CIS 5560

Cryptography
Lecture 14

Course website:
pratyushmishra.com/classes/cis-5560-s25/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Recap of Last Lecture(s)

* Number Theory refresher
 Arithmetic modulo primes
« Fermat's Little Theorem
« Cyclic groups
 Discrete Logarithms
- Key Exchange
« Merkle puzzles
» Diffie—Hellman
- Computational Diffie—Hellman Problem

The Multiplicative Group z;

Z,: ({1,...,p — 1}, group operation: « mod p)
- Computing the group operation is easy.
« Computing inverses is easy: Extended Euclid.

- Exponentiation (given g € Z; and x € Z,_;, find g* mod p) is easy:
Repeated Squaring Algorithm.

The discrete logarithm problem (given a generator g and & € Z:,

find x € Z,_; s.t. h = g* mod p) is hard, to the best of our
knowledge!

Key management

Problem: nusers. Storing mutual secret keys is difficult

Kf/}
—
@) (4
)éz 3
K2 P /(3/4
L&y

Ge) — (U

K2’4

Total: O(n) keys per user

Key question

Can we generate shared keys without an online trusted 3rd party?
Answer: vyes!

Starting point of public-key cryptography:

o Merkle (1974), Diffie-Hellman (1976), RSA (1977)

« More recently: ID-based enc. (BF 2001), Functional enc. (BSW 2011)

Merkle Puzzles (1974)

Answer: yes, but very inefficient

Main tool: puzzles

e Problems that can be solved with some effort
« Example: E(k,m) a symmetric cipher with k € {0,1}128

— puzzle(P) = E(P, “message”) where P =0%llb,...b,,

— Goal: find P bytryingall 232 possibilities

Merkle puzzles

Alice: prepare 232 puzzles
. For i=1, ..., 232 choose random P;<{0,1}32 and x, k. €{0,1}128

set puzzle, — E(0%IIP;,, “Puzzle #x.” Il k,)

. Send puzzle,, ..., puzzle,3» toBob

Bob: choose a random puzzlej and solve it. Obtain (xj, kj).

« Send x; to Alice

Alice: lookup puzzle with number ;. Use kj as shared secret

In a figure

puzzle,, ..., puzzle,
: >
Alice
.
<

ki
Alice’s work: O(n) (prepare n puzzles)
Bob’s work: O(n) (solve one puzzle)

Eavesdropper’s work: O(n2) (e.g. 264 time)

The Diffie-Hellman protocol (informally)

Fix a large prime p (e.g. 600 digits)
Fix generator g of Z]’f

Alice Bob

choose random ain {1,...,p-1} choose random b in {1,...,p-1}

‘Uce’, Ao 9" (mad p)

>

"

"Bab

b
p , B] (matp)

B2 modp) = (gP)* = Kk,g=83 (modp) = (g3)° = AP (modp)

9

Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A,
there is a negligible function y s.t.

p < PRIMES, g < GEN(Z;f);

Pr = u(n)

x.y < Z,: A(p.g.8"%.8") =g

Today’s Lecture

* Public Key Encryption
 El Gamal Encryption
- Computational Diffie—Hellman Problem
* RSA Encryption
 Arithmetic modulo composites
 Factoring

Public key encryption

Alice: generates (PK, SK) and gives PK to Bob

Bob Alice

nnnnnnnn

Public key encryption

Def: a public-key encryption system is a triple of algs. (G, E, D)
- Gen(): randomized alg. outputs a key pair (pk, sk)
- Enc(pk, m): randomized alg. that takes m € .# and outputs c € €

. Dec(sk, ¢): deterministic alg. that takes ¢ € € and outputs m € A U { L }

Correctness: V(pk, sk) output by Gen(),Vm € ., Dec(sk, Enc(pk, m)) = m

Security: IND-CPA for PKE

(Adv of \ (Challenger \
pk 1.b < {0,1}
< 2. Sample (pk, sk) < Gen(1")
¢, 3. Compute ¢, = Enc(pk, m1,)
<<
b’ 4.b =D
_ J NG J

Pr[b = b'] = 1/2 + negl(n)

Security: IND-CPA for PKE

For all PPT adversaries &, the following holds:

(pk, sk) « Gen(l”)_
Pr | b = (Enc(pk, my)) | Sample b < {0,1} | < negl(n)
(mg, my) < Qf(pk)_

How does it relate to symmetric-key IND-CPA?

Recall: for symmetric ciphers we had two security notions:
* One-time security and many-time security (CPA)
* We showed that one-time security does not imply many-time security

For public key encryption:
* One-time security = many-time security (CPA)

(follows from the fact that attacker can encrypt by themselves)
* Public key encryption must be randomized

* Q: why not stateful?

Applications

Session setup (for now, only eavesdropping security)

Alice ok Bob

Generate (pk, sk) choose random x

E(pk, x) (e.g. 48 bytes)

X

Non-interactive applications: (e.g. Email)

« Bob sends email to Alice encrypted using pk_; .

« Note: Bob needs pk

Jice (public key management)

Constructions of PKE

Recall: DH Key Exchange

Alice

A=g?

<

¢ = Enc (K, m)

Bob

Convert DH = PKE

Alice Bob
— a
Gen(1") pk =g >
! . Enc(pk, m):
(sk =a,pk = g%) 1. Sample b « Z
2. SetB =g°
¢’ :=(B,c) 3. Setc := Enc’(pkb, m)

Dec(sk = a, (B, ¢)):
1. Compute k = B¢
2. Compute m = Dec'(k, ¢)

The Elgamal system (an abstract view)

* (: finite cyclic group of prime order p with generator g

- (Enc, Dec): symmetric-key encryption with keyspace # = G

Gen(1"): Enc(pk, m): Dec(sk = a. (B.c)):
1.Sample a < Z;f 1. Sample b « Z;f 1. Compute k = B
2.0utput (sk = a, pk = g9)| |2.Set B = g° 2. Output m = Dec'(k, ¢)
3.Set c := Enc’(pkb, m)
4. Output ¢’ = (B, ¢)

What choice of (Enc, Dec)?

How to prove security?

Q1: Choice of (Enc/, Dec’): OTP?

G: finite cyclic group of prime order p with generator g
« Key idea: One-Time Pad works not just with {0,1}" and XOR, but with any group
. Gen(1"): Sample r « Z,, and output g
Enc(k=g",m € G):Outputc =k-me G
Dec (k = g,ceG:ouputm=k!l-ceG

Correctness: Dec (k,Enc'(k,m)) = k-m -k~ =m

Security: Goal: Vm,m' € G, c € G, kPIé [Enc(k,m) = c] = kPr(G [Enc(k,m’) = c]

Exercise: prove this (try to adapt proof from Lecture 1)

The Elgamal system (a concrete view)

* (: finite cyclic group of prime order p with generator g

- (Enc, Dec): symmetric-key encryption with keyspace # = G

Gen(1"): Enc(pk, m): Dec(sk = a. (B.c)):
1.Sample a < Z;f 1. Sample b « Z;f 1. Compute k = B
2.0utput (sk = a, pk = g9)| |2.Set B = g° 2. Output m = Dec'(k, ¢)
3.Set c := Enc’(pkb, m)
4. Output ¢’ = (B, ¢)

What choice of (Enc, Dec)?

How to prove security?

The Elgamal system (a concrete view)

* (: finite cyclic group of prime order p with generator g

- (Enc, Dec): symmetric-key encryption with keyspace # = G

Gen(1"):
1.Sample a < Z;f

Enc(pk, m):
1. Sample b « Zy

2.0utput (sk = a, pk = g%)[|2.Set B = g°

3.Setc:=m- pkb = mg®
4, Qutput ¢’ = (B, ¢)

Dec(sk = a.(B.¢)):

1. Compute k = B¢
2.Output m =k~ !¢

— Cg—ab

— mgabg—ab

«What choice of (Enc, Dec)?

How to prove security?

Problem:
OTP uses random group element

But we only have g%’
s this a problem? Isn’t g% also random?

Problem: adversary also sees g% and g?!

New assumption: Decisional Diffie—Hellman

Roughly, (g%, g%, g%°) is indistinguishable from (g%, g%, g")

Formally, the following two distributions are computationally indistinguishable:

{ (gaa gba gab) }a,b<—Z and { (gaa gb9 gl”) }a,b,I’(—Z
P p

Elgamal is semantically secure under DDH

= @ By DDH _ o
/chal. pk=¢ » | adv. A d hal. pk=¢ » | adv. A h
My, My \/ My, My
pk,sk | < k,sk | <
b, ab =~ || P% b
c=(g",myg") ¢ =(8",myg")
> r<2, >
/ /
N VAN b
~ =~ (ByOTP)
—_ —
chal. pk = (g,8°) » | adv. A A chal. pk =g > | adv. A A
mO , ml ~ mo ’ m]_
pk,sk | < ‘ ~ pk,sk | <
¢ = (g%, mg™ A\ c=(g%mg"
> — Zp >
77| By DDH ,
N | bl

The Elgamal system (a modern view)

* (: finite cyclic group of prime order p with generator g
(Enc, Dec): what about arbitrary keyspace H# ?

« New ingredient: “Random”-ish hash function H : G - H#

Gen(1"): Enc(pk, m): Dec(sk = a, (B.c)):
1.Sample a « Z;f 1. Sample b « Z];“ 1. Compute k = H(B%)
2.Output (sk = a, pk = g9 | |2.Set k := H(g) 2. Output m = Dec'(k, c)

3.Set ¢ « Enc(k, m)
4. Output ¢’ = (g%, ¢)

New assumption: Hash-DDH

Roughly, (g4, g%, H(g“?)) is indistinguishable from (g%, g, R)

Formally, the following two distributions are computationally indistinguishable:

(8% 8" HE)} ez, and {(8°.8" R} upz pecr

Q: If DDH is hard, is H-DDH hard?

Q: If H-DDH is hard, is DDH hard?

Suppose K=1{0,1}128 and

H: G — K only outputs strings in K that begin with O
(i.e. forally: msb(H(y))=0)

Can Hash-DH hold for (G, H) ?

o Yes, forsome groups G
—> 0 No, Hash-DH is easy to break in this case
o Yes, Hash-DH is always true for such H

Elgamal is semantically secure under H-DDH

/T k= ¢ By H-DDH k= gf ™
chal. P8 o [adval) hal, Pk [advA
sk | et V —
PK,s ~ pk,sk ,
c = (gb, Enc/(k,mo) ~ 2 c = (gb, Enc (k, m)
,'_? r < p o W—
— ab / /
_ k = H(g%) ‘ b) _ k— K ‘ b Y,
~ =~ (ByOTP)
— - a
chal. pk = (g,8°) adv. A A chal. pk =g > | adv. A A
mO ’ ml ~ mO ’ m1
pk,sk | < ~ pk,sk | <
¢ = (g%, Enc'(k, my) A S| = (g?, Enc (k, m,)
— > < P A -
K k= H " \b/ By H-DDH P o \b,
= H(g™) — J

What about active attacks?

nnnnnnnn

What about security against active attacks?

Can we achieve ciphertext integrity?
pk

Chal. m, € M My, ..., M, Adv.

(pk,sk) « Gen(1%) | ¢, < Enc(k,m;) €25--+:Cq

\ C
b

b=1 if Dec(k,c)#1 and c & {cl,...,cq}

b =0 otherwise

Def: (Gen, Enc, Dec) has ciphertext integrity if for all PPT A:
Advci[A] = Pr[b = 1] = negl(4)

Problem

In public-key settings:
« Attacker can always create new ciphertexts using pk !!
« Soinstead: we directly require chosen ciphertext security

(pub-key) Chosen Ciphertext Security: definition

E =(G,E,D) public-key enc. over (M,C). For b=0,1 define EXP(b):

Chal.
(pk,sk)<—G()

pk

CCAphasel: c&C

m, <= D(k, c,)

challenge: m,, m,eEM: |my| =|m,]|

C<— E(pkl mb)

CCAphase2: cEC: -

m. <— D(k, c,)

Adv. A

b’ €{0,1}

35

Chosen ciphertext security: definition

Def: E is CCA secure (a.k.a IND-CCA) if for all efficient A:
Adv, [AE] = | PriEXP(0)=1] - Pr[EXP(1)=1] | is negligible.

36

ElGamal chosen ciphertext security?

Security Theorem:

If IDH holds in the group G, (E,, D,) provides auth. enc.

and H: G2 S K isa “random oracle”

then ElGamal is CCAro secure.

Questions: (1) can we prove CCA security based on CDH?

(2) can we prove CCA security without random oracles?

Dan Boneh

ElGamal chosen ciphertext security?

To prove chosen ciphertext security need stronger assumption

Interactive Diffie-Hellman (IDH) in group G:

Chal.

g—1gen}
a,b<—Zn

g, h=g?, u=g®

<

(Uyvy)

{

1. if (uy)e=v,

0O otherwise

Adv. A

v
— >

wins if v=

IDH holds in G if: Vvefficient A: Pr[A outputs gab] < negligible

gab

Decisional Diffie-Hellman Assumption

Decisional Diffie-Hellman Assumption (DDHA):

Hard to distinguish between gxy and a uniformly

random group element, given g, g* and gy
That is, the following two distributions are

computationally indistinguishable:
(8.8%.8%.87) ~ (g8, 8" u)

DH/ElI Gamal is IND-secure under the DDH
assumption on the given group.

DLOG: more generally

Let 3 be a finite cyclic group and { a generator of G
G = { 1,9,09%2,9%, ..., g9 } (g is called the order of G)

Def: We say that DLOG is hard in G if for all efficient alg. A:

Pr g{_Gl,X{_Zq[A(G,qg, g, g¥X)= x] < negligible

Example candidates:
(1) (£,)" forlarge p, (2) Elliptic curve groups mod p

COmpUting DIOg N (Zp)* (n-bit prime p)

Best known algorithm (GNFS): runtime exp(O(v/n))
Elliptic Curve
cipher key size modulus size group size
80 bits 1024 bits 160 bits
128 bits 3072 bits 256 bits
256 bits (AES) 15360 bits 512 bits

As a result: slow transition away from (mod p) to elliptic
curves

An application: collision resistance

Choose a group G where Dlog is hard (e.g. (£,)" for large p)

Let g =|G| be a prime. Choose generators g, h of G

For x,y e {1,...,q} define |H(xyy)=gx-hy | inG

Lemma: finding collision for H(.,.) is as hard as computing Dlog,(h)

Proof: Suppose we are given a collision H(x,,y,) = H(x;,Y,)

then gX0-hYo =gX1.hY1 = gXoX1i =hY1-Yo = h =g Xo-X1/Yiz¥o

Further reading

- A Computational Introduction to Number Theory and

Algebra,
V. Shoup, 2008 (V2), Chapter1-4, 11,12

Available at //shoup.net/ntb/ntb-v2.pdf

