CIS 5560

Cryptography
Lecture 13

Course website:
pratyushmishra.com/classes/cis-5560-s25/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Announcements

« Midterm coming up: 3/06 in class
« 70 minutes long, starts at 1:55PM

- We will provide a cheat sheet with all the information
(definitions, proof strategies, etc) you will need

« 3/04 will be a review session in class.
« 3/05 HW Party will be a review party

A.E. Theorems

Let (E,D) be CPA secure cipher and (S,V)secure MAC. Then:
1. Encrypt-then-MAC: always provides A.E.

2. MAC-then-encrypt: may be insecure against CCA attacks

however: when (E,D) is rand-CTR mode or rand-CBC
M-then-E provides A.E.

Number Theory Background

We will use a bit of number theory to construct:
Key exchange protocols
Digital signatures
Public-key encryption

This module: crash course on relevant concepts

More info: read parts of Shoup’s book referenced
at end of module

Notation

From here on:
- N denotes a positive integer.

- p denote a prime.
Notation: Z, = {0,1,..., N — 1}

Can do addition and multiplication modulo N

Greatest common divisor

Def: Forallx,y € Z, gcd(x,y) is the greatest common divisor of X,y

Example: gcd(12,18) =6

Fact: forallx,y € Z, there exist a, b € Z such that
a-x+b-y=gcd(x,y)

a, b can be found efficiently using the extended Euclid algorithm

If gcd(x,y) = 1, we say that x and y are relatively prime

Modular inversion

Over the rationals, inverse of 2 is 2. What about Z/?
Def: Theinverse of x € Zyisanelementy € Z, s.t.
x-y=1 mod N

y is denoted x~ L

Example: let N be an odd integer. What is the inverse of 2 mod N?

Invertible elements

Def: Z;’\; = set of invertible elements in Z,,
= {x€ Zy:gedx,N) =1}
Examples:

1. forprimep, Z5 := {0,....,.p— 1}

. Z¥, = {1,5,7,11)

1

For x € Z,, we can find x™ " using extended Euclid algorithm.

Today’s Lecture

* More Number Theory
« Key Exchange
« Merkle puzzles
- Diffie—Hellman
- Computational Diffie—Hellman Problem

Solving modular linear equations

Solve: a-x+b=0,wherea,x,b € Z,

Soluton: x=—-b-a" ! mod N

Find a~! using extended Euclid algorithm.
Run time: O(log2 N)

Fermat’s theorem (1640

Thm: Let p be a prime. Then,

% o p—1
Vxe Z;:x'"" =1 mod p
Example: p=5. 34=81=1 In Z
How can we use this to compute inverses?

xEZ;f;"x-xp_zzlix_l:xp_z

(less efficient than Euclid)

The structure of Z;f

Thm (Euler): Z;f is a cyclic group, that is

2 .3 -2\ —
dg € Z; suchthat {l,g,8%,8%....8" "} =2}

g is called a generator of Z7

Example: p=7. {1,3,32,33 3435 ={1,3,2,6,4,5}= Z?

Not every elem. is a generator: {1, 2,22, 23,24 25} = {1, 2, 4}

Order

For g € Z the set {1,g,8% ¢° ...} iscalled
the group generated by g, denoted (g)
Def: the order of g € Z! is the size of (g)

ord(g) = [(g)| = (smallesta>0s.t. g=1 mod p)

Examples: ord,(3)=6 ; ord_ (2)=3 ; ord,(1)=1

Thm (Lagrange): vge(Z) : ord,(g) divides p-1

The Multiplicative Group 7

Z,: ({1,...,p — 1}, group operation: « mod p)
- Computing the group operation is easy.
« Computing inverses is easy: Extended Euclid.

. Exponentiation (given g € Z; andx € Z,_,, find g* mod
p) is easy: Repeated Squaring Algorithm.

The discrete logarithm problem (given a generator
gand h € Z;, find x € Z,_; s.t. h = g* mod p) is hard, to

the best of our knowledge!

The Discrete Log Assumption

The discrete logarithm problem is: given a generator
gand h € Z;‘;, findx € Z, | s.t.h=g* mod p.

Distributions...

1. Is the discrete log problem hard for a random p?
Could it be easy for some p?

2. Given p: is the problem hard for all generators g?

3. Given p and g: is the problem hard for all x?

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.
Pr[A(p, g.¢" mod p) = x] > 1/poly(logp)
for some p, random generator g of Z7, and random x in Zp_l,

then there is a p.p.t. algorithm B s.t.

B(p, g, g*mod p) = x
for all g and x.

Proof: On the board.

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.

Pr [A(p, g.¢" mod p) = x] > 1/poly(logp)
for some p, random generator g of Z7, and random x in Zp_l,
then there is a p.p.t. algorithm B s.t.

B(p, g, g*mod p) = x
for all g and x.

2. Given p: is the problem hard for all generators g?

... as hard for any generator is it for a random one.
3. Given p and g: is the problem hard for all x?

... as hard for any x is it for a random one.

Algorithms for Discrete Log
(for General Groups)

Baby Step-Giant Step algorithm: time —and space— O(\/ﬁ) :

Pohlig-Hellman algorithm: time O(\/E) where ¢ is the largest

prime factor of the order of group (e.g. p — 1 in the case of
Z). That is, there are dlog-easy primes.

The Discrete Log (DLOG) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A,
there is a negligible function u s.t.

p < PRIMES,: g < GEN(Z;j);

Pr = u(n)

x—Z,;: A(p, g, 2" mod p) =X

Sophie-Germain Primes and Safe Primes

A prime q is called a Sophie-Germain prime if
p = 2q + 1 is also prime. In this case, ¢ is called
a safe prime.

Safe primes are maximally hard for the Pohlig-
Hellman algorithm.

It is unknown if there are infinitely many safe primes,
let alone that they are sufficiently dense. Yet,

heuristically, about C/ n® of n-bit integers seem to be
safe primes (for some constant C).

The Discrete Log (DLOG) Assumption

(the “safe prime” version)

W.r.t. a random safe prime: for every p.p.t.
algorithm A, there is a negligible function u s.t.

p < SAFEPRIMES,: g — GEN(Zj);
Pr = u(n)

x—Z,: A(p, g, 2" mod p) =X

One-way Permutation (Family)

F(p.g,x) = (p, g g* mod p)

Fn,=1F,, } where F, , (x) = (p, g, & modp)

Theorem: Under the discrete log assumption, F
IS a one-way permutation (resp. &, is a one-way
permutation family).

The Multiplicative Group 7

Z,: ({1,...,p — 1}, group operation: « mod p)
- Computing the group operation is easy.
« Computing inverses is easy: Extended Euclid.

. Exponentiation (given g € Z; andx € Z,_,, find g* mod
p) is easy: Repeated Squaring Algorithm.

The discrete logarithm problem (given a generator
gand h € Z;, find x € Z,_; s.t. h = g* mod p) is hard, to

the best of our knowledge!

Key management

Problem: nusers. Storing mutual secret keys is difficult

K(/ = —_—
@)y (4
)éz’ 3
K2 P K”} 4
L4y
Ge) — (4
“,4

Total: O(n) keys per user

24

A better (?) solution

Online Trusted 3rd Party (TTP)

EVfry vser Dh/)/ Y‘fhehberj ohe Ke/

25

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Bob (k) Alice (k,) TTP
“Alice wants key with Bob”
>
. choose
E:[KA} “A,B“ /} Kﬂa) { random kg
ticket = —
< kel [KB, 4,8 H K”Bl_/

k k
AB AB (E,D) a CPA-secure cipher

26

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Eavesdropper sees: E(k,, “A,B”Ilk,z) ; E(ks, “A,B"llk,s)

(E,D) is CPA-secure =

eavesdropper learns nothing about k,,

Note: TTP needed for every key exchange, knows all session keys.
(basis of Kerberos system)

Toy protocol: insecure against active attacks

Example: insecure against replay attacks

Attacker records session between Alice and merchant Bob
— For example a book order

Attacker replays session to Bob
— Bob thinks Alice is ordering another copy of book

Key question

Can we generate shared keys without an online trusted 3rd party?
Answer: vyes!

Starting point of public-key cryptography:

o Merkle (1974), Diffie-Hellman (1976), RSA (1977)

« More recently: ID-based enc. (BF 2001), Functional enc. (BSW 2011)

Basic key exchange:
Merkle Puzzles

Key exchange without an online TTP?

Goal: Alice and Bob want shared key, unknown to eavesdropper

« Fornow: security against eavesdropping only (no tampering)

>

Alice <€
>

<

’L eavesdropper ??

Can this be done using generic symmetric crypto?

31

Merkle Puzzles (1974)

Answer: yes, but very inefficient

Main tool: puzzles

e Problems that can be solved with some effort
« Example: E(k,m) a symmetric cipher with k € {0,1}128

— puzzle(P) = E(P, “message”) where P =0%llb,...b,,

— Goal: find P bytryingall 232 possibilities

Merkle puzzles

Alice: prepare 232 puzzles
. For i=1, ..., 232 choose random P;<{0,1}32 and x, k. €{0,1}128

set puzzle, — E(0%IIP;,, “Puzzle #x.” Il k,)

. Send puzzle,, ..., puzzle,3» toBob

Bob: choose a random puzzlej and solve it. Obtain (xj, kj).

« Send x; to Alice

Alice: lookup puzzle with number ;. Use kj as shared secret

In a figure

, puzzle,

puzzle , ...
Alice
<

X.

J

k.

J

Alice’s work: O(n)
Bob’s work: O(n)

Eavesdropper’s work: O(n2)

(prepare n puzzles)
(solve one puzzle)

(e.g. 264 time)

34

Impossibility Result

Can we achieve a better gap using a general symmetric cipher?

Answer: unknown

But: roughly speaking,

quadratic gap is best possible if we treat cipher as
a black box oracle [IR’89, BM’09]

Better key exchange:

Diffie—Hellman

Key exchange without an online TTP?

Goal: Alice and Bob want shared secret, unknown to eavesdropper

« Fornow: security against eavesdropping only (no tampering)

>

Alice <€
>

<

T_ eavesdropper ??

Can this be done with an exponential gap?

37

The Diffie-Hellman protocol (informally)

Fix a large prime p (e.g. 600 digits)
Fix generator g of Z]’f

Alice Bob

choose random ain {1,...,p-1} choose random b in {1,...,p-1}

‘Uce’, Ao 9" (mad p)

>

"

"Bab

b
p , B] (matp)

B2 modp) = (gP)* = Kk,g=83 (modp) = (g3)° = AP (modp)

38

Secu rity (much more on this later)

Eavesdropper sees: p, g, A=g2(mod p), and B=gb (mod p)

Can she compute gab (mod p) 7?7

More generally: define DHg(ga, gb) =gab (mod p)

How hard is the DH function mod p?

How hard is the DH function mod p?

Suppose prime p is n bits long.
Best known algorithm (GNFS): run time exp((j(\-:yﬂ))

Elliptic Curve
cipher key size modulus size size
80 bits 1024 bits 160 bits
128 bits 3072 bits 256 bits
256 bits (AES) 15360 bits 512 bits

As a result: slow transition away from (mod p) to elliptic curves

www.google.com

The identity of this website has been verified by Thawte SGC
CA.

Certificate Information

Your connection to www.google.com is encrypted with 128-bit
encryption.

The connection uses TLS 1.0.

The connection is encryptefl using RC4_ 128, wih SHA1 for
message authentication afjd ECDHE_RSA as the key

exchange mechanism.

Elliptic curve
Diffie-Hellman

41

Security against man-in-the-middle?

As described, the protocol is insecure against active attacks

Alice MiTM , Bob
Ay e — A=y
/

. Ble— o b

YZ “— 9) ’< Be——%
ob’ HU/ " D

aq Qa alb

9 0+ 3 g

_-,{\{acxer }'-e!a;g {rarr,'(
From Rl'ce {o Bob an/ V‘(’hf{ c'rl"ﬂ {he clear

42

Another look at DH

4 Facebook R
g2 gb ge gd
N . ? 4 t
|
Alice Bob Charlie David
a b C d ’
Knc=8ac Kac=8%¢

43

An open problem | #=2: o
N=3 : Khohi
DY (Tov>)
Facebook Wobh open
g2 gP ge gd
IT ‘) ‘ T
Alice Bob Charlie David
a b C d *ee
I<ABCD KABCD KABCD KABCD

44

Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A,
there is a negligible function y s.t.

p < PRIMES, g < GEN(Z;f);

Pr = u(n)

x.y < Z,: A(p.g.8"%.8") =g

Further readings

o Merkle Puzzles are Optimal,
B. Barak, M. Mahmoody-Ghidary, Crypto 09

« On formal models of key exchange (sections 7-9)
V. Shoup, 1999

DLOG: more generally

Let 3 be a finite cyclic group and { a generator of G
G = { 1,9,09%2,9%, ..., g9 } (g is called the order of G)

Def: We say that DLOG is hard in G if for all efficient alg. A:

Pr g{_Gl,X{_Zq[A(G,qg, g, g¥X)= x] < negligible

Example candidates:
(1) (£,)" forlarge p, (2) Elliptic curve groups mod p

COmpUting DIOg N (Zp)* (n-bit prime p)

Best known algorithm (GNFS): runtime exp(O(v/n))
Elliptic Curve
cipher key size modulus size group size
80 bits 1024 bits 160 bits
128 bits 3072 bits 256 bits
256 bits (AES) 15360 bits 512 bits

As a result: slow transition away from (mod p) to elliptic
curves

