
￼1

CIS 5560

Lecture 14
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s25/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Recap of Last Lecture(s)
• Number Theory refresher

• Arithmetic modulo primes

• Fermat's Little Theorem

• Cyclic groups

• Discrete Logarithms

• Key Exchange

• Merkle puzzles

• Diffie—Hellman

• Computational Diffie—Hellman Problem
2

The Multiplicative Group ℤ∗
𝒑

3

: (, group operation: mod)ℤ∗
𝑝 {1,…, p − 1} ∙ 𝑝

• Computing the group operation is easy.

• Computing inverses is easy: Extended Euclid.

• Exponentiation (given and , find mod p) is easy:
Repeated Squaring Algorithm.

𝑔 ∈ ℤ∗
𝑝 𝑥 ∈ ℤ𝑝−1 𝑔𝑥

• The discrete logarithm problem (given a generator ,
find s.t. mod p) is hard, to the best of our
knowledge!

𝑔 and h ∈ ℤ∗
𝑝

𝑥 ∈ ℤ𝑝−1 h = gx

Key management
Problem: n users. Storing mutual secret keys is difficult

Total: O(n) keys per user

4

Key question
Can we generate shared keys without an online trusted 3rd party?

Answer: yes!

Starting point of public-key cryptography:

• Merkle (1974), Diffie-Hellman (1976), RSA (1977)

• More recently: ID-based enc. (BF 2001), Functional enc. (BSW 2011)

5

Merkle Puzzles (1974)

Answer: yes, but very inefficient

Main tool: puzzles
• Problems that can be solved with some effort
• Example: E(k,m) a symmetric cipher with k ∈ {0,1}128

– puzzle(P) = E(P, “message”) where P = 096 ll b1… b32

– Goal: find P by trying all 232 possibilities

6

Merkle puzzles
Alice: prepare 232 puzzles

• For i=1, …, 232 choose random Pi ∈{0,1}32
 and xi, ki ∈{0,1}128

	 set	 puzzlei ⟵ E(096 ll Pi , “Puzzle # xi” ll ki)

• Send puzzle1 , … , puzzle232 to Bob

Bob: choose a random puzzlej and solve it. Obtain (xj, kj) .

• Send xj to Alice

Alice: lookup puzzle with number xj . Use kj as shared secret 7

In a figure

Alice’s work: O(n)	 	 (prepare n puzzles)
Bob’s work: O(n) 	 	 (solve one puzzle)

Eavesdropper’s work: O(n2)
8

BobAlice
puzzle1 , … , puzzlen

xj

kj kj

(e.g. 264 time)

The Diffie-Hellman protocol (informally)

Fix a large prime p (e.g. 600 digits)
Fix generator g of ℤ*p

9

Alice Bob
choose random a in {1,…,p-1} choose random b in {1,…,p-1}

kAB = gab (mod p) = (ga)b = Ab (mod p) Ba (mod p) = (gb)a =

Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm
there is a negligible function s.t.

𝐴,
𝜇

Pr
𝑝 ← 𝑃𝑅𝐼𝑀𝐸𝑆𝑛; 𝑔 ← 𝐺𝐸𝑁(ℤ∗

𝑝);

𝑥, 𝑦 ← ℤ𝑝−1: 𝐴(𝑝, 𝑔, 𝑔𝑥, 𝑔𝑦) = 𝑔𝑥𝑦
= 𝜇(𝑛)

CDH DLOG
OPEN

Today’s Lecture
• Public Key Encryption

• El Gamal Encryption

• Computational Diffie—Hellman Problem

• RSA Encryption

• Arithmetic modulo composites

• Factoring

11

Dan Boneh

Public key encryption

E D

Bob Alice

pk sk

m c c m

Alice: generates (PK, SK) and gives PK to Bob

Public key encryption
Def: a public-key encryption system is a triple of algs. (G, E, D)

• (): randomized alg. outputs a key pair

• : randomized alg. that takes and outputs

• : deterministic alg. that takes and outputs

Correctness: output by ,

𝖦𝖾𝗇 (𝗉𝗄, 𝗌𝗄)

𝖤𝗇𝖼(𝗉𝗄, m) m ∈ ℳ c ∈ 𝒞

𝖣𝖾𝖼(𝗌𝗄, c) c ∈ 𝒞 m ∈ ℳ ∪ { ⊥ }

∀(𝗉𝗄, 𝗌𝗄) 𝖦𝖾𝗇() ∀m ∈ ℳ, 𝖣𝖾𝖼(𝗌𝗄, 𝖤𝗇𝖼(𝗉𝗄, m)) = m

13

Security: IND-CPA for PKE

14

Challenger

1.
2. Sample

3. Compute

4.

b ← {0,1}
(𝗉𝗄, 𝗌𝗄) ← 𝖦𝖾𝗇(1n)

cb = 𝖤𝗇𝖼(𝗉𝗄, mb)

b ?= b′￼

Adv 𝒜

(m0, m1)

cb

𝗉𝗄

Pr[b = b′￼] = 1/2 + 𝗇𝖾𝗀𝗅(n)

b′￼

Security: IND-CPA for PKE

15

For all PPT adversaries , the following holds:𝒜

Pr b = 𝒜(𝖤𝗇𝖼(𝗉𝗄, mb))
(𝗉𝗄, 𝗌𝗄) ← 𝖦𝖾𝗇(1n)

Sample b ← {0,1}
(m0, m1) ← 𝒜(𝗉𝗄)

≤ 𝗇𝖾𝗀𝗅(n)

How does it relate to symmetric-key IND-CPA?
Recall: for symmetric ciphers we had two security notions:

• One-time security and many-time security (CPA)

• We showed that one-time security does not imply many-time security

For public key encryption:

• One-time security ⇒ many-time security (CPA)

	 (follows from the fact that attacker can encrypt by themselves)

• Public key encryption must be randomized

• Q: why not stateful?
16

Applications
Session setup (for now, only eavesdropping security)

Non-interactive applications: (e.g. Email)

• Bob sends email to Alice encrypted using pkalice

• Note: Bob needs pkalice (public key management)
17

Generate (pk, sk)
Alice

choose random x
(e.g. 48 bytes)

Bobpk

E(pk, x)
x

Constructions of PKE

18

Recall: DH Key Exchange

19

Alice BobA = ga

B = gb

K = Ba = gab K = Ab = gab

c = 𝖤𝗇𝖼′￼(K, m)

Convert DH → PKE

20

Alice Bob

𝗉𝗄 = ga

c′￼:= (B, c)

:

1. Sample

2. Set

3. Set

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)

𝖦𝖾𝗇(1n)
↓

(𝗌𝗄 = a, 𝗉𝗄 = ga)

:

1. Compute

2. Compute

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

m = 𝖣𝖾𝖼′￼(k, c)

The Elgamal system (an abstract view)
• : finite cyclic group of prime order with generator

• : symmetric-key encryption with keyspace

𝔾 p g
(𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼) 𝒦 = 𝔾

21

:

1.Sample

2.Output

3. Set

4. Output

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Sample

2. Set

3. Set

4. Output

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Compute

2. Output

3. Set

4. Output

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

m = 𝖣𝖾𝖼′￼(k, c)
c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)

c′￼= (B, c)

What choice of ? (𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼)

How to prove security?

Q1: Choice of : OTP?(𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼)
• : finite cyclic group of prime order with generator

• Key idea: One-Time Pad works not just with and XOR, but with any group

• : Sample , and output

• : Output

• : Output

𝔾 p g

{0,1}n

𝖦𝖾𝗇′￼(1n) r ← ℤp gr

𝖤𝗇𝖼′￼(k = gr, m ∈ 𝔾) c = k ⋅ m ∈ 𝔾

𝖣𝖾𝖼′￼(k = gr, c ∈ 𝔾) m = k−1 ⋅ c ∈ 𝔾

22

Correctness:

Security:

𝖣𝖾𝖼′￼(k, 𝖤𝗇𝖼′￼(k, m)) = k ⋅ m ⋅ k−1 = m

Goal: , ,

Exercise: prove this (try to adapt proof from Lecture 1)

∀m, m′￼∈ 𝔾 c ∈ 𝔾 Pr
k←𝔾

[𝖤𝗇𝖼(k, m) = c] = Pr
k←𝔾

[𝖤𝗇𝖼(k, m′￼) = c]

The Elgamal system (a concrete view)
• : finite cyclic group of prime order with generator

• : symmetric-key encryption with keyspace

𝔾 p g
(𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼) 𝒦 = 𝔾

23

:

1.Sample

2.Output

3. Set

4. Output

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Sample

2. Set

3. Set

4. Output

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Compute

2. Output

3. Set

4. Output

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

m = 𝖣𝖾𝖼′￼(k, c)
c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)

c′￼= (B, c)

What choice of ? (𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼)

How to prove security?

The Elgamal system (a concrete view)
• : finite cyclic group of prime order with generator

• : symmetric-key encryption with keyspace

𝔾 p g
(𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼) 𝒦 = 𝔾

24

:

1.Sample

2.Output

3. Set

4. Output

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Sample

2. Set

3. Set

4. Output

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := m ⋅ 𝗉𝗄b = mgab

c′￼= (B, c)

:

1. Compute

2. Output

3. Set

4.Output

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

What choice of ? (𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼)

How to prove security?

m = k−1c
= cg−ab

= mgabg−ab

Problem:

OTP uses random group element

But we only have !

Is this a problem? Isn’t also random?

Problem: adversary also sees and !

gab

gab

ga gb
25

New assumption: Decisional Diffie—Hellman

26

Roughly, is indistinguishable from

Formally, the following two distributions are computationally indistinguishable:

 and

(ga, gb, gab) (ga, gb, gr)

{(ga, gb, gab)}a,b←ℤp
{(ga, gb, gr)}a,b,r←ℤp

Elgamal is semantically secure under DDH

27

≈

≈

≈

chal. adv. A

pk,sk
m0 , m1

 c = (gb, m0gab)

b′￼

pk = ga

chal. adv. A

pk,sk
m0 , m1

 c = (gb, m1gab)

pk = (g,ga)

b′￼

chal. adv. A

pk,sk
m0 , m1

c = (gb, m0gr)

pk = ga

b′￼

r ← ℤp

chal. adv. A

pk,sk
m0 , m1

c = (gb, m1gr)

pk = ga

b′￼

r ← ℤp

≈ (By OTP)

By DDH

By DDH

The Elgamal system (a modern view)
• : finite cyclic group of prime order with generator

• : what about arbitrary keyspace ?

• New ingredient: “Random”-ish hash function

𝔾 p g

(𝖤𝗇𝖼′￼, 𝖣𝖾𝖼′￼) 𝒦
H : 𝔾 → 𝒦

28

:

1.Sample

2.Output

3. Set

4. Output

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)
c′￼= (B, c)

:

1. Sample

2. Set

3. Set

4. Output

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

k := H(gab)
c ← 𝖤𝗇𝖼(k, m)

c′￼= (gb, c)

:

1. Compute

2. Output

3. Set

4. Output

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = H(Ba)

m = 𝖣𝖾𝖼′￼(k, c)
c := 𝖤𝗇𝖼′￼(𝗉𝗄b, m)

c′￼= (B, c)

New assumption: Hash-DDH

29

Roughly, is indistinguishable from

Formally, the following two distributions are computationally indistinguishable:

 and

(ga, gb, H(gab)) (ga, gb, R)

{(ga, gb, H(gab))}a,b←ℤp
{(ga, gb, R)}a,b←ℤp,R←𝒦

Q: If DDH is hard, is H-DDH hard?

Q: If H-DDH is hard, is DDH hard?

Suppose K = {0,1}128 and

	 H: G ⟶ K only outputs strings in K that begin with 0
	 	 	 (i.e. for all y: msb(H(y))=0)

Can Hash-DH hold for (G, H) ?

Yes, for some groups G
No, Hash-DH is easy to break in this case
Yes, Hash-DH is always true for such H

Elgamal is semantically secure under H-DDH

31

≈

≈

≈

chal. adv. A

pk,sk
m0 , m1

 c = (gb, 𝖤𝗇𝖼′￼(k, m0)

b′￼

pk = ga

chal. adv. A

pk,sk
m0 , m1

 c = (gb, 𝖤𝗇𝖼′￼(k, m0)

pk = (g,ga)

b′￼

chal. adv. A

pk,sk
m0 , m1

pk = ga

b′￼

 c = (gb, 𝖤𝗇𝖼′￼(k, m0)
r ← ℤp

chal. adv. A

pk,sk
m0 , m1

pk = ga

b′￼

 c = (gb, 𝖤𝗇𝖼′￼(k, m1)r ← ℤp

≈ (By OTP)

By H-DDH

By H-DDH

k = H(gab) k ← 𝒦

k ← 𝒦k = H(gab)

Dan Boneh

What about active attacks?

What about security against active attacks?

33

Can we achieve ciphertext integrity?

Def: (Gen, Enc, Dec) has ciphertext integrity if for all PPT :
	

A
𝖠𝖽𝗏𝖢𝖨[A] = Pr[b = 1] = 𝗇𝖾𝗀𝗅(λ)

Chal. Adv.

(𝗉𝗄, 𝗌𝗄) ← 𝖦𝖾𝗇(1λ)
c

m1 ∈ ℳ
c1 ← 𝖤𝗇𝖼(k, m1)

 if and
 otherwise

b = 1 𝖣𝖾𝖼(k, c) ≠ ⊥ c ∉ {c1, …, cq}
b = 0

b

m2, …, mq
c2, …, cq

𝗉𝗄

Problem

In public-key settings:
• Attacker can always create new ciphertexts using pk !!
• So instead: we directly require chosen ciphertext security

34

(pub-key) Chosen Ciphertext Security: definition

E = (G,E,D) public-key enc. over (M,C). For b=0,1 define EXP(b):

35

b

Adv. AChal.

(pk,sk)←G()

b’ ∈ {0,1}

challenge: m0 , m1 ∈ M : |m0| = |m1|

c ← E(pk, mb)

pk

CCA phase 1: ci ∈ C

mi ← D(k, ci)

CCA phase 2: ci ∈ C : ci ≠ c
 mi ← D(k, ci)

Chosen ciphertext security: definition
Def: E is CCA secure (a.k.a IND-CCA) if for all efficient A:

 AdvCCA [A,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] | is negligible.

36

b

Dan Boneh

ElGamal chosen ciphertext security?
Security Theorem:

	 If IDH holds in the group G, (Es, Ds) provides auth. enc.

	 and H: G2 ⟶ K is a “random oracle”
	 then ElGamal is CCAro secure.

Questions:	 (1) can we prove CCA security based on CDH?

	 	 (2) can we prove CCA security without random oracles?

Dan Boneh

ElGamal chosen ciphertext security?
To prove chosen ciphertext security need stronger assumption

Interactive Diffie-Hellman (IDH) in group G:

IDH holds in G if: ∀efficient A: Pr[A outputs gab] < negligible

Chal. Adv. A
(u1,v1)

g⟵{gen}
a,b⟵Zn

g, h=ga, u=gb

1. if (u1)a = v1

0 otherwise

v
wins if v=gab

Decisional Diffie-Hellman Assumption

Hard to distinguish between and a uniformly

random group element, given and

𝑔𝑥𝑦

𝑔, 𝑔𝑥 𝑔𝑦

Decisional Diffie-Hellman Assumption (DDHA):

That is, the following two distributions are
computationally indistinguishable:

(𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑥𝑦) ≈ (𝑔, 𝑔𝑥, 𝑔𝑦, 𝑢)

DH/El Gamal is IND-secure under the DDH
assumption on the given group.

DLOG: more generally
Let be a finite cyclic group and g a generator of

	 = { 1 , g , g2 , g3 , … , gq-1 } (q is called the order of G)

Def: We say that DLOG is hard in G if for all efficient alg. A:

	 Pr g⟵G, x ⟵Zq [A(G, q, g, gx) = x] < negligible

Example candidates:

	 (1) (Zp)* for large p, (2) Elliptic curve groups mod p

𝔾 𝔾

𝔾

40

Computing Dlog in (Zp)* (n-bit prime p)

Best known algorithm (GNFS): run time exp()

	 cipher key size	 	 modulus size		

	 80 bits	 	 	 1024 bits	 	

	 128 bits	 	 	 3072 bits	 	

	 256 bits (AES)	 	 15360 bits 	 	

As a result: slow transition away from (mod p) to elliptic
curves

41

Elliptic Curve 
group size

160 bits

256 bits

512 bits

An application: collision resistance
Choose a group G where Dlog is hard (e.g. (Zp)* for large p)

Let q = |G| be a prime. Choose generators g, h of G

	 For x,y ∈ {1,…,q} define H(x,y) = gx ⋅ hy in G

Lemma: finding collision for H(.,.) is as hard as computing Dlogg(h)

Proof: Suppose we are given a collision H(x0,y0) = H(x1,y1)

then gx0⋅hy0 = gx1⋅hy1 ⇒ gx0-x1 = hy1-y0 ⇒ h = g x0-x1/y1-y042

Further reading
• A Computational Introduction to Number Theory and

Algebra, 
V. Shoup, 2008 (V2), Chapter 1-4, 11, 12

	 Available at //shoup.net/ntb/ntb-v2.pdf

43

