CIS 5560

Cryptography
Lecture 15

Course website:
pratyushmishra.com/classes/cis-5560-s25

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Recap of Last Lecture(s)

* Number Theory refresher
 Arithmetic modulo primes
« Fermat's Little Theorem
« Cyclic groups
 Discrete Logarithms
- Key Exchange
« Merkle puzzles
» Diffie—Hellman
- Computational Diffie—Hellman Problem

Today’s Lecture

* Public Key Encryption
 El Gamal Encryption
- Computational Diffie—Hellman Problem
* RSA Encryption
 Arithmetic modulo composites
 Factoring

Public key encryption

Alice: generates (PK, SK) and gives PK to Bob

Bob Alice

nnnnnnnn

Public key encryption

Def: a public-key encryption system is a triple of algs. (G, E, D)
- Gen(): randomized alg. outputs a key pair (pk, sk)
- Enc(pk, m): randomized alg. that takes m € .# and outputs c € €

. Dec(sk, ¢): deterministic alg. that takes ¢ € € and outputs m € A U { L }

Correctness: V(pk, sk) output by Gen(),Vm € ., Dec(sk, Enc(pk, m)) = m

Security: IND-CPA for PKE

(Adv of \ (Challenger \
pk 1.b < {0,1}
< 2. Sample (pk, sk) < Gen(1")
¢, 3. Compute ¢, = Enc(pk, m1,)
<<
b’ 4.b =D
_ J NG J

Pr[b = b'] = 1/2 + negl(n)

Security: IND-CPA for PKE

For all PPT adversaries &, the following holds:

(pk, sk) < Gen(1™)]
Pr | b = o/ (Enc(pk, m;))|Sample b < {0,1} | < negl(n)
(mgy, my) < Qf(pk)_

How does it relate to symmetric-key IND-CPA?

Recall: for symmetric ciphers we had two security notions:
e« One-time security and many-time security (CPA)
« We showed that one-time security does not imply many-time security

For public key encryption:

 One-time security = many-time security (CPA)

(follows from the fact that attacker can encrypt by himself)

e Public key encryption must be randomized

Applications

Session setup (for now, only eavesdropping security)

Alice ok Bob

Generate (pk, sk) choose random x

E(pk, x) (e.g. 48 bytes)

X

Non-interactive applications: (e.g. Email)

« Bob sends email to Alice encrypted using pk_; .

« Note: Bob needs pk

Jice (public key management)

Constructions of PKE:
Elgamal Encryption

Review of cyclic groups
(On board)

Recall: DH Key Exchange

Alice

A=g?

<

¢ = Enc (K, m)

Bob

Convert DH = PKE

Alice Bob
— a
Gen(1") pk =g >
! . Enc(pk, m):
(sk =a,pk = g%) 1. Sample b « Z
2. SetB =g°
¢’ :=(B,c) 3. Setc := Enc’(pkb, m)

Dec(sk = a, (B, ¢)):
1. Compute k = B¢
2. Compute m = Dec'(k, ¢)

The Elgamal system (an abstract view)

* (: finite cyclic group of prime order p with generator g

- (Enc, Dec): symmetric-key encryption with keyspace # = G

Gen(1"): Enc(pk, m): Dec(sk = a. (B.c)):
1.Sample a < Z;f 1. Sample b « Z;f 1. Compute k = B
2.0utput (sk = a, pk = g9)| |2.Set B = g° 2. Output m = Dec'(k, ¢)
3.Set c := Enc’(pkb, m)
4. Output ¢’ = (B, ¢)

What choice of (Enc, Dec)?

How to prove security?

Q1: Choice of (Enc/, Dec’): OTP?

G: finite cyclic group of prime order p with generator g
« Key idea: One-Time Pad works not just with {0,1}" and XOR, but with any group
. Gen(1"): Sample r « Z,, and output g
Enc(k=g",m € G):Outputc =k-me G
Dec (k = g,ceG:ouputm=k!l-ceG

Correctness: Dec (k,Enc'(k,m)) = k-m -k~ =m

Security: Goal: Vm,m' € G, c € G, kPIé [Enc(k,m) = c] = kPr(G [Enc(k,m’) = c]

Exercise: prove this (try to adapt proof from Lecture 1)

The Elgamal system (a concrete view)

* (: finite cyclic group of prime order p with generator g

- (Enc, Dec): symmetric-key encryption with keyspace # = G

Gen(1"): Enc(pk, m): Dec(sk = a. (B.c)):
1.Sample a < Z;f 1. Sample b « Z;f 1. Compute k = B
2.0utput (sk = a, pk = g9)| |2.Set B = g° 2. Output m = Dec'(k, ¢)
3.Set c := Enc’(pkb, m)
4. Output ¢’ = (B, ¢)

What choice of (Enc, Dec)?

How to prove security?

The Elgamal system (a concrete view)

* (: finite cyclic group of prime order p with generator g

- (Enc, Dec): symmetric-key encryption with keyspace # = G

Gen(1"):
1.Sample a < Z;f

Enc(pk, m):
1. Sample b « Zy

2.0utput (sk = a, pk = g%)[|2.Set B = g°

3.Setc:=m- pkb = mg®
4, Qutput ¢’ = (B, ¢)

Dec(sk = a.(B.¢)):

1. Compute k = B¢
2.Output m =k~ !¢

— Cg—ab

— mgabg—ab

«What choice of (Enc, Dec)?

How to prove security?

Problem:
OTP uses random group element

But we only have g%’
s this a problem? Isn’t g% also random?

Problem: adversary also sees g% and g?!

New assumption: Decisional Diffie—Hellman

Roughly, (g%, g%, g%°) is indistinguishable from (g%, g%, g")

Formally, the following two distributions are computationally indistinguishable:

{ (gaa gba gab) }a,b<—Z and { (gaa gb9 gl”) }a,b,I’(—Z
P p

Elgamal is semantically secure under DDH

= @ By DDH _ o
/chal. pk=¢ » | adv. A d hal. pk=¢ » | adv. A h
My, My \/ My, My
pk,sk | < k,sk | <
b, ab =~ || P% b
c=(g",myg") ¢ =(8",myg")
> r<2, >
/ /
N VAN b
~ =~ (ByOTP)
—_ —
chal. pk = (g,8°) » | adv. A A chal. pk =g > | adv. A A
mO , ml ~ mo ’ m]_
pk,sk | < ‘ ~ pk,sk | <
¢ = (g%, mg™ A\ c=(g%mg"
> — Zp >
77| By DDH ,
N | bl

The Elgamal system (a modern view)

* (: finite cyclic group of prime order p with generator g
(Enc, Dec): what about arbitrary keyspace H# ?

« New ingredient: “Random”-ish hash function H : G - H#

Gen(1"): Enc(pk, m): Dec(sk = a, (B.c)):
1.Sample a « Z;f 1. Sample b « Z];“ 1. Compute k = H(B%)
2.Output (sk = a, pk = g9 | |2.Set k := H(g) 2. Output m = Dec'(k, c)

3.Set ¢ « Enc(k, m)
4. Output ¢’ = (g%, ¢)

New assumption: Hash-DDH

Roughly, (g4, g%, H(g“?)) is indistinguishable from (g%, g, R)

Formally, the following two distributions are computationally indistinguishable:

(8% 8" HE)} ez, and {(8°.8" R} upz pecr

Q: If DDH is hard, is H-DDH hard?

Q: If H-DDH is hard, is DDH hard?

Suppose K=1{0,1}128 and

H: G — K only outputs strings in K that begin with O
(i.e. forally: msb(H(y))=0)

Can Hash-DH hold for (G, H) ?

o Yes, forsome groups G
—> 0 No, Hash-DH is easy to break in this case
o Yes, Hash-DH is always true for such H

Elgamal is semantically secure under H-DDH

/T k= ¢ By H-DDH k= gf ™
chal. P8 o [adval) hal, Pk [advA
sk | et V —
PK,s ~ pk,sk ,
c = (gb, Enc/(k,mo) ~ 2 c = (gb, Enc (k, m)
,'_? r < p o W—
— ab / /
_ k = H(g%) ‘ b) _ k— K ‘ b Y,
~ =~ (ByOTP)
— - a
chal. pk = (g,8°) adv. A A chal. pk =g > | adv. A A
mO ’ ml ~ mO ’ m1
pk,sk | < ~ pk,sk | <
¢ = (g%, Enc'(k, my) A S| = (g?, Enc (k, m,)
— > < P A -
K k= H " \b/ By H-DDH P o \b,
= H(g™) — J

Construction of PKE:
Trapdoor Functions

Trapdoor functions (TDF)

Def: A trapdoor function for input space X and output space Y
is a triple of efficient algorithms (G, F, F~1)

G(1"): randomized algorithm that outputs a key pair (pk, sk)
- F(pk, -): deterministic algorithm that computes f : X — Y

. F~I(sk, -): defines a function Y — X that inverts F(pk, -)

More precisely: V(pk, sk) « G(1%), Vx € X, F~!(sk, F(pk, x)) = x

Secure Trapdoor Functions (TDFs)

ATDF (G, F,F~!) is secure if I is a one-way function:

Challenger Adversary A
(pk, sk) « G(1™)

< X (pk,y := F(pk,x)) x'

>

Def: (G,F,F!) is a secure TDF if for all efficient A:

| (pk, sk) — G(1™M)]
Pr | F(pk, x) = F(pk, x') x < X | = negl(n)
x' <« A(pk, F(pk, x))_

Construction: PKE from TDFs

PKE from Secure TDFs: Attempt

(G,F,F7):secure TDF X = Y

Gen(1"):
1. Output (pk, sk) < G(1").

Enc(pk, m):
1. Output ¢ < F(pk, m).

Dec(sk, c):
1. Output m := F~1(sk, ¢).

Q: Is this secure?

A: No! Entirely deterministic = cannot achieve IND-CPA!

29

PKE from Secure TDFs

(G,F,F7):secure TDF X = Y

(Gen, Enc;, Dec,): symmetric AE defined over (X, M, 6)

- H: X — H: ahash function (like the one in Hashed ElGamal)

Gen(1"):
1. Output (pk, sk) < G(1").

Enc(pk, m):
1. Sample x <« X.
2. Compute key k < H(x)

Dec(sk, (v, ¢)):
1. Compute x := F~!(sk, y).
2. Compute key k < H(x)

3. Output (y < F(pk,x),c < Encyk,m))||3. Output Dec,(k, c)

o0

o)V

In pictures:

F(pk, x)

Enc,(H(x), m)

\

J\

Y
header

Security Theorem:

f (G, F,F~1)is a secure TDF,

|
body

(Gen, Encg, Dec,) is an AE scheme, and

H: X - % isa“random oracle”

then (Gen, Enc, Dec) is IND-CPA secure.

31

Review: Arithmetic modulo composites

Review: arithmetic mod composites

Let N = pg where p, g are prime

Zy=10,1,2,....N—1}; ZF = { invertible elements in Z,}

Facts:
- x € Zy isinvertible < gcd(x,N) =1

- Number of elements in Z% is p(N) =(p—1)(g—1)=N-p—g+1

[Euler’s thm: Vx € Z : x?WN) — 1]

33

Modular e-th roots

We know how to solve modular linear equations:
ax+b=0inZy Solution: x = — b -a~! in Z,
(inverses are fast even for N composite)
What about higher degree polynomials?
Example: Let N = pq for two primes p, g.
Given an arbitrary y € Z,, can we find x such that
y =x° mod N?
Answering these questions requires the factorization of N
(as far as we know)

The factoring problem

Gauss (1805): “The problem of distinguishing prime numbers from
composite numbers and of resolving the latter into
their prime factors is known to be one of the most
important and useful in arithmetic.”

Best known alg. (NFS): runtime 20(\%) for n-bit integer

Current world record: RSA-768 (232 digits)

« Work: two years on hundreds of machines

« Factoring a 1024-bit integer: about 1000 times harder
= likely possible this decade

Key lengths

Security of public key system should be comparable to
security of symmetric cipher:

RSA
Cipher key-size Modulus size
80 bits 1024 bits
128 bits 3072 bits

256 bits (AES) 15360 bits

Construction of Trapdoor Functions

Big question:
can we use hardness of computing

e-th roots to construct a secure TDF?

Secure TDFs from e-th roots

Gen(1"): F(pk = (N, e), x):

1. Sample primes p, g ~ 1024 bits 1. Output x¢ mod N.

2. Set N = pq

3. Sample e,dst. e =d~! mod ¢(N)

4. Setsk = (p,q,d) and pk := (N, e) Dec(sk = (p, ¢,d),y):

5. Output (pk, sk). 1. Output x := yd mod N.

Correctness: V(pk, sk) « G(1"), Vx € X, F~'(sk, F(pk,x)) = x ?

FST(l(Fpk(x)) = (x9)4 = x! mod o) = yI+koWN) = x mod N

39

This is called the RSA Trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:
— SSL/TLS: certificates and key-exchange
— Secure e-mail and file systems

... many others

Secure TDFs from e-th roots

Gen(1"): F(pk = (N, e), x):

1. Sample primes p, g ~ 1024 bits 1. Output x¢ mod M.

2. Set N = pq

3. Sample e,dst. e =d~! mod ¢(N)

4. Setsk = (p,q,d) and pk := (N, e) Dec(sk = (p,q.d),):

5. Output (pk, sk). 1. Output x := yd mod N.

Security?

By “assumption”

RSA assumption: Roughly, computing e-th roots is hard

Pr

A(pk,x° mod N) =x

_ A

(pk = (N, d), sk = (p,g,e)) < G(1")

x < X

The RSA TDF is actually a
trapdoor permutation

= negl(n)

Is the RSA assumption plausible?

To invert the RSA one-way func. (without d) attacker must compute

x from c¢=x° mod M.

How hard is computing e-th roots modulo N ?7?

Best known algorithm:
— Step 1: factor N (hard)

— Step 2: compute e-th roots modulo p and g (easy)

Shortcuts?

Must one factor N in order to compute e-th roots?

To prove no shortcut exists we needa reduction:

— Efficient algorithm for e-th roots mod N

= efficient algorithm for factoring V.

— QOldest problem in public key cryptography.

Some evidence no reduction exists: (B\’98)

— “Algebraic” reduction = factoring is easy.

Textbook RSA is insecure

Textbook RSA encryption:
— public key: (N,e) Encrypt: ¢—m® (in Z)

— secret key: (N,d) Decrypt: ¢ —m

Insecure cryptosystem !
— |s not semantically secure and many attacks exist

= The RSA trapdoor permutation is not an encryption scheme !

RSA in practice

How not to improve RSA’s performance

To speed up RSA decryption use small private key d (d = 2128)

[cd=m (mod N) }

Wiener'87: if d < NO025 then RSA is insecure.

BD’98: if d < N02%92 then RSA is insecure (open:
d < NO-5)

Insecure: priv. key d can be found from (N,e)

RSA With Low public exponent

To speed up RSA encryption use a small e: c = me (mod N)

e« Minimum value: e=3 (gcd(e, (N)) = 1)

e Recommended value: e=65537=216+1

Encryption: 17 multiplications

Asymmetry of RSA: fast enc. / slow dec.

— ElGamal (next module): approx. same time for both.

