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CIS 5560

Lecture 14
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s25/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/


Recap of Last Lecture(s)
• Number Theory refresher


• Arithmetic modulo primes

• Fermat's Little Theorem

• Cyclic groups

• Discrete Logarithms


• Key Exchange

• Merkle puzzles

• Diffie—Hellman


• Computational Diffie—Hellman Problem
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The Multiplicative Group ℤ∗
𝒑
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: ( , group operation:  mod )ℤ∗
𝑝 {1,…, p − 1} ∙ 𝑝

• Computing the group operation is easy.

• Computing inverses is easy: Extended Euclid.

• Exponentiation (given and , find  mod p) is easy: 
Repeated Squaring Algorithm.

𝑔 ∈ ℤ∗
𝑝  𝑥 ∈ ℤ𝑝−1 𝑔𝑥

• The discrete logarithm problem (given a generator , 
find  s.t.  mod p) is hard, to the best of our 
knowledge!

𝑔 and h ∈ ℤ∗
𝑝

𝑥 ∈ ℤ𝑝−1 h = gx



Key management
Problem:     n users.   Storing mutual secret keys is difficult 

Total:   O(n) keys per user
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Key question
Can we generate shared keys without an online trusted 3rd party? 

Answer:   yes! 

Starting point of public-key cryptography: 

• Merkle (1974),         Diffie-Hellman (1976),        RSA (1977) 

• More recently:  ID-based enc. (BF 2001),   Functional enc. (BSW 2011)

5



Merkle Puzzles (1974)

Answer:   yes, but very inefficient 

Main tool:    puzzles 
• Problems that can be solved with some effort 
• Example:      E(k,m)  a symmetric cipher with k ∈ {0,1}128 

– puzzle(P)  =   E(P,  “message”)   where     P = 096 ll b1… b32 

– Goal:    find  P   by trying all   232   possibilities
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Merkle puzzles
Alice:    prepare  232   puzzles 

• For  i=1, …, 232  choose random  Pi ∈{0,1}32
   and   xi, ki ∈{0,1}128

 

	 set	 puzzlei   ⟵   E( 096 ll Pi ,  “Puzzle # xi”  ll   ki  ) 

• Send   puzzle1 , … , puzzle232    to Bob 

Bob:   choose a random   puzzlej   and solve it.   Obtain  ( xj, kj ) . 

• Send  xj  to Alice 

Alice:    lookup puzzle with number xj .     Use   kj  as shared secret 7



In a figure

Alice’s work:    O(n)	 	 (prepare  n  puzzles) 
Bob’s work:   O(n)  	 	 (solve one puzzle)   

Eavesdropper’s work:     O( n2 )
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BobAlice
puzzle1 , … , puzzlen 

xj 

kj kj

(e.g.   264  time)



The Diffie-Hellman protocol  (informally)

Fix a large prime  p        (e.g.   600 digits) 
Fix  generator    g   of   ℤ*p
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Alice Bob
choose random a in {1,…,p-1} choose random b in {1,…,p-1}

kAB = gab  (mod p) =      (ga)b     =  Ab  (mod p)  Ba  (mod p)   =    (gb)a  =



Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm  
there is a negligible function  s.t.

  


 

𝐴,
𝜇

Pr
𝑝 ← 𝑃𝑅𝐼𝑀𝐸𝑆𝑛; 𝑔 ← 𝐺𝐸𝑁(ℤ∗

𝑝 );

𝑥, 𝑦 ← ℤ𝑝−1:  𝐴(𝑝, 𝑔, 𝑔𝑥, 𝑔𝑦) = 𝑔𝑥𝑦
= 𝜇(𝑛)

CDH DLOG
OPEN



Today’s Lecture
• Public Key Encryption


• El Gamal Encryption

• Computational Diffie—Hellman Problem


• RSA Encryption

• Arithmetic modulo composites

• Factoring
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Dan Boneh

Public key encryption

E D

Bob Alice

pk sk

m c c m

Alice:    generates    (PK, SK)    and gives  PK  to Bob 



Public key encryption
Def:   a public-key encryption system is a triple of algs.   (G, E, D)

• ():   randomized alg. outputs a key pair  

• : randomized alg. that takes  and outputs 

• : deterministic alg. that takes   and outputs 

Correctness:  output by ,

𝖦𝖾𝗇 (𝗉𝗄, 𝗌𝗄)

𝖤𝗇𝖼(𝗉𝗄, m) m ∈ ℳ c ∈ 𝒞

𝖣𝖾𝖼(𝗌𝗄, c) c ∈ 𝒞 m ∈ ℳ ∪ { ⊥ }

∀(𝗉𝗄, 𝗌𝗄) 𝖦𝖾𝗇() ∀m ∈ ℳ, 𝖣𝖾𝖼(𝗌𝗄, 𝖤𝗇𝖼(𝗉𝗄, m)) = m

13



Security: IND-CPA for PKE
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Challenger

1.
2. Sample 

3. Compute 

4. 

b ← {0,1}
(𝗉𝗄, 𝗌𝗄) ← 𝖦𝖾𝗇(1n)

cb = 𝖤𝗇𝖼(𝗉𝗄, mb)

b ?= b′￼

Adv 𝒜

(m0, m1)

cb

𝗉𝗄

Pr[b = b′￼] = 1/2 + 𝗇𝖾𝗀𝗅(n)

b′￼



Security: IND-CPA for PKE
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For all PPT adversaries , the following holds:𝒜

Pr b = 𝒜(𝖤𝗇𝖼(𝗉𝗄, mb))
(𝗉𝗄, 𝗌𝗄) ← 𝖦𝖾𝗇(1n)

Sample b ← {0,1}
(m0, m1) ← 𝒜(𝗉𝗄)

≤ 𝗇𝖾𝗀𝗅(n)



How does it relate to symmetric-key IND-CPA?
Recall:   for symmetric ciphers we had two security notions:

• One-time security      and    many-time security (CPA)

• We showed that one-time security does not imply many-time security


For public key encryption:

• One-time security    ⇒   many-time security  (CPA)


	 (follows from the fact that attacker can encrypt by themselves)


• Public key encryption must be randomized


• Q: why not stateful?
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Applications
Session setup    (for now, only eavesdropping security) 

Non-interactive applications:  (e.g.  Email) 

• Bob sends email to Alice encrypted using  pkalice 

• Note:   Bob needs  pkalice    (public key management)
17

Generate  (pk, sk)
Alice

choose random x 
(e.g.  48 bytes) 

Bobpk

E(pk, x)
x



Constructions of PKE
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Recall: DH Key Exchange
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Alice BobA = ga

B = gb

K = Ba = gab K = Ab = gab

c = 𝖤𝗇𝖼′￼(K, m)



Convert DH → PKE
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Alice Bob

𝗉𝗄 = ga

c′￼:= (B, c)

:

1. Sample 

2. Set 

3. Set 

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)

𝖦𝖾𝗇(1n)
↓

(𝗌𝗄 = a, 𝗉𝗄 = ga)

:

1. Compute 

2. Compute 

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

m = 𝖣𝖾𝖼′￼(k, c)



The Elgamal system (an abstract view)
• : finite cyclic group of prime order  with generator 

• : symmetric-key encryption with keyspace 

𝔾 p g
(𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼) 𝒦 = 𝔾
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:

1.Sample 

2.Output 

3. Set 

4. Output 

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Sample 

2. Set 

3. Set 

4. Output 

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Compute 

2. Output 

3. Set 

4. Output 

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

m = 𝖣𝖾𝖼′￼(k, c)
c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)

c′￼= (B, c)

What choice of ? (𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼)

How to prove security?



Q1: Choice of : OTP?(𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼)
• : finite cyclic group of prime order  with generator 


• Key idea: One-Time Pad works not just with  and XOR, but with any group


• : Sample , and output 


• : Output 


• : Output 

𝔾 p g

{0,1}n

𝖦𝖾𝗇′￼(1n) r ← ℤp gr

𝖤𝗇𝖼′￼(k = gr, m ∈ 𝔾) c = k ⋅ m ∈ 𝔾

𝖣𝖾𝖼′￼(k = gr, c ∈ 𝔾) m = k−1 ⋅ c ∈ 𝔾
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Correctness:  


Security: 

𝖣𝖾𝖼′￼(k, 𝖤𝗇𝖼′￼(k, m)) = k ⋅ m ⋅ k−1 = m

Goal: , , 

Exercise: prove this (try to adapt proof from Lecture 1)

∀m, m′￼∈ 𝔾 c ∈ 𝔾 Pr
k←𝔾

[𝖤𝗇𝖼(k, m) = c] = Pr
k←𝔾

[𝖤𝗇𝖼(k, m′￼) = c]



The Elgamal system (a concrete view)
• : finite cyclic group of prime order  with generator 

• : symmetric-key encryption with keyspace 

𝔾 p g
(𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼) 𝒦 = 𝔾
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:

1.Sample 

2.Output 

3. Set 

4. Output 

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Sample 

2. Set 

3. Set 

4. Output 

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Compute 

2. Output 

3. Set 

4. Output 

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

m = 𝖣𝖾𝖼′￼(k, c)
c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)

c′￼= (B, c)

What choice of ? (𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼)

How to prove security?



The Elgamal system (a concrete view)
• : finite cyclic group of prime order  with generator 

• : symmetric-key encryption with keyspace 

𝔾 p g
(𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼) 𝒦 = 𝔾
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:

1.Sample 

2.Output 

3. Set 

4. Output 

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Sample 

2. Set 

3. Set 

4. Output 

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := m ⋅ 𝗉𝗄b = mgab

c′￼= (B, c)

:

1. Compute 

2. Output

3. Set 


4.Output 

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

What choice of ? (𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼)

How to prove security?

m = k−1c
= cg−ab

= mgabg−ab



Problem: 

OTP uses random group element


But we only have !


Is this a problem? Isn’t  also random?


Problem: adversary also sees  and !

gab

gab

ga gb
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New assumption: Decisional Diffie—Hellman
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Roughly,  is indistinguishable from 


Formally, the following two distributions are computationally indistinguishable:


 and 

(ga, gb, gab) (ga, gb, gr)

{(ga, gb, gab)}a,b←ℤp
{(ga, gb, gr)}a,b,r←ℤp



Elgamal is semantically secure under DDH
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≈

≈

≈

chal. adv. A

pk,sk
m0 , m1

 c = (gb, m0gab)

b′￼

pk = ga

chal. adv. A

pk,sk
m0 , m1

 c = (gb, m1gab)

pk = (g,ga)

b′￼

chal. adv. A

pk,sk
m0 , m1

c = (gb, m0gr)

pk = ga

b′￼

r ← ℤp

chal. adv. A

pk,sk
m0 , m1

c = (gb, m1gr)

pk = ga

b′￼

r ← ℤp

≈ (By OTP)

By DDH

By DDH



The Elgamal system (a modern view)
• : finite cyclic group of prime order  with generator 


• : what about arbitrary keyspace ?


• New ingredient: “Random”-ish hash function 

𝔾 p g

(𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼) 𝒦
H : 𝔾 → 𝒦
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:

1.Sample 

2.Output 

3. Set 

4. Output 

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Sample 

2. Set 

3. Set 

4. Output 

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

k := H(gab)
c ← 𝖤𝗇𝖼(k, m)

c′￼= (gb, c)

:

1. Compute 

2. Output 

3. Set 

4. Output 

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = H(Ba)

m = 𝖣𝖾𝖼′￼(k, c)
c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)

c′￼= (B, c)



New assumption: Hash-DDH
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Roughly,  is indistinguishable from 


Formally, the following two distributions are computationally indistinguishable:


 and 

(ga, gb, H(gab)) (ga, gb, R)

{(ga, gb, H(gab))}a,b←ℤp
{(ga, gb, R)}a,b←ℤp,R←𝒦

Q: If DDH is hard, is H-DDH hard?

Q: If H-DDH is hard, is DDH hard?



Suppose   K = {0,1}128   and  

	   H: G ⟶ K  only outputs strings in K that begin with 0 
	 	 	 ( i.e.  for all y:  msb(H(y))=0   ) 

Can Hash-DH hold for  (G, H) ? 

Yes, for some groups  G
No, Hash-DH is easy to break in this case
Yes, Hash-DH is always true for such H



Elgamal is semantically secure under H-DDH
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≈

≈

≈

chal. adv. A

pk,sk
m0 , m1

 c = (gb, 𝖤𝗇𝖼′￼(k, m0)

b′￼

pk = ga

chal. adv. A

pk,sk
m0 , m1

 c = (gb, 𝖤𝗇𝖼′￼(k, m0)

pk = (g,ga)

b′￼

chal. adv. A

pk,sk
m0 , m1

pk = ga

b′￼

 c = (gb, 𝖤𝗇𝖼′￼(k, m0)
r ← ℤp

chal. adv. A

pk,sk
m0 , m1

pk = ga

b′￼

 c = (gb, 𝖤𝗇𝖼′￼(k, m1)r ← ℤp

≈ (By OTP)

By H-DDH

By H-DDH

k = H(gab) k ← 𝒦

k ← 𝒦k = H(gab)



Dan Boneh

What about active attacks?



What about security against active attacks?
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Can we achieve ciphertext integrity? 

Def:  (Gen, Enc, Dec)  has ciphertext integrity if for all PPT  : 
	          

A
𝖠𝖽𝗏𝖢𝖨[A] = Pr[b = 1] = 𝗇𝖾𝗀𝗅(λ)

Chal. Adv.

(𝗉𝗄, 𝗌𝗄) ← 𝖦𝖾𝗇(1λ)
c

m1 ∈ ℳ
c1 ← 𝖤𝗇𝖼(k, m1)

    if     and   
   otherwise

b = 1 𝖣𝖾𝖼(k, c) ≠ ⊥ c ∉ {c1, …, cq}
b = 0

b

m2, …, mq
c2, …, cq

𝗉𝗄



Problem

In public-key settings: 
• Attacker can always create new ciphertexts using  pk !! 
• So instead: we directly require chosen ciphertext security

34



(pub-key) Chosen Ciphertext Security:  definition

E = (G,E,D)  public-key enc. over  (M,C).  For   b=0,1   define EXP(b):

35

b

Adv. AChal.

(pk,sk)←G()

b’ ∈ {0,1}

challenge:    m0 , m1  ∈ M :    |m0| = |m1|

c ← E(pk, mb)

pk

CCA phase 1:      ci ∈ C 

mi ← D(k, ci)

CCA phase 2:      ci ∈ C  :     ci ≠ c 
 mi ← D(k, ci)



Chosen ciphertext security: definition
Def:   E is CCA secure (a.k.a  IND-CCA)  if for all efficient  A: 

     AdvCCA [A,E]  =  |Pr[EXP(0)=1] – Pr[EXP(1)=1] |  is negligible.

36
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Dan Boneh

ElGamal chosen ciphertext security?
Security Theorem:     

	 If  IDH holds in the group G,     (Es, Ds) provides auth. enc. 

	 and   H: G2 ⟶ K    is a   “random oracle”  
	 then   ElGamal   is  CCAro  secure. 

Questions:	 (1)  can we prove CCA security based on CDH? 

	 	 (2)  can we prove CCA security without random oracles?



Dan Boneh

ElGamal chosen ciphertext security?
To prove chosen ciphertext security need stronger assumption 

Interactive Diffie-Hellman (IDH) in group G: 

IDH holds in G if:   ∀efficient A:    Pr[ A outputs gab] < negligible

Chal. Adv. A
(u1,v1)

g⟵{gen} 
a,b⟵Zn

g,  h=ga,  u=gb 

1. if   (u1)a = v1 

0      otherwise

v
wins if v=gab



Decisional Diffie-Hellman Assumption

Hard to distinguish between  and a uniformly 

random group element, given  and 

𝑔𝑥𝑦

𝑔, 𝑔𝑥 𝑔𝑦

Decisional Diffie-Hellman Assumption (DDHA):

That is, the following two distributions are 
computationally indistinguishable: 

(𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑥𝑦) ≈ (𝑔, 𝑔𝑥, 𝑔𝑦, 𝑢)

DH/El Gamal is IND-secure under the DDH 
assumption on the given group. 



DLOG:   more generally
Let    be a finite cyclic group  and  g a generator of  


	  =  { 1 , g , g2 , g3 ,   …  ,  gq-1 }     ( q is called the order of G )


Def:  We say that DLOG is hard in G if for all efficient alg. A:


	 Pr g⟵G, x ⟵Zq [  A( G, q,  g, gx ) = x ]  <  negligible


Example candidates:

	 (1)    (Zp)*  for large p,         (2)  Elliptic curve groups mod p

𝔾 𝔾

𝔾
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Computing Dlog in (Zp)*     (n-bit prime p) 

Best known algorithm (GNFS):        run time     exp(              )


	 cipher key size	 	 modulus size		 

	    80 bits	 	 	   1024 bits	 	 

	   128 bits	 	 	   3072 bits	 	 

	   256 bits (AES)	 	 15360 bits 	 	 


As a result:    slow transition away from (mod p) to elliptic 
curves

41

Elliptic Curve 
group size

160 bits

256 bits

512 bits



An application:  collision resistance
Choose a group G where Dlog is hard   (e.g.  (Zp)* for large p)


Let  q = |G| be a prime.   Choose generators  g, h  of G 


	 For  x,y ∈ {1,…,q}      define      H(x,y) = gx ⋅ hy       in G 

Lemma:   finding collision for H(.,.) is as hard as computing Dlogg(h)


Proof:   Suppose we are given a collision   H(x0,y0) = H(x1,y1)


then    gx0⋅hy0  = gx1⋅hy1    ⇒    gx0-x1  = hy1-y0    ⇒    h = g x0-x1/y1-y042



Further reading
• A Computational Introduction to Number Theory and 

Algebra, 
V. Shoup,  2008    (V2),     Chapter 1-4, 11, 12


	 Available at      //shoup.net/ntb/ntb-v2.pdf
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