𝗉𝗄 where . yi,b = f (xi,b)

Claim: Assuming is CRH and is a OWF, no PPT
adv can produce a signature of given a signature of
a single .

H 𝑓
𝑚

𝑚′￼≠ 𝑚
Claim: Can forge signature on any message given the
signatures on (some) two messages.

(y1,0 y2,0 … yn,0
y1,1 y2,1 … yn,1)

10

Secret Key :𝗌𝗄 (x1,0 x2,0 … xn,0
x1,1 x1,1 … xn,1)

So far, only one-time security…

11

Constructing a Signature Scheme

Step 2. How to Shrink the signatures.

Step 3. How to Shrink Alice’s storage.  
	
Step 4. How to make Alice stateless.  
	

Step 5 (optional). How to make Alice stateless and
deterministic.

Step 1. Many-time: Stateful, Growing Signatures.

Step 0. Still one-time, but arbitrarily long messages.

12

Constructing a Signature Scheme

Theorem [Naor-Yung’89, Rompel’90]  
(EUF-CMA-secure) Signature schemes exist assuming
that one-way functions exist.

TODAY: 
(EUF-CMA-secure) Signature schemes exist assuming
that collision-resistant hash functions exist.

13

(Many-time) Signature Scheme
In four+ steps

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.  
	 Idea: Pseudorandom Trees

Step 4. How to make Alice stateless.  
	 Idea: Randomization

Step 5 (optional). How to make Alice stateless and
deterministic. Idea: PRFs.

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

14

Step 1: Stateful Many-time Signatures
Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing a message  
	 Generate a new pair

	 Produce signature	

	 Output .  
	 Remember as well as .

𝑚1:
(𝗌𝗄1, 𝗉𝗄1)

σ′￼1 ← 𝖲𝗂𝗀𝗇(𝗌𝗄0, m1 | |𝗉𝗄1)
𝗉𝗄1 | |σ′￼1

𝗉𝗄1 | |m1 | |σ1 𝗌𝗄1

To verify a signature for message

	 Run

𝗉𝗄1 | |σ1 𝑚1:
𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄0, 𝗉𝗄1 | |m1, σ′￼1) = 1

15

Step 1: Stateful Many-time Signatures
Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing a message  
	 Generate a new pair

	 Produce signature	

	 Output .  
	 Remember as well as .

𝑚1:
(𝗌𝗄1, 𝗉𝗄1)

σ1 ← 𝖲𝗂𝗀𝗇(𝗌𝗄0, m1 | |𝗉𝗄1)
𝗉𝗄1 | |σ1

𝗉𝗄1 | |m1 | |σ1 𝗌𝗄1

16

𝗉𝗄0 𝗉𝗄1

𝑚1𝜎1

Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing the next message  
	 Generate a new pair

	 Produce signature	

	 Output ???

m2
(𝗌𝗄2, 𝗉𝗄2)

σ2 ← 𝖲𝗂𝗀𝗇(𝗌𝗄1, m2 | |𝗉𝗄2)

17

𝗉𝗄0 𝗉𝗄1

𝑚1𝜎1

Step 1: Stateful Many-time Signatures

Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing the next message  
	 Generate a new pair

	 Produce signature	

	 Output ??

m2
(𝗌𝗄2, 𝗉𝗄2)

σ2 ← 𝖲𝗂𝗀𝗇(𝗌𝗄1, m2 | |𝗉𝗄2)
𝗉𝗄2 | |σ2

18

𝗉𝗄0 𝗉𝗄1

𝑚1𝜎1

Step 1: Stateful Many-time Signatures

Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing the next message  
	 Generate a new pair

	 Produce signature	

	 Output ??

m2
(𝗌𝗄2, 𝗉𝗄2)

σ2 ← 𝖲𝗂𝗀𝗇(𝗌𝗄1, m2 | |𝗉𝗄2)
𝗉𝗄1 | |𝗉𝗄2 | |σ2

19

𝗉𝗄0 𝗉𝗄1

𝑚1𝜎1

Step 1: Stateful Many-time Signatures

Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing the next message  
	 Generate a new pair

	 Produce signature	

	 Output

 (additionally) remember as well as .

m2
(𝗌𝗄2, 𝗉𝗄2)

σ2 ← 𝖲𝗂𝗀𝗇(𝗌𝗄1, m2 | |𝗉𝗄2)
(𝗉𝗄1 | |m1 | |σ1) | |𝗉𝗄2 | |σ2

𝗉𝗄2 | |m2 | |σ2 𝗌𝗄2

20

𝗉𝗄0 𝗉𝗄1

𝑚1𝜎1
𝗉𝗄2

m2σ2

Step 1: Stateful Many-time Signatures

𝗉𝗄2

𝜎2𝜎1

Idea: Signature Chains.

Two major problems:

1. Alice is stateful: Alice needs to remember a whole lot of
things, information after steps.𝑂(𝑇) 𝑇

𝗉𝗄0 𝗉𝗄1 𝗉𝗄3

𝜎3

𝗉𝗄4

𝜎4 …

2. The signatures grow: Length of the signature of the -th
message is .

𝑇
𝑂(𝑇)

𝑚1𝜏1 𝑚2𝜏2 𝑚3𝜏3 𝑚4𝜏4

21

Step 1: Stateful Many-time Signatures

(Many-time) Signature Scheme
In four+ steps

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

22

𝗉𝗄ε

23

Step 2: Shrinking signatures

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

Alice (the stateful signer) computes many pairs
and arranges them in a tree of depth = sec. param.

(𝗉𝗄, 𝗌𝗄)
𝜆

24

Step 2: Shrinking signatures

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

Signature of the zeroth message 𝒎𝟎:
Use to sign . 𝗌𝗄000 𝑚0

“Authenticate” using the “signature path”. 𝗉𝗄000

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟎

τ0

25

Step 2: Shrinking signatures

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

26

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟎

τ0

Signature of the zeroth message 𝒎𝟎:
(, , σε ← 𝖲𝗂𝗀𝗇(𝗌𝗄ϵ, 𝗉𝗄0∥𝗉𝗄1) σ0 ← 𝖲𝗂𝗀𝗇(𝗌𝗄0, 𝗉𝗄00∥𝗉𝗄01)

,) σ00 ← 𝖲𝗂𝗀𝗇(𝗌𝗄00, 𝗉𝗄000∥𝗉𝗄001) τ0 ← 𝖲𝗂𝗀𝗇(𝗌𝗄000, m0)

Step 2: Shrinking signatures

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

27

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟎

τ0

Signature of the zeroth message 𝒎𝟎:

(Authentication path for ,) 𝗉𝗄000 τ0 ← 𝖲𝗂𝗀𝗇(𝗌𝗄000, m0)

Step 2: Shrinking signatures

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

28

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟎

τ1

Signature of message m1

(Authentication path for ,) 𝗉𝗄001 τ1 ← 𝖲𝗂𝗀𝗇(𝗌𝗄001, m1)

Step 2: Shrinking signatures

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

29

𝝈𝝐

𝝈𝟎

σ01

τ2

Signature of message m2

(Authentication path for ,) 𝗉𝗄010 τ2 ← 𝖲𝗂𝗀𝗇(𝗌𝗄010, m2)

Step 2: Shrinking signatures

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

30

𝝈𝝐

𝝈𝟎

σ01

τ2

GOOD NEWS:
Each verification key (incl. at the leaves) is used
only once, so one-time security suffices!

Step 2: Shrinking signatures

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

31

𝝈𝝐

𝝈𝟎

σ01

τ2

GOOD NEWS:
Signatures consist of one-time signatures and do
now grow with time!

𝜆

Step 2: Shrinking signatures

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

32

𝝈𝝐

𝝈𝟎

σ01

τ2

BAD NEWS:
Signer generates and keeps the entire (-size)
signature tree in memory!

≈ 2𝜆

Step 2: Shrinking signatures

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.  
	 Idea: Pseudorandom Trees

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

33

(Many-time) Signature Scheme
In four+ steps

𝑟0

𝑟𝜖

𝑟1

𝑟00

𝑟000 𝑟001

𝑟01

𝑟010 𝑟011

𝑟10

𝑟100 𝑟101

𝑟11

𝑟110 𝑟111

Tree of pseudorandom values:

“Lazily” populate the nodes with .rx := 𝖯𝖱𝖥(k, x)
The signing key is a PRF key .k

Use to derive the keys . 𝑟𝑥 (𝗉𝗄x, 𝗌𝗄x) ← 𝖦𝖾𝗇(1λ; rx)

(𝗉𝗄ε, 𝗌𝗄ε)

(𝗉𝗄0, 𝗌𝗄0) (𝗉𝗄1, 𝗌𝗄1)

… … … …

34

Step 3: Pseudorandom signature trees

GOOD NEWS:
Short signatures and small storage for the signer

35

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

Step 3: Pseudorandom signature trees

BAD NEWS:
Signer needs to keep a counter indicating which
leaf (which tells her which secret key) to use next.

𝑚2

𝜏2

36

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

Step 3: Pseudorandom signature trees

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.  
	 Idea: Pseudorandom Trees

Step 4. How to make Alice stateless.  
	 Idea: Randomization

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

37

(Many-time) Signature Scheme
In four+ steps

𝝈𝟏
𝝈𝟏𝟎

Signature of a message 𝒎:
Pick a random leaf . Use to sign . 𝑟 𝗉𝗄r 𝑚

Output authentication path for) (r, σr, 𝗉𝗄r

σr ← 𝖲𝗂𝗀𝗇(𝗌𝗄r, m)

𝝈𝝐

𝝈𝟎
𝝈𝟎𝟏

𝗉𝗄010 𝗉𝗄101

38

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

Step 4: Statelessness via randomization

GOOD NEWS:

No need to keep state.

39

𝝈𝟏
𝝈𝟏𝟎

𝝈𝝐

𝝈𝟎
𝝈𝟎𝟏

𝗉𝗄010 𝗉𝗄101

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

Step 4: Statelessness via randomization

Key Idea:
If the signer produces signatures, the probability she
picks the same leaf twice is .

𝑞
≤ 𝑞2/2𝜆

40

𝝈𝟏
𝝈𝟏𝟎

𝝈𝝐

𝝈𝟎
𝝈𝟎𝟏

𝗉𝗄010 𝗉𝗄101

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

Step 4: Statelessness via randomization

In four+ steps

Step 5 (optional). How to make Alice stateless and
deterministic. Idea: PRFs. 41

(Many-time) Signature Scheme

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.  
	 Idea: Pseudorandom Trees

Step 4. How to make Alice stateless.  
	 Idea: Randomization

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Key Idea:
Generate pseudo-randomly.𝑟
Have another PRF key and let k′￼ r = 𝖯𝖱𝖥(k′￼, m)

42

𝝈𝟏
𝝈𝟏𝟎

𝝈𝝐

𝝈𝟎
𝝈𝟎𝟏

𝗉𝗄010 𝗉𝗄101

𝗉𝗄0

𝗉𝗄ε

𝗉𝗄1

𝗉𝗄00

𝗉𝗄000 𝗉𝗄001

𝗉𝗄01

𝗉𝗄010 𝗉𝗄011

𝗉𝗄10

𝗉𝗄100 𝗉𝗄101

𝗉𝗄11

𝗉𝗄110 𝗉𝗄111

Step 4: Deterministic signer

That’s it for the
construction.

43

Digital Signature Construction

• Historically regarded as inefficient; therefore, never used
in practice.

• However, this signature scheme (or variants thereof) are
now called “hash-based signatures” and seeing a re-
emergence as a candidate post-quantum secure
signature scheme. E.g. https://sphincs.org/

