

CIS 5560

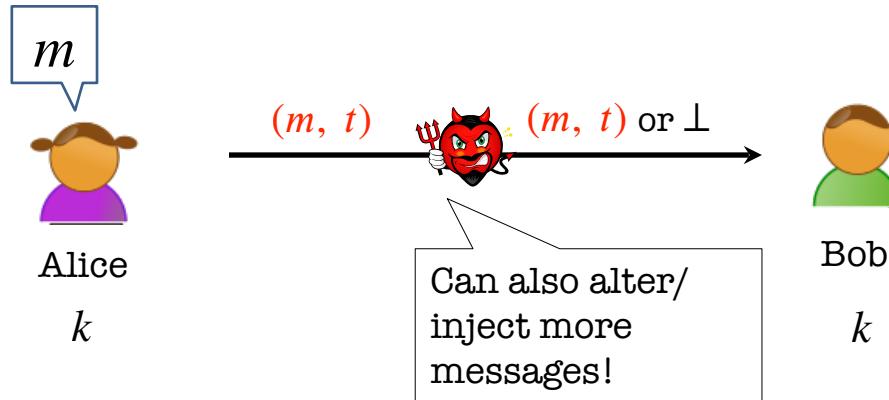
Cryptography Lecture 18

Course website:
pratyushmishra.com/classes/cis-5560-s25/

Announcements

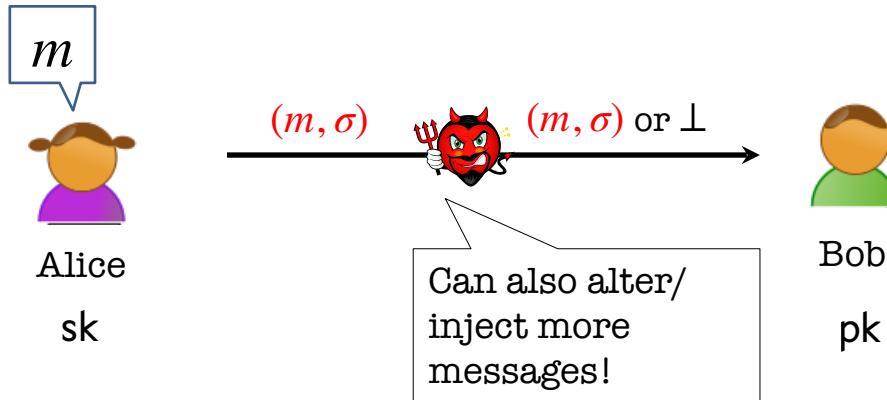
- **Midterm grades have been published**
 - Regrade requests are open

Symmetric-key Message Authentication



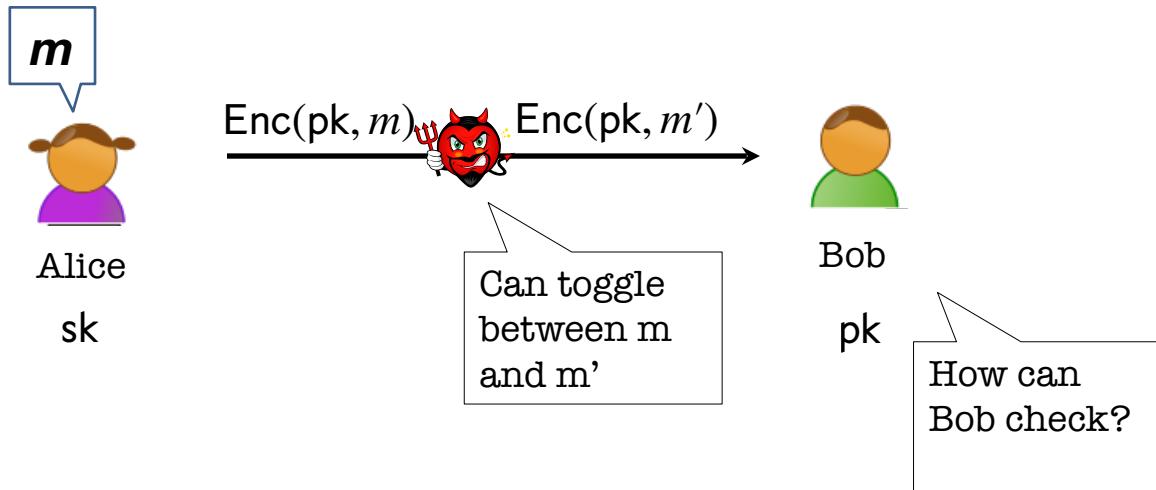
We want Alice to generate a **tag** for the message m which is **hard to generate** without the secret key k .

Public-key Message Authentication?



We want Alice to generate a **signature** for the message m which is **hard to forge** without the secret/signing key sk .

Does PKE not solve this?



Anybody can encrypt, and no way for recipient to check.

New primitive: Digital Signatures

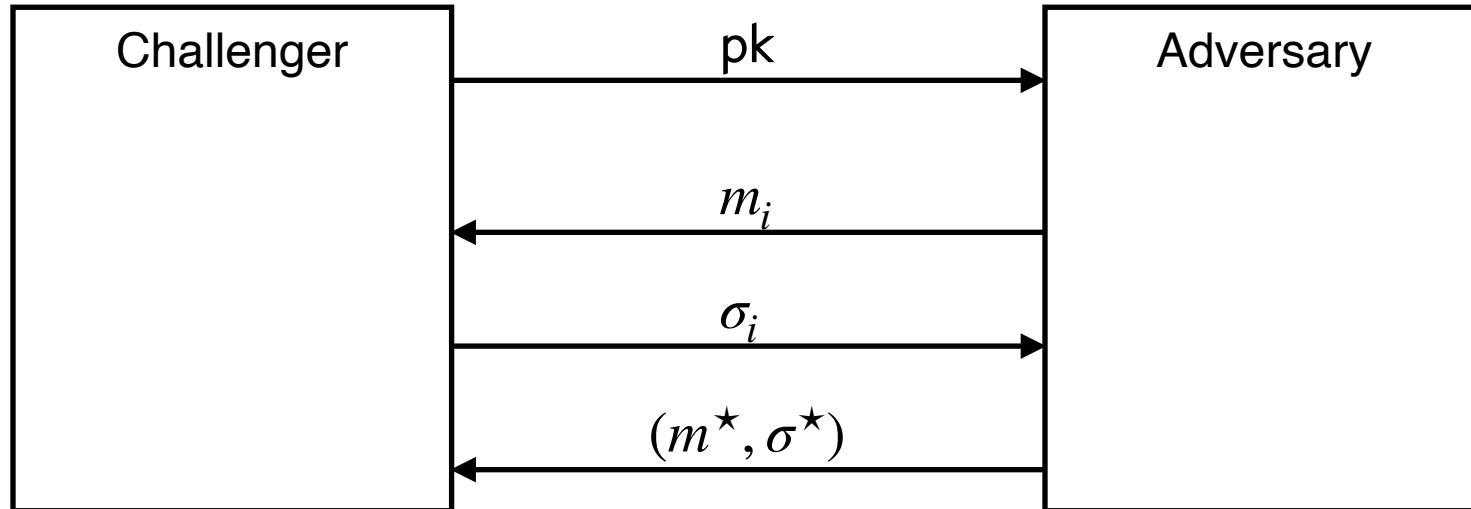
Digital Signatures: Definition

A triple of PPT algorithms $(\text{Gen}, \text{Sign}, \text{Verify})$ such that

- Key generation: $\text{Gen}(1^n) \rightarrow (\text{sk}, \text{pk})$
- Message signing: $\text{Sign}(\text{sk}, m) \rightarrow \sigma$
- Signature verification: $\text{Verify}(\text{pk}, m, \sigma) \rightarrow b \in \{0,1\}$

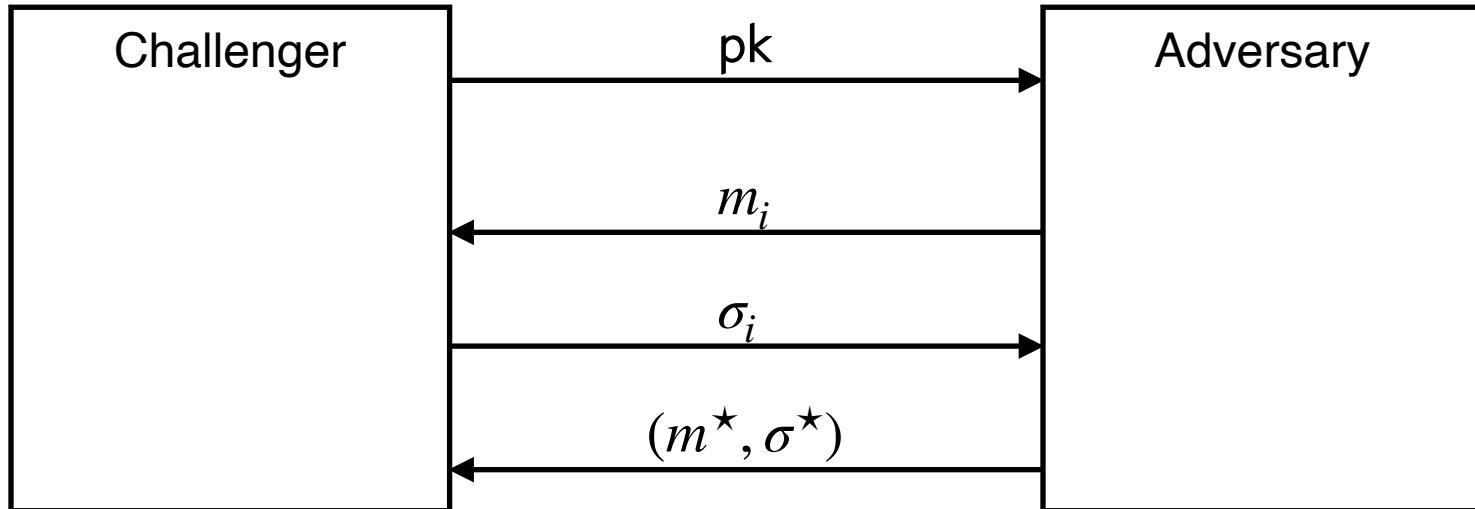
Correctness: For all vk, sk, m : $\text{Verify}(\text{pk}, m, \text{Sign}(\text{sk}, m)) = 1$

EUF-CMA for Signatures



$$\Pr \left[\begin{array}{c} m^{\star} \notin \{m_i\} \\ \text{and} \\ \text{Verify}(pk, m^{\star}, \sigma^{\star}) = 1 \end{array} \right] = \text{negl}(\lambda)$$

Strong EUF-CMA for Signatures



$$\Pr \left[\begin{array}{c} (m^{\star}, \sigma^{\star}) \notin \{(m_i, \sigma_i)\} \\ \text{and} \\ \text{Verify}(pk, m^{\star}, \sigma^{\star}) = 1 \end{array} \right] = \text{negl}(\lambda)$$

Digital Signatures vs. MACs

Signatures

n users require n key-pairs

Publicly Verifiable

Transferable

Provides Non-Repudiation

(is this a good thing or a bad thing?)

MACs

n users require n^2 keys

Privately Verifiable

Not Transferable

Does not provide Non-Rep.

Let $(\text{Gen}, \text{Sign}, \text{V})$ be a signature scheme.

Suppose an attacker is able to find $m_0 \neq m_1$ such that

$$\mathbf{V}(\mathbf{pk}, \mathbf{m}_0, \sigma) = \mathbf{V}(\mathbf{pk}, \mathbf{m}_1, \sigma) \quad \text{for all } \sigma \text{ and keys } (\mathbf{pk}, \mathbf{sk}) \leftarrow \text{Gen}$$

Can this signature be secure?

- Yes, the attacker cannot forge a signature for either m_0 or m_1
- No, signatures can be forged using a chosen msg attack
- It depends on the details of the scheme

Alice generates a (pk, sk) and gives pk to her bank.

Later Bob shows the bank a message $m = \text{"pay Bob 100\$"}$ properly signed by Alice, i.e. $\text{Verify}(pk, m, \text{sig}) = 1$

Alice says she never signed m . Is Alice lying?

- Alice is lying: existential unforgeability means Alice signed m and therefore the Bank should give Bob 100\$ from Alice's account
- Bob could have stolen Alice's signing key and therefore the bank should not honor the statement
- What a mess: the bank will need to refer the issue to the courts

Applications

Applications

Code signing:

- Software vendor signs code
- Clients have vendor's pk. Install software if signature verifies.

software vendor



initial software install (pk)

many clients

[software update #1 , sig]

[software update #2 , sig]

More generally:

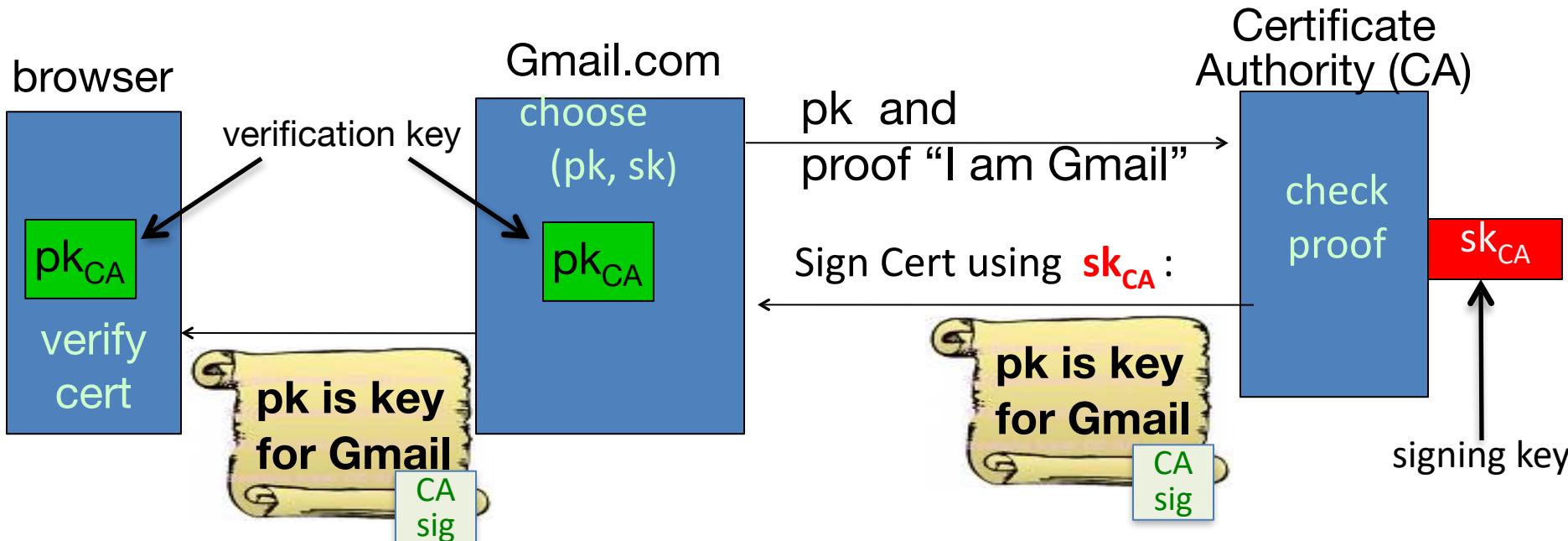
One-time authenticated channel (non-private, one-directional)
⇒ many-time authenticated channel

Initial software install is authenticated, but not private



Important application: Certificates

Problem: browser needs server's public-key to setup a session key
Solution: server asks trusted 3rd party (CA) to sign its public-key pk



Server uses Cert for an extended period (e.g. one year)

Certificates: example

Important fields:

Serial Number	5814744488373890497
Version	3
Signature Algorithm	SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
Parameters	none
Not Valid Before	Wednesday, July 31, 2013 4:59:24 AM Pacific Daylight Time
Not Valid After	Thursday, July 31, 2014 4:59:24 AM Pacific Daylight Time
Public Key Info	
Algorithm	Elliptic Curve Public Key (1.2.840.10045.2.1)
Parameters	Elliptic Curve secp256r1 (1.2.840.10045.3.1.7)
Public Key	65 bytes : 04 71 6C DD E0 0A C9 76 ...
Key Size	256 bits
Key Usage	Encrypt, Verify, Derive
Signature	256 bytes : 8A 38 FE D6 F5 E7 F6 59 ...

The screenshot shows a certificate chain and detailed certificate information for the domain `mail.google.com`.

Certificate Chain:

- Equifax Secure Certificate Authority
- GeoTrust Global CA
- Google Internet Authority G2
- mail.google.com

mail.google.com Certificate Details:

Subject: mail.google.com

Issued by: Google Internet Authority G2

Expires: Thursday, July 31, 2014 4:59:24 AM Pacific Daylight Time

Status: This certificate is valid

Details:

Subject Name	
Country	US
State/Province	California
Locality	Mountain View
Organization	Google Inc
Common Name	mail.google.com
Issuer Name	
Country	US
Organization	Google Inc
Common Name	Google Internet Authority G2

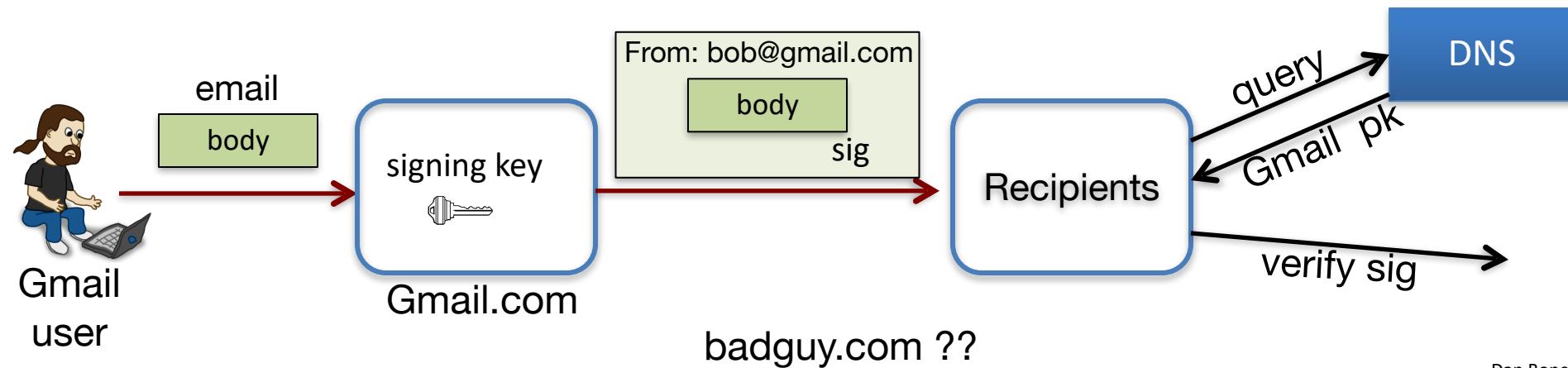
What entity generates the CA's secret key sk_{CA} ?

- the browser
- Gmail
- the CA
- the NSA

Signing email: DKIM (domain key identified mail)

Problem: bad email claiming to be from someuser@gmail.com
but in reality, mail is coming from domain **badguy.com**
⇒ Incorrectly makes gmail.com look like a bad source of email

Solution: **gmail.com** (and other sites) sign every outgoing mail



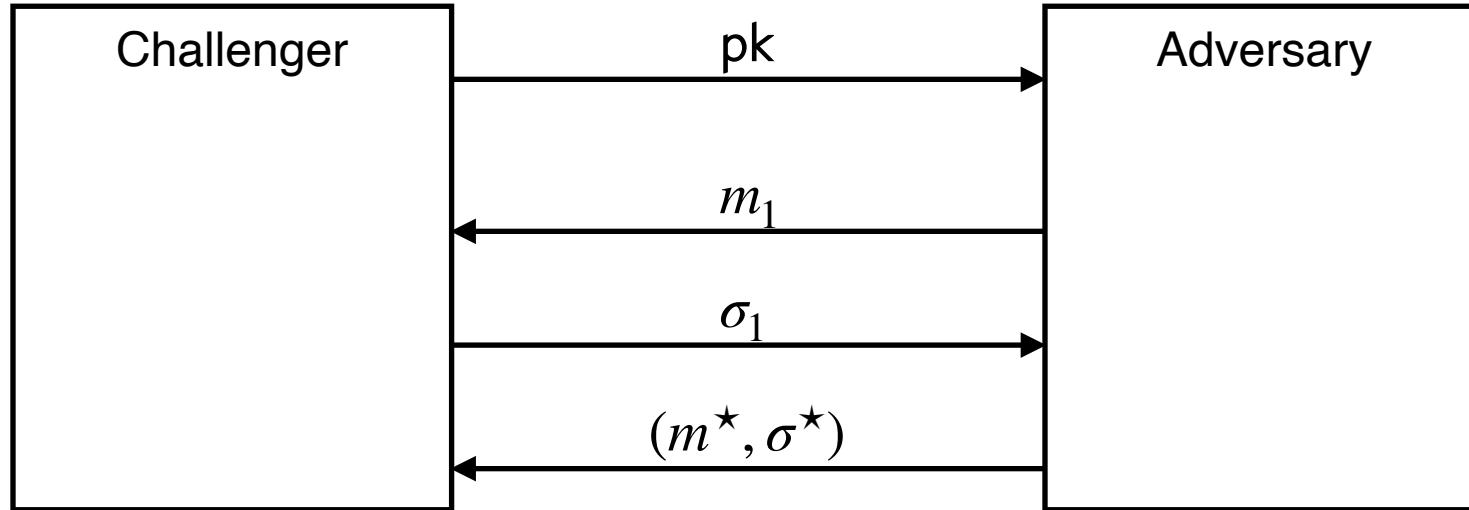
When to use signatures

Generally speaking:

- If one party signs and one party verifies: **use a MAC**
 - Often requires interaction to generate a shared key
 - Recipient can modify the data and re-sign it before passing the data to a 3rd party
- If one party signs and many parties verify: **use a signature**
 - Recipients **cannot** modify received data before passing data to a 3rd party (non-repudiation)

Constructions

Simpler Goal: EUF-CMA for 1-time Signatures



$$\Pr \left[\begin{array}{c} m^* \neq m_1 \\ \text{and} \\ \text{Verify}(pk, m^*, \sigma^*) = 1 \end{array} \right] = \text{negl}(\lambda)$$

Lamport (One-time) Signatures from OWFs

Signing Key sk: $\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$

Public Key pk: $\begin{pmatrix} y_0 = f(x_0) \\ y_1 = f(x_1) \end{pmatrix}$

Signing a bit b : The signature is $\sigma = x_b$

Verifying (b, σ) : Check if $f(\sigma) = y_b$

Claim: Assuming f is a OWF, no PPT adversary can produce a signature of \bar{b} given a signature of b .

Lamport One-time Signatures for n -bit msgs

Secret Key sk:
$$\begin{pmatrix} x_{1,0} & x_{2,0} & \dots & x_{n,0} \\ x_{1,1} & x_{1,1} & \dots & x_{n,1} \end{pmatrix}$$

Public Key pk:
$$\begin{pmatrix} y_{1,0} & y_{2,0} & \dots & y_{n,0} \\ y_{1,1} & y_{2,1} & \dots & y_{n,1} \end{pmatrix}$$
 where $y_{i,b} = f(x_{i,b})$.

Signing $m = (m_1, \dots, m_n)$: $\sigma = (x_{1,m_1}, x_{2,m_2}, \dots, x_{n,m_n})$

Claim: Assuming f is a OWF, no PPT adv can produce a signature of m given a signature of a single $\underline{m'} \neq m$.

Claim: Can forge signature on any message given the signatures on (some) two messages.

Lamport (One-time) Signatures for arbitrary bits

Secret Key sk:

$$\begin{pmatrix} x_{1,0} & x_{2,0} & \dots & x_{n,0} \\ x_{1,1} & x_{1,1} & \dots & x_{n,1} \end{pmatrix}$$

Public Key pk:

$$\begin{pmatrix} y_{1,0} & y_{2,0} & \dots & y_{n,0} \\ y_{1,1} & y_{2,1} & \dots & y_{n,1} \end{pmatrix}$$

where $y_{i,b} = f(x_{i,b})$.

Signing m :

1. $z := H(m)$
2. $\sigma = (z_{1,m_1}, z_{2,m_2}, \dots, z_{n,m_n})$

Claim: Assuming H is CRH and f is a OWF, no PPT adv can produce a signature of \underline{m} given a signature of a single $\underline{m}' \neq \underline{m}$.

Claim: Can forge signature on any message given the signatures on (some) two messages.

So far, only one-time security...

Constructing a Signature Scheme

Step 0. Still one-time, but arbitrarily long messages.

Step 1. Many-time: Stateful, Growing Signatures.

Step 2. How to Shrink the signatures.

Step 3. How to Shrink Alice's storage.

Step 4. How to make Alice stateless.

Step 5 (*optional*). How to make Alice stateless and deterministic.

Constructing a Signature Scheme

Theorem [Naor-Yung'89, Rompel'90]

(EUF-CMA-secure) Signature schemes exist assuming that one-way functions exist.

TODAY:

(EUF-CMA-secure) Signature schemes exist assuming that collision-resistant hash functions exist.