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CIS 5560

Lecture 13
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s25/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/


Announcements
• Midterm coming up: 3/06 in class 

• 70 minutes long, starts at 1:55PM

• We will provide a cheat sheet with all the information 

(definitions, proof strategies, etc) you will need

• 3/04 will be a review session in class.

• 3/05 HW Party will be a review party
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A.E.   Theorems
Let   (E,D)   be CPA secure cipher   and   (S,V) secure MAC.    Then: 

1. Encrypt-then-MAC:   always provides  A.E. 

2. MAC-then-encrypt:   may be insecure against CCA attacks 

	 however:    when  (E,D)  is  rand-CTR mode or rand-CBC 
	 	 	 M-then-E  provides  A.E. 
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Number Theory Background
We will use a bit of number theory to construct:

• Key exchange protocols

• Digital signatures

• Public-key encryption


This module:   crash course on relevant concepts


More info:	 read parts of Shoup’s book referenced  
	 at end of module
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Notation
From here on:   

•  denotes a positive integer. 

•  denote a prime.


Notation: 


Can do addition and multiplication modulo   

N
p

ℤN = {0,1,…, N − 1}

N
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Greatest common divisor
Def:   For all ,    is the greatest common divisor of  


Example:	 


Fact:   for all , there exist  such that 



	  can be found efficiently using the extended Euclid algorithm 


If  , we say that  and  are relatively prime

x, y ∈ ℤ gcd(x, y) x, y

gcd(12,18) = 6

x, y ∈ ℤ a, b ∈ ℤ
a ⋅ x + b ⋅ y = gcd(x, y)

a, b

gcd(x, y) = 1 x y
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Modular inversion
Over the rationals, inverse of 2 is  ½ . What about ?


Def:    The inverse  of  is an element  s.t.


 
	  is denoted .


Example:    let  be an odd integer. What is the inverse of ?

ℤN

x ∈ ℤN y ∈ ℤN

x ⋅ y = 1 mod N
y x−1

N 2 mod N
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Invertible elements
Def:       =  set of invertible elements in  


                    =  


Examples:   


1. for prime , 


2.                       


For  , we can find   using extended Euclid algorithm.

ℤ*N ℤN

{x ∈ ℤN : gcd(x, N ) = 1}

p ℤ*p := {0,…, p − 1}

ℤ*12 := {1,5,7,11}

x ∈ ℤN x−1
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Today’s Lecture
• More Number Theory

• Key Exchange


• Merkle puzzles

• Diffie—Hellman


• Computational Diffie—Hellman Problem
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Solving modular linear equations
Solve:        , where  

	 Solution:          

Find   using extended Euclid algorithm.   

Run time:   O(log2 N)

a ⋅ x + b = 0 a, x, b ∈ ℤN

x = − b ⋅ a−1 mod N

a−1
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Fermat’s theorem    (1640)

Thm:     Let  be a prime. Then, 

  

Example:    p=5.         34 = 81 = 1    in   Z5


How can we use this to compute inverses?


                                      

                                (less efficient than Euclid)

p

∀x ∈ ℤ*p : xp−1 = 1 mod p

x ∈ ℤ*p ⇒ x ⋅ xp−2 = 1 ⇒ x−1 = xp−2
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The structure of  ℤ*p
Thm (Euler):        is a cyclic group, that is


	     such that     


     is called a generator of   


Example:    .      {1, 3, 32, 33, 34, 35} = {1, 3, 2, 6, 4, 5} =  


Not every elem. is a generator:     {1, 2, 22, 23, 24, 25} = {1, 2, 4} 

ℤ*p

∃g ∈ ℤ*p {1,g, g2, g3, …, gp−2} = ℤ*p

g ℤ*p

p = 7 ℤ*7
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Order
For    the set     is called  

	 the group generated by g,   denoted  


Def:    the order of  is the size of 


	     ordp(g)    =   | |   =  (smallest a > 0 s.t.  ) 

Examples:     ord7(3) = 6    ;   ord 7(2) = 3   ;  ord7(1) = 1


Thm (Lagrange):   ∀g∈(Zp)*   :     ordp(g)   divides    p - 1

g ∈ ℤ*p {1,g, g2, g3, …}

⟨g⟩

g ∈ ℤ*p ⟨g⟩

⟨g⟩ ga = 1 mod p
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The Multiplicative Group ℤ∗
𝒑

: (  group operation:  mod )ℤ∗
𝑝 {1,…, p − 1}, ∙ 𝑝

• Computing the group operation is easy.

• Computing inverses is easy: Extended Euclid.

• Exponentiation (given and , find  mod 
p) is easy: Repeated Squaring Algorithm.


•

𝑔 ∈ ℤ∗
𝑝  𝑥 ∈ ℤ𝑝−1 𝑔𝑥

• The discrete logarithm problem (given a generator 
, find  s.t.  mod p) is hard, to 

the best of our knowledge!
𝑔 and h ∈ ℤ∗

𝑝 𝑥 ∈ ℤ𝑝−1 h = gx



The Discrete Log Assumption

Distributions…

1. Is the discrete log problem hard for a random p? 
Could it be easy for some p?

2.   Given p: is the problem hard for all generators g?

3.   Given p and g: is the problem hard for all x?

The discrete logarithm problem is: given a generator 
, find  s.t.  mod p.𝑔 and h ∈ ℤ∗

𝑝 𝑥 ∈ ℤ𝑝−1 h = 𝑔𝑥



Random Self-Reducibility of DLOG
Theorem: If there is an p.p.t. algorithm  s.t.   

   	  

for some , random generator  of , and random  in , 
then there is a p.p.t. algorithm  s.t.


 
for all g and x.

𝐴
Pr[𝐴(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥] > 1/poly(log𝑝)

𝑝 𝑔 ℤ∗
𝑝 𝑥 ℤ𝑝−1

𝐵
𝐵(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥

Proof: On the board.



Random Self-Reducibility of DLOG
Theorem: If there is an p.p.t. algorithm  s.t.   

   	  

for some , random generator  of , and random  in , 
then there is a p.p.t. algorithm  s.t.


 
for all g and x.

𝐴
Pr[𝐴(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥] > 1/poly(log𝑝)

𝑝 𝑔 ℤ∗
𝑝 𝑥 ℤ𝑝−1

𝐵
𝐵(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥

2.   Given p: is the problem hard for all generators g?

3.   Given p and g: is the problem hard for all x?
… as hard for any generator is it for a random one.

… as hard for any x is it for a random one.



Algorithms for Discrete Log  
(for General Groups)

• Pohlig-Hellman algorithm: time  where  is the largest 
prime factor of the order of group (e.g.  in the case of 

). That is, there are dlog-easy primes.

𝑂( 𝑞) 𝑞
𝑝 − 1

𝑍∗
𝑝

• Baby Step-Giant Step algorithm: time —and space—  .𝑂( 𝑝)



The Discrete Log (DLOG) Assumption

W.r.t. a random prime: for every p.p.t. algorithm  
there is a negligible function  s.t.

  


 

𝐴,
𝜇

Pr
𝑝 ← 𝑃𝑅𝐼𝑀𝐸𝑆𝑛; 𝑔 ← 𝐺𝐸𝑁(ℤ∗

𝑝 );

𝑥 ← ℤ𝑝−1:  𝐴(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥
= 𝜇(𝑛)



Sophie-Germain Primes and Safe Primes

• Safe primes are maximally hard for the Pohlig-
Hellman algorithm.

• A prime  is called a Sophie-Germain prime if 
 is also prime. In this case,  is called 

a safe prime.

𝑞
𝑝 = 2𝑞 + 1 𝑞

• It is unknown if there are infinitely many safe primes, 
let alone that they are sufficiently dense. Yet, 
heuristically, about  of -bit integers seem to be 
safe primes (for some constant ).

𝐶/𝑛2 𝑛
𝐶



The Discrete Log (DLOG) Assumption

W.r.t. a random safe prime: for every p.p.t. 
algorithm  there is a negligible function  s.t.

  


 

𝐴, 𝜇

Pr
𝑝 ← 𝑆𝐴𝐹𝐸𝑃𝑅𝐼𝑀𝐸𝑆𝑛; 𝑔 ← 𝐺𝐸𝑁(ℤ∗

𝑝 );

𝑥 ← ℤ𝑝−1:  𝐴(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥
= 𝜇(𝑛)

(the “safe prime” version)



One-way Permutation (Family)

𝐹(𝑝, 𝑔, 𝑥) = (𝑝, 𝑔, 𝑔𝑥 mod p)

 where ℱ𝑛 = {𝐹𝑛,𝑝,𝑔} 𝐹𝑛,𝑝,𝑔(𝑥) = (𝑝, 𝑔, 𝑔𝑥 mod p)

Theorem: Under the discrete log assumption,  
is a one-way permutation (resp.  is a one-way 
permutation family).

𝐹
ℱ𝑛



The Multiplicative Group ℤ∗
𝒑

: (  group operation:  mod )ℤ∗
𝑝 {1,…, p − 1}, ∙ 𝑝

• Computing the group operation is easy.

• Computing inverses is easy: Extended Euclid.

• Exponentiation (given and , find  mod 
p) is easy: Repeated Squaring Algorithm.


•

𝑔 ∈ ℤ∗
𝑝  𝑥 ∈ ℤ𝑝−1 𝑔𝑥

• The discrete logarithm problem (given a generator 
, find  s.t.  mod p) is hard, to 

the best of our knowledge!
𝑔 and h ∈ ℤ∗

𝑝 𝑥 ∈ ℤ𝑝−1 h = gx



Key management
Problem:     n users.   Storing mutual secret keys is difficult 

Total:   O(n) keys per user
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A better (?) solution
Online Trusted 3rd Party  (TTP)
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Generating keys: a toy protocol
Alice wants a shared key with Bob.     Eavesdropping security only. 

Bob (kB)	 	 Alice (kA)	 	 	 	 TTP
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ticket

kAB kAB 

“Alice wants key with Bob”

(E,D) a CPA-secure cipher

choose  
random kAB



Generating keys: a toy protocol
Alice wants a shared key with Bob.     Eavesdropping security only. 

Eavesdropper sees:    E(kA,    “A, B” ll kAB )   ;     E(kB,    “A, B” ll kAB ) 

	 (E,D) is CPA-secure  ⇒    
	 	 	 eavesdropper learns nothing about kAB 

Note:  TTP needed for every key exchange,   knows all session keys.
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(basis of Kerberos system)



Toy protocol:  insecure against active attacks

Example:    insecure against replay attacks 

	 Attacker records session between Alice and merchant Bob 
– For example a book order 

	 Attacker replays session to Bob 
– Bob thinks Alice is ordering another copy of book
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Key question
Can we generate shared keys without an online trusted 3rd party? 

Answer:   yes! 

Starting point of public-key cryptography: 

• Merkle (1974),         Diffie-Hellman (1976),        RSA (1977) 

• More recently:  ID-based enc. (BF 2001),   Functional enc. (BSW 2011)
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Dan Boneh

Basic key exchange: 
Merkle Puzzles



Key exchange without an online TTP?
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BobAlice

Goal:    Alice and Bob want shared key, unknown to eavesdropper 

• For now:    security against eavesdropping only   (no tampering)

eavesdropper ??

Can this be done using generic symmetric crypto?



Merkle Puzzles (1974)

Answer:   yes, but very inefficient 

Main tool:    puzzles 
• Problems that can be solved with some effort 
• Example:      E(k,m)  a symmetric cipher with k ∈ {0,1}128 

– puzzle(P)  =   E(P,  “message”)   where     P = 096 ll b1… b32 

– Goal:    find  P   by trying all   232   possibilities
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Merkle puzzles
Alice:    prepare  232   puzzles 

• For  i=1, …, 232  choose random  Pi ∈{0,1}32
   and   xi, ki ∈{0,1}128

 

	 set	 puzzlei   ⟵   E( 096 ll Pi ,  “Puzzle # xi”  ll   ki  ) 

• Send   puzzle1 , … , puzzle232    to Bob 

Bob:   choose a random   puzzlej   and solve it.   Obtain  ( xj, kj ) . 

• Send  xj  to Alice 

Alice:    lookup puzzle with number xj .     Use   kj  as shared secret33



In a figure

Alice’s work:    O(n)	 	 (prepare  n  puzzles) 
Bob’s work:   O(n)  	 	 (solve one puzzle)   

Eavesdropper’s work:     O( n2 )
34

BobAlice
puzzle1 , … , puzzlen 

xj 

kj kj

(e.g.   264  time)



Impossibility Result
Can we achieve a better gap using a general symmetric cipher? 
Answer:    unknown 

But:  roughly speaking, 

   quadratic gap is best possible if we treat cipher as  
   a black box oracle   [IR’89, BM’09]
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Dan Boneh

Better key exchange: 

Diffie—Hellman



Key exchange without an online TTP?
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BobAlice

Goal:    Alice and Bob want shared secret, unknown to eavesdropper 

• For now:    security against eavesdropping only   (no tampering)

eavesdropper ??

Can this be done with an exponential gap?



The Diffie-Hellman protocol  (informally)

Fix a large prime  p        (e.g.   600 digits) 
Fix  generator    g   of   ℤ*p
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Alice Bob
choose random a in {1,…,p-1} choose random b in {1,…,p-1}

kAB = gab  (mod p) =      (ga)b     =  Ab  (mod p)  Ba  (mod p)   =    (gb)a  =



Security   (much more on this later)

Eavesdropper sees:      p, g,   A=ga (mod p),    and   B=gb (mod p)  

Can she compute       gab  (mod p)     ?? 

More generally:       define     DHg(ga, gb) = gab       (mod p) 

How hard is the DH function mod p?
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How hard is the DH function mod p?
Suppose prime  p  is  n  bits long.  
Best known algorithm (GNFS):        run time     exp(              ) 

	 cipher key size	 	 modulus size	 	  
	    80 bits	 	 	   1024 bits	 	  
	   128 bits	 	 	   3072 bits	 	  
	   256 bits (AES)	 	 15360 bits 	 	  

As a result:    slow transition away from (mod p) to elliptic curves
40

Elliptic Curve 
size

160 bits 
256 bits 
512 bits
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Elliptic curve 
Diffie-Hellman



Security against man-in-the-middle?
As described, the protocol is insecure against active attacks
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Alice BobMiTM



Another look at DH
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Facebook

Alice

a

Bob

b

Charlie

c

David
d ⋯

ga gb gc gd

KAC=gac KAC=gac 



An open problem
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Facebook

Alice

a

Bob

b

Charlie

c

David
d ⋯

ga gb gc gd

KABCD KABCD KABCD KABCD 



Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm  
there is a negligible function  s.t.

  


 

𝐴,
𝜇

Pr
𝑝 ← 𝑃𝑅𝐼𝑀𝐸𝑆𝑛; 𝑔 ← 𝐺𝐸𝑁(ℤ∗

𝑝 );

𝑥, 𝑦 ← ℤ𝑝−1:  𝐴(𝑝, 𝑔, 𝑔𝑥, 𝑔𝑦) = 𝑔𝑥𝑦
= 𝜇(𝑛)

CDH DLOG
OPEN



Further readings
• Merkle Puzzles are Optimal, 

B. Barak,  M. Mahmoody-Ghidary,   Crypto ’09 

• On formal models of key exchange  (sections 7-9)    
V. Shoup,  1999
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DLOG:   more generally
Let    be a finite cyclic group  and  g a generator of  


	  =  { 1 , g , g2 , g3 ,   …  ,  gq-1 }     ( q is called the order of G )


Def:  We say that DLOG is hard in G if for all efficient alg. A:


	 Pr g⟵G, x ⟵Zq [  A( G, q,  g, gx ) = x ]  <  negligible


Example candidates:

	 (1)    (Zp)*  for large p,         (2)  Elliptic curve groups mod p

𝔾 𝔾

𝔾
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Computing Dlog in (Zp)*     (n-bit prime p) 

Best known algorithm (GNFS):        run time     exp(              )


	 cipher key size	 	 modulus size		 

	    80 bits	 	 	   1024 bits	 	 

	   128 bits	 	 	   3072 bits	 	 

	   256 bits (AES)	 	 15360 bits 	 	 


As a result:    slow transition away from (mod p) to elliptic 
curves
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Elliptic Curve 
group size

160 bits

256 bits

512 bits


