
￼1

CIS 5560

Lecture 13
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s25/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Announcements
• Midterm coming up: 3/06 in class

• 70 minutes long, starts at 1:55PM

• We will provide a cheat sheet with all the information

(definitions, proof strategies, etc) you will need

• 3/04 will be a review session in class.

• 3/05 HW Party will be a review party

2

A.E. Theorems
Let (E,D) be CPA secure cipher and (S,V) secure MAC. Then:

1. Encrypt-then-MAC: always provides A.E.

2. MAC-then-encrypt: may be insecure against CCA attacks

	 however: when (E,D) is rand-CTR mode or rand-CBC
	 	 	 M-then-E provides A.E.

3

Number Theory Background
We will use a bit of number theory to construct:

• Key exchange protocols

• Digital signatures

• Public-key encryption

This module: crash course on relevant concepts

More info:	 read parts of Shoup’s book referenced  
	 at end of module

4

Notation
From here on:

• denotes a positive integer.

• denote a prime.

Notation:

Can do addition and multiplication modulo

N
p

ℤN = {0,1,…, N − 1}

N

5

Greatest common divisor
Def: For all , is the greatest common divisor of

Example:	

Fact: for all , there exist such that

	 can be found efficiently using the extended Euclid algorithm

If , we say that and are relatively prime

x, y ∈ ℤ gcd(x, y) x, y

gcd(12,18) = 6

x, y ∈ ℤ a, b ∈ ℤ
a ⋅ x + b ⋅ y = gcd(x, y)

a, b

gcd(x, y) = 1 x y
6

Modular inversion
Over the rationals, inverse of 2 is ½ . What about ?

Def: The inverse of is an element s.t.

	 is denoted .

Example: let be an odd integer. What is the inverse of ?

ℤN

x ∈ ℤN y ∈ ℤN

x ⋅ y = 1 mod N
y x−1

N 2 mod N

7

Invertible elements
Def: = set of invertible elements in

 =

Examples:

1. for prime ,

2.

For , we can find using extended Euclid algorithm.

ℤ*N ℤN

{x ∈ ℤN : gcd(x, N) = 1}

p ℤ*p := {0,…, p − 1}

ℤ*12 := {1,5,7,11}

x ∈ ℤN x−1

8

Today’s Lecture
• More Number Theory

• Key Exchange

• Merkle puzzles

• Diffie—Hellman

• Computational Diffie—Hellman Problem

9

Solving modular linear equations
Solve: , where

	 Solution:

Find using extended Euclid algorithm.

Run time: O(log2 N)

a ⋅ x + b = 0 a, x, b ∈ ℤN

x = − b ⋅ a−1 mod N

a−1

10

Fermat’s theorem (1640)

Thm: Let be a prime. Then,

Example: p=5. 34 = 81 = 1 in Z5

How can we use this to compute inverses?

 (less efficient than Euclid)

p

∀x ∈ ℤ*p : xp−1 = 1 mod p

x ∈ ℤ*p ⇒ x ⋅ xp−2 = 1 ⇒ x−1 = xp−2

11

The structure of ℤ*p
Thm (Euler): is a cyclic group, that is

	 such that

 is called a generator of

Example: . {1, 3, 32, 33, 34, 35} = {1, 3, 2, 6, 4, 5} =

Not every elem. is a generator: {1, 2, 22, 23, 24, 25} = {1, 2, 4}

ℤ*p

∃g ∈ ℤ*p {1,g, g2, g3, …, gp−2} = ℤ*p

g ℤ*p

p = 7 ℤ*7

12

Order
For the set is called  

	 the group generated by g, denoted

Def: the order of is the size of

	 ordp(g) = | | = (smallest a > 0 s.t.)

Examples: ord7(3) = 6 ; ord 7(2) = 3 ; ord7(1) = 1

Thm (Lagrange): ∀g∈(Zp)* : ordp(g) divides p - 1

g ∈ ℤ*p {1,g, g2, g3, …}

⟨g⟩

g ∈ ℤ*p ⟨g⟩

⟨g⟩ ga = 1 mod p

13

The Multiplicative Group ℤ∗
𝒑

: (group operation: mod)ℤ∗
𝑝 {1,…, p − 1}, ∙ 𝑝

• Computing the group operation is easy.

• Computing inverses is easy: Extended Euclid.

• Exponentiation (given and , find mod
p) is easy: Repeated Squaring Algorithm.

•

𝑔 ∈ ℤ∗
𝑝 𝑥 ∈ ℤ𝑝−1 𝑔𝑥

• The discrete logarithm problem (given a generator
, find s.t. mod p) is hard, to

the best of our knowledge!
𝑔 and h ∈ ℤ∗

𝑝 𝑥 ∈ ℤ𝑝−1 h = gx

The Discrete Log Assumption

Distributions…

1. Is the discrete log problem hard for a random p?
Could it be easy for some p?

2. Given p: is the problem hard for all generators g?

3. Given p and g: is the problem hard for all x?

The discrete logarithm problem is: given a generator
, find s.t. mod p.𝑔 and h ∈ ℤ∗

𝑝 𝑥 ∈ ℤ𝑝−1 h = 𝑔𝑥

Random Self-Reducibility of DLOG
Theorem: If there is an p.p.t. algorithm s.t.

 	

for some , random generator of , and random in ,
then there is a p.p.t. algorithm s.t.

for all g and x.

𝐴
Pr[𝐴(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥] > 1/poly(log𝑝)

𝑝 𝑔 ℤ∗
𝑝 𝑥 ℤ𝑝−1

𝐵
𝐵(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥

Proof: On the board.

Random Self-Reducibility of DLOG
Theorem: If there is an p.p.t. algorithm s.t.

 	

for some , random generator of , and random in ,
then there is a p.p.t. algorithm s.t.

for all g and x.

𝐴
Pr[𝐴(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥] > 1/poly(log𝑝)

𝑝 𝑔 ℤ∗
𝑝 𝑥 ℤ𝑝−1

𝐵
𝐵(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥

2. Given p: is the problem hard for all generators g?

3. Given p and g: is the problem hard for all x?
… as hard for any generator is it for a random one.

… as hard for any x is it for a random one.

Algorithms for Discrete Log  
(for General Groups)

• Pohlig-Hellman algorithm: time where is the largest
prime factor of the order of group (e.g. in the case of

). That is, there are dlog-easy primes.

𝑂(𝑞) 𝑞
𝑝 − 1

𝑍∗
𝑝

• Baby Step-Giant Step algorithm: time —and space— .𝑂(𝑝)

The Discrete Log (DLOG) Assumption

W.r.t. a random prime: for every p.p.t. algorithm
there is a negligible function s.t.

𝐴,
𝜇

Pr
𝑝 ← 𝑃𝑅𝐼𝑀𝐸𝑆𝑛; 𝑔 ← 𝐺𝐸𝑁(ℤ∗

𝑝);

𝑥 ← ℤ𝑝−1: 𝐴(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥
= 𝜇(𝑛)

Sophie-Germain Primes and Safe Primes

• Safe primes are maximally hard for the Pohlig-
Hellman algorithm.

• A prime is called a Sophie-Germain prime if
 is also prime. In this case, is called

a safe prime.

𝑞
𝑝 = 2𝑞 + 1 𝑞

• It is unknown if there are infinitely many safe primes,
let alone that they are sufficiently dense. Yet,
heuristically, about of -bit integers seem to be
safe primes (for some constant).

𝐶/𝑛2 𝑛
𝐶

The Discrete Log (DLOG) Assumption

W.r.t. a random safe prime: for every p.p.t.
algorithm there is a negligible function s.t.

𝐴, 𝜇

Pr
𝑝 ← 𝑆𝐴𝐹𝐸𝑃𝑅𝐼𝑀𝐸𝑆𝑛; 𝑔 ← 𝐺𝐸𝑁(ℤ∗

𝑝);

𝑥 ← ℤ𝑝−1: 𝐴(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥
= 𝜇(𝑛)

(the “safe prime” version)

One-way Permutation (Family)

𝐹(𝑝, 𝑔, 𝑥) = (𝑝, 𝑔, 𝑔𝑥 mod p)

 where ℱ𝑛 = {𝐹𝑛,𝑝,𝑔} 𝐹𝑛,𝑝,𝑔(𝑥) = (𝑝, 𝑔, 𝑔𝑥 mod p)

Theorem: Under the discrete log assumption,
is a one-way permutation (resp. is a one-way
permutation family).

𝐹
ℱ𝑛

The Multiplicative Group ℤ∗
𝒑

: (group operation: mod)ℤ∗
𝑝 {1,…, p − 1}, ∙ 𝑝

• Computing the group operation is easy.

• Computing inverses is easy: Extended Euclid.

• Exponentiation (given and , find mod
p) is easy: Repeated Squaring Algorithm.

•

𝑔 ∈ ℤ∗
𝑝 𝑥 ∈ ℤ𝑝−1 𝑔𝑥

• The discrete logarithm problem (given a generator
, find s.t. mod p) is hard, to

the best of our knowledge!
𝑔 and h ∈ ℤ∗

𝑝 𝑥 ∈ ℤ𝑝−1 h = gx

Key management
Problem: n users. Storing mutual secret keys is difficult

Total: O(n) keys per user

24

A better (?) solution
Online Trusted 3rd Party (TTP)

25

TTP

Generating keys: a toy protocol
Alice wants a shared key with Bob. Eavesdropping security only.

Bob (kB)	 	 Alice (kA)	 	 	 	 TTP

26

ticket

kAB kAB

“Alice wants key with Bob”

(E,D) a CPA-secure cipher

choose
random kAB

Generating keys: a toy protocol
Alice wants a shared key with Bob. Eavesdropping security only.

Eavesdropper sees: E(kA, “A, B” ll kAB) ; E(kB, “A, B” ll kAB)

	 (E,D) is CPA-secure ⇒
	 	 	 eavesdropper learns nothing about kAB

Note: TTP needed for every key exchange, knows all session keys.

27

(basis of Kerberos system)

Toy protocol: insecure against active attacks

Example: insecure against replay attacks

	 Attacker records session between Alice and merchant Bob
– For example a book order

	 Attacker replays session to Bob
– Bob thinks Alice is ordering another copy of book

28

Key question
Can we generate shared keys without an online trusted 3rd party?

Answer: yes!

Starting point of public-key cryptography:

• Merkle (1974), Diffie-Hellman (1976), RSA (1977)

• More recently: ID-based enc. (BF 2001), Functional enc. (BSW 2011)

29

Dan Boneh

Basic key exchange:
Merkle Puzzles

Key exchange without an online TTP?

31

BobAlice

Goal: Alice and Bob want shared key, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

eavesdropper ??

Can this be done using generic symmetric crypto?

Merkle Puzzles (1974)

Answer: yes, but very inefficient

Main tool: puzzles
• Problems that can be solved with some effort
• Example: E(k,m) a symmetric cipher with k ∈ {0,1}128

– puzzle(P) = E(P, “message”) where P = 096 ll b1… b32

– Goal: find P by trying all 232 possibilities

32

Merkle puzzles
Alice: prepare 232 puzzles

• For i=1, …, 232 choose random Pi ∈{0,1}32
 and xi, ki ∈{0,1}128

	 set	 puzzlei ⟵ E(096 ll Pi , “Puzzle # xi” ll ki)

• Send puzzle1 , … , puzzle232 to Bob

Bob: choose a random puzzlej and solve it. Obtain (xj, kj) .

• Send xj to Alice

Alice: lookup puzzle with number xj . Use kj as shared secret33

In a figure

Alice’s work: O(n)	 	 (prepare n puzzles)
Bob’s work: O(n) 	 	 (solve one puzzle)

Eavesdropper’s work: O(n2)
34

BobAlice
puzzle1 , … , puzzlen

xj

kj kj

(e.g. 264 time)

Impossibility Result
Can we achieve a better gap using a general symmetric cipher?
Answer: unknown

But: roughly speaking,

 quadratic gap is best possible if we treat cipher as
 a black box oracle [IR’89, BM’09]

35

Dan Boneh

Better key exchange:

Diffie—Hellman

Key exchange without an online TTP?

37

BobAlice

Goal: Alice and Bob want shared secret, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

eavesdropper ??

Can this be done with an exponential gap?

The Diffie-Hellman protocol (informally)

Fix a large prime p (e.g. 600 digits)
Fix generator g of ℤ*p

38

Alice Bob
choose random a in {1,…,p-1} choose random b in {1,…,p-1}

kAB = gab (mod p) = (ga)b = Ab (mod p) Ba (mod p) = (gb)a =

Security (much more on this later)

Eavesdropper sees: p, g, A=ga (mod p), and B=gb (mod p)

Can she compute gab (mod p) ??

More generally: define DHg(ga, gb) = gab (mod p)

How hard is the DH function mod p?
39

How hard is the DH function mod p?
Suppose prime p is n bits long.
Best known algorithm (GNFS): run time exp()

	 cipher key size	 	 modulus size	 	
	 80 bits	 	 	 1024 bits	 	
	 128 bits	 	 	 3072 bits	 	
	 256 bits (AES)	 	 15360 bits 	 	

As a result: slow transition away from (mod p) to elliptic curves
40

Elliptic Curve
size

160 bits
256 bits
512 bits

41

Elliptic curve
Diffie-Hellman

Security against man-in-the-middle?
As described, the protocol is insecure against active attacks

42

Alice BobMiTM

Another look at DH

43

Facebook

Alice

a

Bob

b

Charlie

c

David
d ⋯

ga gb gc gd

KAC=gac KAC=gac

An open problem

44

Facebook

Alice

a

Bob

b

Charlie

c

David
d ⋯

ga gb gc gd

KABCD KABCD KABCD KABCD

Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm
there is a negligible function s.t.

𝐴,
𝜇

Pr
𝑝 ← 𝑃𝑅𝐼𝑀𝐸𝑆𝑛; 𝑔 ← 𝐺𝐸𝑁(ℤ∗

𝑝);

𝑥, 𝑦 ← ℤ𝑝−1: 𝐴(𝑝, 𝑔, 𝑔𝑥, 𝑔𝑦) = 𝑔𝑥𝑦
= 𝜇(𝑛)

CDH DLOG
OPEN

Further readings
• Merkle Puzzles are Optimal,

B. Barak, M. Mahmoody-Ghidary, Crypto ’09

• On formal models of key exchange (sections 7-9)
V. Shoup, 1999

46

DLOG: more generally
Let be a finite cyclic group and g a generator of

	 = { 1 , g , g2 , g3 , … , gq-1 } (q is called the order of G)

Def: We say that DLOG is hard in G if for all efficient alg. A:

	 Pr g⟵G, x ⟵Zq [A(G, q, g, gx) = x] < negligible

Example candidates:

	 (1) (Zp)* for large p, (2) Elliptic curve groups mod p

𝔾 𝔾

𝔾

47

Computing Dlog in (Zp)* (n-bit prime p)

Best known algorithm (GNFS): run time exp()

	 cipher key size	 	 modulus size		

	 80 bits	 	 	 1024 bits	 	

	 128 bits	 	 	 3072 bits	 	

	 256 bits (AES)	 	 15360 bits 	 	

As a result: slow transition away from (mod p) to elliptic
curves

48

Elliptic Curve 
group size

160 bits

256 bits

512 bits

