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CIS 5560

Lecture 15
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s25 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/


Recap of Last Lecture(s)
• Number Theory refresher


• Arithmetic modulo primes

• Fermat's Little Theorem

• Cyclic groups

• Discrete Logarithms


• Key Exchange

• Merkle puzzles

• Diffie—Hellman


• Computational Diffie—Hellman Problem
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Today’s Lecture
• Public Key Encryption


• El Gamal Encryption

• Computational Diffie—Hellman Problem


• RSA Encryption

• Arithmetic modulo composites

• Factoring
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Dan Boneh

Public key encryption

E D

Bob Alice

pk sk

m c c m

Alice:    generates    (PK, SK)    and gives  PK  to Bob 



Public key encryption
Def:   a public-key encryption system is a triple of algs.   (G, E, D)

• ():   randomized alg. outputs a key pair  

• : randomized alg. that takes  and outputs 

• : deterministic alg. that takes   and outputs 

Correctness:  output by ,

𝖦𝖾𝗇 (𝗉𝗄, 𝗌𝗄)

𝖤𝗇𝖼(𝗉𝗄, m) m ∈ ℳ c ∈ 𝒞

𝖣𝖾𝖼(𝗌𝗄, c) c ∈ 𝒞 m ∈ ℳ ∪ { ⊥ }

∀(𝗉𝗄, 𝗌𝗄) 𝖦𝖾𝗇() ∀m ∈ ℳ, 𝖣𝖾𝖼(𝗌𝗄, 𝖤𝗇𝖼(𝗉𝗄, m)) = m
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Security: IND-CPA for PKE
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Challenger

1.
2. Sample 

3. Compute 

4. 

b ← {0,1}
(𝗉𝗄, 𝗌𝗄) ← 𝖦𝖾𝗇(1n)

cb = 𝖤𝗇𝖼(𝗉𝗄, mb)

b ?= b′￼

Adv 𝒜

(m0, m1)

cb

𝗉𝗄

Pr[b = b′￼] = 1/2 + 𝗇𝖾𝗀𝗅(n)

b′￼



Security: IND-CPA for PKE
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For all PPT adversaries , the following holds:𝒜

Pr b = 𝒜(𝖤𝗇𝖼(𝗉𝗄, mb))
(𝗉𝗄, 𝗌𝗄) ← 𝖦𝖾𝗇(1n)

Sample b ← {0,1}
(m0, m1) ← 𝒜(𝗉𝗄)

≤ 𝗇𝖾𝗀𝗅(n)



How does it relate to symmetric-key IND-CPA?
Recall:   for symmetric ciphers we had two security notions: 

• One-time security      and    many-time security (CPA) 

• We showed that one-time security does not imply many-time security 

For public key encryption: 

• One-time security    ⇒   many-time security  (CPA) 

	 (follows from the fact that attacker can encrypt by himself) 

• Public key encryption must be randomized
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Applications
Session setup    (for now, only eavesdropping security) 

Non-interactive applications:  (e.g.  Email) 

• Bob sends email to Alice encrypted using  pkalice 

• Note:   Bob needs  pkalice    (public key management)
9

Generate  (pk, sk)
Alice

choose random x 
(e.g.  48 bytes) 

Bobpk

E(pk, x)
x



Constructions of PKE: 
Elgamal Encryption
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Review of cyclic groups

(On board)
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Recall: DH Key Exchange
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Alice BobA = ga

B = gb

K = Ba = gab K = Ab = gab

c = 𝖤𝗇𝖼′￼(K, m)



Convert DH → PKE
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Alice Bob

𝗉𝗄 = ga

c′￼:= (B, c)

:

1. Sample 

2. Set 

3. Set 

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)

𝖦𝖾𝗇(1n)
↓

(𝗌𝗄 = a, 𝗉𝗄 = ga)

:

1. Compute 

2. Compute 

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

m = 𝖣𝖾𝖼′￼(k, c)



The Elgamal system (an abstract view)
• : finite cyclic group of prime order  with generator 

• : symmetric-key encryption with keyspace 

𝔾 p g
(𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼) 𝒦 = 𝔾
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:

1.Sample 

2.Output 

3. Set 

4. Output 

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Sample 

2. Set 

3. Set 

4. Output 

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Compute 

2. Output 

3. Set 

4. Output 

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

m = 𝖣𝖾𝖼′￼(k, c)
c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)

c′￼= (B, c)

What choice of ? (𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼)

How to prove security?



Q1: Choice of : OTP?(𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼)
• : finite cyclic group of prime order  with generator 


• Key idea: One-Time Pad works not just with  and XOR, but with any group


• : Sample , and output 


• : Output 


• : Output 

𝔾 p g

{0,1}n

𝖦𝖾𝗇′￼(1n) r ← ℤp gr

𝖤𝗇𝖼′￼(k = gr, m ∈ 𝔾) c = k ⋅ m ∈ 𝔾

𝖣𝖾𝖼′￼(k = gr, c ∈ 𝔾) m = k−1 ⋅ c ∈ 𝔾
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Correctness:  


Security: 

𝖣𝖾𝖼′￼(k, 𝖤𝗇𝖼′￼(k, m)) = k ⋅ m ⋅ k−1 = m

Goal: , , 

Exercise: prove this (try to adapt proof from Lecture 1)

∀m, m′￼∈ 𝔾 c ∈ 𝔾 Pr
k←𝔾

[𝖤𝗇𝖼(k, m) = c] = Pr
k←𝔾

[𝖤𝗇𝖼(k, m′￼) = c]



The Elgamal system (a concrete view)
• : finite cyclic group of prime order  with generator 

• : symmetric-key encryption with keyspace 

𝔾 p g
(𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼) 𝒦 = 𝔾
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:

1.Sample 

2.Output 

3. Set 

4. Output 

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Sample 

2. Set 

3. Set 

4. Output 

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Compute 

2. Output 

3. Set 

4. Output 

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

m = 𝖣𝖾𝖼′￼(k, c)
c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)

c′￼= (B, c)

What choice of ? (𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼)

How to prove security?



The Elgamal system (a concrete view)
• : finite cyclic group of prime order  with generator 

• : symmetric-key encryption with keyspace 

𝔾 p g
(𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼) 𝒦 = 𝔾
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:

1.Sample 

2.Output 

3. Set 

4. Output 

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Sample 

2. Set 

3. Set 

4. Output 

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := m ⋅ 𝗉𝗄b = mgab

c′￼= (B, c)

:

1. Compute 

2. Output

3. Set 


4.Output 

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

What choice of ? (𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼)

How to prove security?

m = k−1c
= cg−ab

= mgabg−ab



Problem: 

OTP uses random group element


But we only have !


Is this a problem? Isn’t  also random?


Problem: adversary also sees  and !

gab

gab

ga gb
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New assumption: Decisional Diffie—Hellman
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Roughly,  is indistinguishable from 


Formally, the following two distributions are computationally indistinguishable:


 and 

(ga, gb, gab) (ga, gb, gr)

{(ga, gb, gab)}a,b←ℤp
{(ga, gb, gr)}a,b,r←ℤp



Elgamal is semantically secure under DDH
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≈

≈

≈

chal. adv. A

pk,sk
m0 , m1

 c = (gb, m0gab)

b′￼

pk = ga

chal. adv. A

pk,sk
m0 , m1

 c = (gb, m1gab)

pk = (g,ga)

b′￼

chal. adv. A

pk,sk
m0 , m1

c = (gb, m0gr)

pk = ga

b′￼

r ← ℤp

chal. adv. A

pk,sk
m0 , m1

c = (gb, m1gr)

pk = ga

b′￼

r ← ℤp

≈ (By OTP)

By DDH

By DDH



The Elgamal system (a modern view)
• : finite cyclic group of prime order  with generator 


• : what about arbitrary keyspace ?


• New ingredient: “Random”-ish hash function 

𝔾 p g

(𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼) 𝒦
H : 𝔾 → 𝒦
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:

1.Sample 

2.Output 

3. Set 

4. Output 

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Sample 

2. Set 

3. Set 

4. Output 

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

k := H(gab)
c ← 𝖤𝗇𝖼(k, m)

c′￼= (gb, c)

:

1. Compute 

2. Output 

3. Set 

4. Output 

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = H(Ba)

m = 𝖣𝖾𝖼′￼(k, c)
c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)

c′￼= (B, c)



New assumption: Hash-DDH
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Roughly,  is indistinguishable from 


Formally, the following two distributions are computationally indistinguishable:


 and 

(ga, gb, H(gab)) (ga, gb, R)

{(ga, gb, H(gab))}a,b←ℤp
{(ga, gb, R)}a,b←ℤp,R←𝒦

Q: If DDH is hard, is H-DDH hard?

Q: If H-DDH is hard, is DDH hard?



Suppose   K = {0,1}128   and  

	   H: G ⟶ K  only outputs strings in K that begin with 0 
	 	 	 ( i.e.  for all y:  msb(H(y))=0   ) 

Can Hash-DH hold for  (G, H) ? 

Yes, for some groups  G
No, Hash-DH is easy to break in this case
Yes, Hash-DH is always true for such H



Elgamal is semantically secure under H-DDH
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≈

≈

≈

chal. adv. A

pk,sk
m0 , m1

 c = (gb, 𝖤𝗇𝖼′￼(k, m0)

b′￼

pk = ga

chal. adv. A

pk,sk
m0 , m1

 c = (gb, 𝖤𝗇𝖼′￼(k, m0)

pk = (g,ga)

b′￼

chal. adv. A

pk,sk
m0 , m1

pk = ga

b′￼

 c = (gb, 𝖤𝗇𝖼′￼(k, m0)
r ← ℤp

chal. adv. A

pk,sk
m0 , m1

pk = ga

b′￼

 c = (gb, 𝖤𝗇𝖼′￼(k, m1)r ← ℤp

≈ (By OTP)

By H-DDH

By H-DDH

k = H(gab) k ← 𝒦

k ← 𝒦k = H(gab)



Construction of PKE:

Trapdoor Functions
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Trapdoor functions (TDF)
Def: A trapdoor function for input space  and output space  
        is a triple of efficient algorithms 

• : randomized algorithm that outputs a key pair 

• : deterministic algorithm that computes 

• : defines a function  that inverts 

More precisely:      

X Y
(G, F, F−1)

G(1n) (𝗉𝗄, 𝗌𝗄)

F(𝗉𝗄, ⋅ ) f : X → Y

F−1(𝗌𝗄, ⋅ ) Y → X F(𝗉𝗄, ⋅ )

∀(𝗉𝗄, 𝗌𝗄) ← G(1n), ∀x ∈ X, F−1(𝗌𝗄, F(𝗉𝗄, x)) = x
26



Secure Trapdoor Functions (TDFs)
A TDF  is secure if  is a one-way function:(G, F, F−1) F𝗉𝗄
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Def:     is a secure TDF if for all efficient :
(G, F, F−1) A

Pr F(𝗉𝗄, x) = F(𝗉𝗄, x′￼)
(𝗉𝗄, 𝗌𝗄) ← G(1n)

x ← X
x′￼← A(𝗉𝗄, F(𝗉𝗄, x))

= 𝗇𝖾𝗀𝗅(n)

Adversary AChallenger
(𝗉𝗄, 𝗌𝗄) ← G(1n)

x ← X x′￼(𝗉𝗄, y := F(𝗉𝗄, x))



Construction: PKE from TDFs
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PKE from Secure TDFs: Attempt 1
• : secure TDF    (G, F, F−1) X → Y

29

:
1. Output .
𝖤𝗇𝖼(𝗉𝗄, m)

c ← F(𝗉𝗄, m)
:

1. Output .
𝖣𝖾𝖼(𝗌𝗄, c)

m := F−1(𝗌𝗄, c)
:

1. Output .
𝖦𝖾𝗇(1n)

(𝗉𝗄, 𝗌𝗄) ← G(1n)

Q: Is this secure?

A: No! Entirely deterministic → cannot achieve IND-CPA!



PKE from Secure TDFs
• : secure TDF           

• : symmetric AE defined over  
• : a hash function (like the one in Hashed ElGamal)

(G, F, F−1) X → Y
(𝖦𝖾𝗇, 𝖤𝗇𝖼s, 𝖣𝖾𝖼𝗌) (𝒦, ℳ, 𝒞)
H : X → 𝒦
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:
1. Sample .
2. Compute key 
3. Output 

𝖤𝗇𝖼(𝗉𝗄, m)
x ← X

k ← H(x)
(y ← F(𝗉𝗄, x), c ← 𝖤𝗇𝖼s(k, m))

:
1. Compute .
2. Compute key 
3. Output 

𝖣𝖾𝖼(𝗌𝗄, (y, c))
x := F−1(𝗌𝗄, y)

k ← H(x)
𝖣𝖾𝖼s(k, c)

:
1. Output .
𝖦𝖾𝗇(1n)

(𝗉𝗄, 𝗌𝗄) ← G(1n)



In pictures: 

Security Theorem:     
If  is a secure TDF, 
    is an AE scheme, and 
     is a “random oracle”  

then   is  IND-CPA  secure.

(G, F, F−1)
(𝖦𝖾𝗇, 𝖤𝗇𝖼s, 𝖣𝖾𝖼𝗌)
H : X → 𝒦

(𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼)
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F(𝗉𝗄, x) 𝖤𝗇𝖼s(H(x), m)

header body



Review: Arithmetic modulo composites
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Let   where    are prime


         ;     


Facts: 

•    is invertible      ⇔    

• Number of elements in    is 


Euler’s thm:             

N = pq p, q

ℤN = {0,1,2,…, N − 1} ℤ*n = { invertible elements in ℤN}

x ∈ ℤN gcd(x, N ) = 1

ℤ*N φ(N ) = (p − 1)(q − 1) = N − p − q + 1

∀x ∈ ℤ*N : xφ(N) = 1

Review: arithmetic mod composites
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Modular -th rootse
We know how to solve modular linear equations:

	  in            Solution:   in 


                                                                                                      (inverses are fast even for  composite)


What about higher degree polynomials?

Example: Let  for two primes .

                Given an arbitrary , can we find  such that

                ?

Answering these questions requires the factorization of 

	 	 (as far as we know)

ax + b = 0 ℤN x = − b ⋅ a−1 ℤN
N

N = pq p, q
y ∈ ℤN x

y = xe mod N
N

34



The factoring problem
Gauss (1805):


Best known alg.   (NFS):      run time      for -bit integer


Current world record:     RSA-768    (232 digits) 

• Work:  two years on hundreds of machines

• Factoring a 1024-bit integer:    about 1000 times harder

	 	 ⇒  likely possible this decade

2O( 3 n) n

35

“The problem of distinguishing prime numbers from  
  composite numbers and of resolving the latter into  
  their prime factors is known to be one of the most  
  important and useful in arithmetic.”



Key lengths
Security of public key system should be comparable to 
security of symmetric cipher:

	 	 	 	 	 	     RSA

	 	 Cipher key-size	 	 Modulus size

	 	    80 bits	 	 	    1024 bits

	 	   128 bits	 	 	   3072 bits

	 	   256 bits (AES)	 	   15360 bits 

36



Construction of Trapdoor Functions
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Big question: 

can we use hardness of computing

-th roots to construct a secure TDF? e

38



Secure TDFs from -th rootse

39

:
1. Output .
F(𝗉𝗄 = (N, e), x)

xe mod N

:
1. Output .
𝖣𝖾𝖼(𝗌𝗄 = (p, q, d), y)

x := yd mod N

:
1. Sample primes  
2. Set 
3. Sample  s.t. 
4. Set  and 
5. Output .

𝖦𝖾𝗇(1n)
p, q ∼ 1024 bits

N = pq
e, d e = d−1 mod φ(N )

𝗌𝗄 = (p, q, d) 𝗉𝗄 := (N, e)
(𝗉𝗄, 𝗌𝗄)

Correctness:  ?
                      
             

∀(𝗉𝗄, 𝗌𝗄) ← G(1n), ∀x ∈ X, F−1(𝗌𝗄, F(𝗉𝗄, x)) = x

F−1
𝗌𝗄 (F𝗉𝗄(x)) = (xe)d ≡ x1 mod φ(N) ≡ x1+kφ(N) ≡ x mod N



This is called the RSA Trapdoor permutation

First published:      Scientific American, Aug. 1977. 

Very widely used:


– SSL/TLS:  certificates and key-exchange


– Secure e-mail and file systems


	 … many others
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Secure TDFs from -th rootse

41

:
1. Output .
F(𝗉𝗄 = (N, e), x)

xe mod N

:
1. Output .
𝖣𝖾𝖼(𝗌𝗄 = (p, q, d), y)

x := yd mod N

:
1. Sample primes  
2. Set 
3. Sample  s.t. 
4. Set  and 
5. Output .

𝖦𝖾𝗇(1n)
p, q ∼ 1024 bits

N = pq
e, d e = d−1 mod φ(N )

𝗌𝗄 = (p, q, d) 𝗉𝗄 := (N, e)
(𝗉𝗄, 𝗌𝗄)

Security?



By “assumption”
RSA assumption: Roughly, computing -th roots is harde

42

Pr A(𝗉𝗄, xe mod N ) = x (𝗉𝗄 = (N, d), 𝗌𝗄 = (p, q, e)) ← G(1n)
x ← X

= 𝗇𝖾𝗀𝗅(n)

The RSA TDF is actually a 
trapdoor permutation



Is the RSA assumption plausible?
To invert the RSA one-way func. (without d) attacker must compute

	 	     from    .


How hard is computing  -th  roots modulo N  ??


Best known algorithm:   

– Step 1:  factor  N     (hard)

– Step 2:  compute -th  roots modulo  and      (easy)

x c = xe mod N

e

e p q
43



Shortcuts?
Must one factor N in order to compute -th roots?


To prove no shortcut exists we needa reduction:	 


– Efficient algorithm for -th roots mod 


⇒  efficient algorithm for factoring .

– Oldest problem in public key cryptography.


Some evidence no reduction exists:	         (BV’98)


– “Algebraic” reduction   ⇒   factoring is easy.

e

e N
N
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Textbook RSA is insecure

Textbook RSA encryption:

– public key:   (N,e)	 Encrypt:   c ⟵ me          (in  ZN)   


– secret key:   (N,d)	 Decrypt:   cd ⟶ m 

	 	 	 	 	 	 	 


Insecure cryptosystem !!  

– Is not semantically secure and many attacks exist


⇒     The RSA trapdoor permutation is not an encryption scheme !
45



Dan Boneh

RSA in practice

46



How not to improve RSA’s performance
To speed up RSA decryption use small private key       (  ≈ 2128 )


	 	 	 cd = m  (mod N)


Wiener’87:	 if   d < N0.25   then RSA is insecure.

BD’98:	 	 if   d < N0.292  then RSA is insecure      (open:  
d < N0.5  )


Insecure:    priv. key  d  can be found from  (N,e)

d d
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RSA With Low public exponent
To speed up RSA encryption use a small   e:        c = me (mod N)


• Minimum value:   e=3	  ( gcd(e, ϕ(N) ) = 1)


• Recommended value:   e=65537=216+1 

	 	 	 Encryption:   17 multiplications


Asymmetry of RSA:   fast enc. / slow dec.

– ElGamal (next module):   approx. same time for both.
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