CIS 5560

Cryptography
Lecture 16

Course website:
pratyushmishra.com/classes/cis-5560-s25/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Recap of Last Lecture(s)

* Public Key Encryption

« Definition of IND-CPA

- ElGamal Encryption

- Version with message space =
 Version with arbitrary message space

Today’s Lecture

 Public Key Encryption from Trapdoor OWFs
* RSA Encryption
 Arithmetic modulo composites
 Factoring

Public key encryption

Def: a public-key encryption system is a triple of algs. (G, E, D)
- Gen(): randomized alg. outputs a key pair (pk, sk)
- Enc(pk, m): randomized alg. that takes m € .# and outputs c € €

. Dec(sk, ¢): deterministic alg. that takes ¢ € € and outputs m € A U { L }

Correctness: V(pk, sk) output by Gen(),Vm € ., Dec(sk, Enc(pk, m)) = m

Security: IND-CPA for PKE

For all PPT adversaries &, the following holds:

(pk, sk) < Gen(1™)]
Pr | b = o/ (Enc(pk, m;))|Sample b < {0,1} | < negl(n)
(mgy, my) < Qf(pk)_

Construction of PKE:
Trapdoor Functions

Trapdoor functions (TDF)

Def: A trapdoor function for input space X and output space Y
is a triple of efficient algorithms (G, F, F~1)

G(1"): randomized algorithm that outputs a key pair (pk, sk)
- F(pk, -): deterministic algorithm that computes f : X — Y

. F~I(sk, -): defines a function Y — X that inverts F(pk, -)

More precisely: V(pk, sk) « G(1%), Vx € X, F~!(sk, F(pk, x)) = x

Secure Trapdoor Functions (TDFs)

ATDF (G, F,F~!) is secure if I is a one-way function:

Challenger Adversary A
(pk, sk) « G(1™)

< X (pk,y := F(pk,x)) x'

>

Def: (G,F,F!) is a secure TDF if for all efficient A:

| (pk, sk) — G(1™M)]
Pr | F(pk, x) = F(pk, x') x < X | = negl(n)
x' <« A(pk, F(pk, x))_

Construction: PKE from TDFs

PKE from Secure TDFs

(G,F,F7):secure TDF X = Y

(Gen, Enc;, Dec,): symmetric AE defined over (X, M, 6)

- H: X — H: ahash function (like the one in Hashed ElGamal)

Gen(1"):
1. Output (pk, sk) < G(1").

Enc(pk, m):
1. Sample x <« X.
2. Compute key k < H(x)

Dec(sk, (v, ¢)):
1. Compute x := F~!(sk, y).
2. Compute key k < H(x)

3. Output (y < F(pk,x),c < Encyk,m))||3. Output Dec,(k, c)

-+
P

Review: Arithmetic modulo composites

Review: arithmetic mod composites

Let N = pg where p, g are prime

Zy=10,1,2,....N—1}; ZF = { invertible elements in Z,}

Facts:
- x € Zy isinvertible < gcd(x,N) =1

- Number of elements in Z% is p(N) =(p—1)(g—1)=N-p—g+1

[Euler’s thm: Vx € Z : x?WN) — 1]

12

Modular e-th roots

We know how to solve modular linear equations:
ax+b=0inZy Solution: x = — b -a~! in Z,
(inverses are fast even for N composite)
What about higher degree polynomials?
Example: Let N = pq for two primes p, g.
Given an arbitrary y € Z,, can we find x such that
y =x° mod N?
Answering these questions requires the factorization of N
(as far as we know)

The factoring problem

Gauss (1805): “The problem of distinguishing prime numbers from
composite numbers and of resolving the latter into
their prime factors is known to be one of the most
important and useful in arithmetic.”

Best known alg. (NFS): runtime 20(\%) for n-bit integer

Current world record: RSA-250 (250 digits)

« Work: two years on hundreds of machines

« Factoring a 1024-bit integer: ~1000 times harder
= likely possible this decade

Key lengths

Security of public key system should be comparable to
security of symmetric cipher:

RSA
Cipher key-size Modulus size
80 bits 1024 bits
128 bits 3072 bits

256 bits (AES) 15360 bits

Construction of Trapdoor Functions

Big question:
can we use hardness of computing

e-th roots to construct a secure TDF?

Secure TDFs from e-th roots

Gen(1"): F(pk = (N, e), x):

1. Sample primes p, g ~ 1024 bits 1. Output x¢ mod N.

2. Set N = pq

3. Sample e,dst. e =d~! mod ¢(N)

4. Setsk = (p,q,d) and pk := (N, e) Dec(sk = (p, ¢,d),y):

5. Output (pk, sk). 1. Output x := yd mod N.

Correctness: V(pk, sk) « G(1"), Vx € X, F~'(sk, F(pk,x)) = x ?

FST(l(Fpk(x)) = (x9)4 = x! mod o) = yI+koWN) = x mod N

18

This is called the RSA Trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:
— SSL/TLS: certificates and key-exchange
— Secure e-mail and file systems

... many others

Secure TDFs from e-th roots

Gen(1"): F(pk = (N, e), x):

1. Sample primes p, g ~ 1024 bits 1. Output x¢ mod M.

2. Set N = pq

3. Sample e,dst. e =d~! mod ¢(N)

4. Setsk = (p,q,d) and pk := (N, e) Dec(sk = (p,q.d),):

5. Output (pk, sk). 1. Output x := yd mod N.

Security?

By “assumption”

RSA assumption: Roughly, computing e-th roots is hard

Pr

A(pk,x° mod N) =x

_ A

(pk = (N, d), sk = (p,g,e)) < G(1")

x < X

The RSA TDF is actually a
trapdoor permutation

= negl(n)

Is the RSA assumption plausible?

To invert the RSA one-way func. (without d) attacker must compute

x from c¢=x° mod M.

How hard is computing e-th roots modulo N ?7?

Best known algorithm:
— Step 1: factor N (hard)

— Step 2: compute e-th roots modulo p and g (easy)

Shortcuts?

Must one factor N in order to compute e-th roots?

To prove no shortcut exists we need a reduction:

— Efficient algorithm for e-th roots mod N

= efficient algorithm for factoring V.

— QOldest problem in public key cryptography.

Some evidence no reduction exists: (B\’98)

— “Algebraic” reduction = factoring is easy.

Textbook RSA is insecure

Textbook RSA encryption:
— public key: (V, e) Encrypt: ¢ :=m® mod N
— secret key: (p,q,d) Decrypt: m:=c? mod N

Q: Is this IND-CPA secure?

A: No! It is deterministic. In fact lots of other attacks (can leak
partial info about plaintext.

RSA in practice

How not to improve RSA’s performance

To speed up RSA decryption use small private key d = 2128

[c?=m mod N]

Wiener'87: if d < N025 then RSA is insecure.

BD’98: if d < N0292 then RSA is insecure
(open: d < NO»)

Insecure: private key d can be found from (N, e)

RSA With Low public exponent

To speed up RSA encryption use a small ¢ := m¢ mod N

e Minimumvalue: e =3 (gcd(e,p(N)) = 1)
« Recommended value: e = 65537 =216 + 1

Encryption: 17 multiplications

Asymmetry of RSA: fast enc. / slow dec.

— ElGamal: approx. same time for both.

Further reading

- A Computational Introduction to Number Theory and

Algebra,
V. Shoup, 2008 (V2), Chapter1-4, 11,12

Available at https://shoup.net/ntb/ntb-v2.pdf

https://shoup.net/ntb/ntb-v2.pdf

