CIS 5560

Cryptography
Lecture 18

Course website:
pratyushmishra.com/classes/ci1s-5560-s25/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Announcements

- Midterm grades have been published
« Regrade requests are open

Symmetric-key Message Authentication

0
Q (m, 1) w (m, t)or L \ Q

: Bob
Alice Can also alter/
k inject more k
messages!

We want Alice to generate a tag for the message m
which is hard to generate without the secret key k.

Public-key Message Authentication?

w
Q (m, o) %(m,a)orl \ Q

: Bob
Alice Can also alter/
sk inject more pk
messages!

We want Alice to generate a signature for the message m
which is hard to forge without the secret/signing key sk.

Does PKE not solve this?

m
: Enc(pk, m)wEnC(Pk,m’) . Q

Alice
sk

Can toggle

between m

and m’ How can
Bob check?

Anybody can encrypt, and no
way for recipient to check.

New primitive: Digital Signatures

Digital Signatures: Definition

A triple of PPT algorithms (Gen, Sign, Verify) such that

e Key generation: Gen(1") — (sk, pk)
e Message signing: Sign(sk, m) — o
e Signature verification: Verify(pk, m,o) — b € {0,1}

Correctness: For all vk, sk, m: Verify(pk, m, Sign(sk, m)) = 1

EUF-CMA for Signatures

Challenger

Pr

and
Verify(pk, m*,6*) = 1

Adversary

= negl(1)

Strong EUF-CMA for Signatures

Challenger pk . Adversary
< il
o, R
* *
p (m™,07)

- (m*,0*) & {(m,0)}
Pr and = negl(1)
Verify(pk, m*,6*) = 1

Digital Signatures vs. MACs

Signatures MACs
n users require n key-pairs n users require n’ keys
Publicly Verifiable Privately Verifiable
Transferable Not Transferable
Provides Non-Repudiation Does not provide Non-Rep.

(is this a good thing or a bad thing?)

Let (Gen, Sign,V) be a signature scheme.

Suppose an attacker is able to find m, # m, such that
V(pk, Mg, o) = V(pk, m,,0) for all o and keys (pk, sk) < Gen

Can this signature be secure?

O Yes, the attacker cannot forge a signature for either m, or m,

O No, signhatures can be forged using a chosen msg attack

O It depends on the details of the scheme

Alice generates a (pk,sk) and gives pk to her bank.

Later Bob shows the bank a message m=“pay Bob 100$”
properly signed by Alice, i.e. Verify(pk,m,sig) = 1

Alice says she never signed m. Is Alice lying?

Alice is lying: existential unforgeability means Alice signed m
and therefore the Bank should give Bob 100$ from Alice’s account

Bob could have stolen Alice’s signing key and therefore
the bank should not honor the statement

O O

What a mess: the bank will need to refer the issue to the courts

Applications

Code signing:

software vendor

sk

Applications

Software vendor signs code
Clients have vendor’s pk.

initial software install (pk)

many clients

[software update #1

, Sig]

>

[software update #2

, Sig]

>

>

Install software if signature verifies.

Dan Boneh

More generally:

One-time authenticated channel (non-private, one-directional)

= many-time authenticated channel

Initial software install is authenticated, but not private

Sender Recipients
one-time authenticated channel pk (", 'y =\
(pk, sk) « Gen (/7 ok A

> eavesdrop, but not modify

sg, Sisk,)
sg, Sisk, m)

&

Dan Boneh

Important application: Certificates

Problem: browser needs server’s public-key to setup a session key
Solution: server asks trusted 3rd party (CA) to sign its public-key pk

Certificate

browser Gmail.com Authority (CA)
pk and

proof “l am Gmail”

verification key

Sign Cert using sk, :

I\

% pk is key

for Gmail signing key

Server uses Cert for an extended period (e.g. one year)

Dan Boneh

Certificates: example

Important fields:

Serial Number

Version

Signature Algorithm
Parameters

5814744488373890497
3

T

SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
none

[Z] Equifax Secure Certificate Authority
L GeoTrust Global CA
L Google Internet Authority G2
L mail.google.com

Not Valid Before

Not Valid After

Wednesday, July 31, 2013 4:59:24 AM Pacific
Daylight Time

Thursday, July 31, 2014 4:59:24 AM Pacific Daylight

Time

Algorithm
Parameters
Public Key
Key Size
Key Usage

Signature

Elliptic Curve Public Key (1.2.840.10045.2.1)
Elliptic Curve secp256rl (1.2.840.10045.3.1.7)

65 bytes : 04 71 6C DD EO 0A C9 76 ... €——
256 bits

Encrypt, Verify, Derive

256 bytes : 8A 38 FED6 F5 E7 F6 59 ... b

—
C ,r'/'////‘(w/r

L

Time

mail.google.com
Issued by: Google Internet Authority G2
Expires: Thursday, July 31, 2014 4:59:24 AM Pacific Daylight

@ This certificate is valid

v Details

Country
State/Province
Locality
Organization

Common Name

Country
Organization

Common Name

us

California
Mountain View
Google Inc
mail.google.com

<

us
Google Inc
Google Internet Authority G2

Dan Boneh

What entity generates the CA’s secret key sk, ?

O the browser
O Gmall

O the CA

O the NSA

Signing email: DKIM (domain key identified mail)

Problem: bad email claiming to be from someuser@gmail.com
but in reality, mail is coming from domain badguy.com
= Incorrectly makes gmail.com look like a bad source of email

Solution: gmail.com (and other sites) sign every outgoing mail

From: bob@gmail.com
email body Ve "
body - o A
signing key Recipients
Q= J > P
_ Jverify sig——>
Gmail.com

badguy.com ??

Dan Boneh

When to use signatures

Generally speaking:
* If one party signs and one party verifies: use a MAC
— Often requires interaction to generate a shared key

— Recipient can modify the data and re-sign it before
passing the data to a 3 party

* If one party signs and many parties verify: use a signature

— Recipients cannot modify received data before
passing data to a 3rd party (non-repudiation)

Constructions

Simpler Goal: EUF-CMA for 7-time Signatures

Challenger pk Adversary

(m*, o)

m* # m,
Pr and = negl(1)
Verify(pk,m*,6*) = 1

Lamport (One-time) Signatures from OWFs

Signing Key sk: <§0>

1

Yo :f(xo)>
v =fx)

Signing a bit b: The signature is ¢ = x,

Public Key pk: (

Verifying (b, 6): Check if f(o) = y,

Claim: Assuming f is a OWF, no PPT adversary
can produce a signature of b given a signature of
b.

Lamport One-time Signatures for n-bit msgs

Secret Key sk: X0 %20 - a0
xl’l xl’l oo e xn’l
Y10 Y20 -+ Yno
' ; T ’ where y,, = f(x;,).
Public Key pk: <y1’1 Voi - ym) i.b ib
Signing m = (my, ...,m,): 6 = (X 1, X s Xy)

Claim: Assuming f is a OWF, no PPT adv can produce
a signature of m given a signature of a single m’ # m.

Claim: Can forge signature on any message given the
signatures on (some) two messages.

Lamport (One-time) Signatures for arbitrary bits

Secret Key sk: 10 Y20 -
xl,l 'xl,l ..

: Y10 Y20 -
Public Key pk: <y1’1 Va1 -
Signing m: 1.7 := H(m)

X0

L Xy

' yn’0> where y; , = f(x; ;).
. yn,l ’ ’

2. O = (Zlaml, Zz’mz, eo ey Zl’l,mn)

Claim: Assuming H is CRH and fis a OWF, no PPT
adv can produce a signature of m given a signature of

a single m’ # m.

Claim: Can forge signature on any message given the
signatures on (some) two messages.

So far, only one-time security...

Constructing a Signature Scheme

Step 0. Still one-time, but arbitrarily long messages.

Constructing a Signature Scheme

Theorem [Naor-Yung’89, Rompel’90]
(EUF-CMA-secure) Signature schemes exist assuming
that one-way functions exist.

TODAY:
(EUF-CMA-secure) Signature schemes exist assuming
that collision-resistant hash functions exist.

