

CIS 5560

Cryptography Lecture 13

Course website:
pratyushmishra.com/classes/cis-5560-s25/

Announcements

- **Midterm coming up: 3/06 in class**
 - 70 minutes long, starts at 1:55PM
 - We will provide a cheat sheet with all the information (definitions, proof strategies, etc) you will need
 - 3/04 will be a review session in class.
 - 3/05 HW Party will be a review party

A.E. Theorems

Let (E, D) be CPA secure cipher and (S, V) secure MAC. Then:

1. **Encrypt-then-MAC:** always provides A.E.
2. **MAC-then-encrypt:** may be insecure against CCA attacks
however: when (E, D) is rand-CTR mode or rand-CBC
M-then-E provides A.E.

Number Theory Background

We will use a bit of number theory to construct:

- Key exchange protocols
- Digital signatures
- Public-key encryption

This module: crash course on relevant concepts

More info: read parts of Shoup's book referenced
at end of module

Notation

From here on:

- N denotes a positive integer.
- p denote a prime.

Notation: $\mathbb{Z}_N = \{0, 1, \dots, N - 1\}$

Can do addition and multiplication modulo N

Greatest common divisor

Def: For all $x, y \in \mathbb{Z}$, $\gcd(x, y)$ is the greatest common divisor of x, y

Example: $\gcd(12, 18) = 6$

Fact: for all $x, y \in \mathbb{Z}$, there exist $a, b \in \mathbb{Z}$ such that

$$a \cdot x + b \cdot y = \gcd(x, y)$$

a, b can be found efficiently using the extended Euclid algorithm

If $\gcd(x, y) = 1$, we say that x and y are relatively prime

Modular inversion

Over the rationals, inverse of 2 is $\frac{1}{2}$. What about \mathbb{Z}_N ?

Def: The **inverse** of $x \in \mathbb{Z}_N$ is an element $y \in \mathbb{Z}_N$ s.t.

$$x \cdot y = 1 \pmod{N}$$

y is denoted x^{-1} .

Example: let N be an odd integer. What is the inverse of $2 \pmod{N}$?

Invertible elements

Def: $\mathbb{Z}_N^* =$ set of invertible elements in \mathbb{Z}_N
 $= \{x \in \mathbb{Z}_N : \gcd(x, N) = 1\}$

Examples:

1. for prime p , $\mathbb{Z}_p^* := \{0, \dots, p - 1\}$

2. $\mathbb{Z}_{12}^* := \{1, 5, 7, 11\}$

For $x \in \mathbb{Z}_N$, we can find x^{-1} using extended Euclid algorithm.

Today's Lecture

- More Number Theory
- Key Exchange
 - Merkle puzzles
 - Diffie—Hellman
 - Computational Diffie—Hellman Problem

Solving modular linear equations

Solve: $a \cdot x + b = 0$, where $a, x, b \in \mathbb{Z}_N$

Solution: $x = -b \cdot a^{-1} \pmod{N}$

Find a^{-1} using extended Euclid algorithm.

Run time: $O(\log^2 N)$

Fermat's theorem (1640)

Thm: Let p be a prime. Then,

$$\forall x \in \mathbb{Z}_p^* : x^{p-1} = 1 \pmod{p}$$

Example: $p=5$. $3^4 = 81 = 1$ in \mathbb{Z}_5

How can we use this to compute inverses?

$$x \in \mathbb{Z}_p^* \Rightarrow x \cdot x^{p-2} = 1 \Rightarrow x^{-1} = x^{p-2}$$

(less efficient than Euclid)

The structure of \mathbb{Z}_p^*

Thm (Euler): \mathbb{Z}_p^* is a **cyclic group**, that is

$$\exists g \in \mathbb{Z}_p^* \text{ such that } \{1, g, g^2, g^3, \dots, g^{p-2}\} = \mathbb{Z}_p^*$$

g is called a **generator** of \mathbb{Z}_p^*

Example: $p = 7$. $\{1, 3, 3^2, 3^3, 3^4, 3^5\} = \{1, 3, 2, 6, 4, 5\} = \mathbb{Z}_7^*$

Not every elem. is a generator: $\{1, 2, 2^2, 2^3, 2^4, 2^5\} = \{1, 2, 4\}$

Order

For $g \in \mathbb{Z}_p^*$ the set $\{1, g, g^2, g^3, \dots\}$ is called

the **group generated by g**, denoted $\langle g \rangle$

Def: the **order** of $g \in \mathbb{Z}_p^*$ is the size of $\langle g \rangle$

$$\text{ord}_p(g) = |\langle g \rangle| = (\text{smallest } a > 0 \text{ s.t. } g^a \equiv 1 \pmod{p})$$

Examples: $\text{ord}_7(3) = 6$; $\text{ord}_7(2) = 3$; $\text{ord}_7(1) = 1$

Thm (Lagrange): $\forall g \in (\mathbb{Z}_p)^* : \text{ord}_p(g)$ divides $p - 1$

The Multiplicative Group \mathbb{Z}_p^*

\mathbb{Z}_p^* : $(\{1, \dots, p-1\}, \text{ group operation: } \bullet \bmod p)$

- Computing the group operation is easy.
- Computing inverses is easy: Extended Euclid.
- Exponentiation (given $g \in \mathbb{Z}_p^*$ and $x \in \mathbb{Z}_{p-1}$, find $g^x \bmod p$) is easy: **Repeated Squaring Algorithm**.
-
- The discrete logarithm problem (given a generator g and $h \in \mathbb{Z}_p^*$, find $x \in \mathbb{Z}_{p-1}$ s.t. $h = g^x \bmod p$) is **hard**, to the best of our knowledge!

The Discrete Log Assumption

The discrete logarithm problem is: given a generator g and $h \in \mathbb{Z}_p^*$, find $x \in \mathbb{Z}_{p-1}$ s.t. $h = g^x \bmod p$.

Distributions...

1. Is the discrete log problem hard for a random p ?
Could it be easy for some p ?
2. Given p : is the problem hard for all generators g ?
3. Given p and g : is the problem hard for all x ?

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.

$$\Pr\left[A(p, g, g^x \bmod p) = x\right] > 1/\text{poly}(\log p)$$

for some p , random generator g of \mathbb{Z}_p^* , and random x in \mathbb{Z}_{p-1} ,
then there is a p.p.t. algorithm B s.t.

$$B(p, g, g^x \bmod p) = x$$

for all g and x .

Proof: On the board.

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.

$$\Pr\left[A(p, g, g^x \bmod p) = x\right] > 1/\text{poly}(\log p)$$

for some p , random generator g of \mathbb{Z}_p^* , and random x in \mathbb{Z}_{p-1} ,
then there is a p.p.t. algorithm B s.t.

$$B(p, g, g^x \bmod p) = x$$

for all g and x .

2. Given p : is the problem hard for all generators g ?
... as hard for any generator is it for a random one.
3. Given p and g : is the problem hard for all x ?
... as hard for any x is it for a random one.

Algorithms for Discrete Log (for General Groups)

- Baby Step-Giant Step algorithm: time – and space – $O(\sqrt{p})$.
- Pohlig-Hellman algorithm: time $O(\sqrt{q})$ where q is the largest prime factor of the order of group (e.g. $p - 1$ in the case of \mathbb{Z}_p^*). That is, there are dlog-easy primes.

The Discrete Log (DLOG) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A ,
there is a negligible function μ s.t.

$$\Pr \left[\begin{array}{l} p \leftarrow \text{PRIMES}_n; g \leftarrow \text{GEN}(\mathbb{Z}_p^*); \\ x \leftarrow \mathbb{Z}_{p-1}: A(p, g, g^x \bmod p) = x \end{array} \right] = \mu(n)$$

Sophie-Germain Primes and Safe Primes

- A prime q is called a **Sophie-Germain** prime if $p = 2q + 1$ is also prime. In this case, q is called a **safe prime**.
- Safe primes are maximally hard for the Pohlig-Hellman algorithm.
- It is unknown if there are infinitely many safe primes, let alone that they are sufficiently dense. Yet, heuristically, about C/n^2 of n -bit integers seem to be safe primes (for some constant C).

The Discrete Log (DLOG) Assumption

(the “safe prime” version)

W.r.t. a random safe prime: for every p.p.t. algorithm A , there is a negligible function μ s.t.

$$\Pr \left[\begin{array}{l} p \leftarrow \text{SAFEPRIMES}_n; g \leftarrow \text{GEN}(\mathbb{Z}_p^*); \\ x \leftarrow \mathbb{Z}_{p-1}: A(p, g, g^x \bmod p) = x \end{array} \right] = \mu(n)$$

One-way Permutation (Family)

$$F(p, g, x) = (p, g, g^x \bmod p)$$

$$\mathcal{F}_n = \{F_{n,p,g}\} \text{ where } F_{n,p,g}(x) = (p, g, g^x \bmod p)$$

Theorem: Under the discrete log assumption, F is a one-way permutation (resp. \mathcal{F}_n is a one-way permutation family).

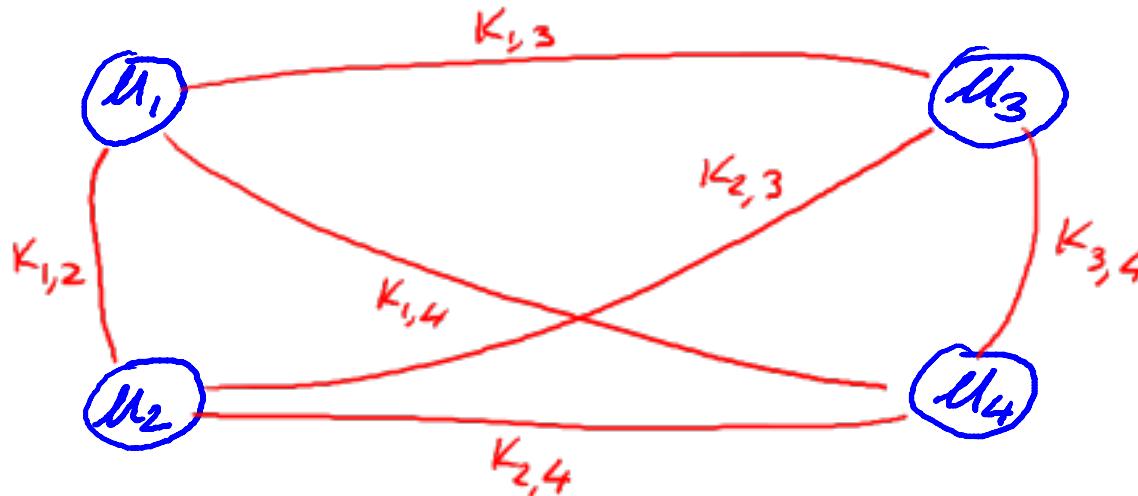
The Multiplicative Group \mathbb{Z}_p^*

\mathbb{Z}_p^* : $(\{1, \dots, p-1\}, \text{ group operation: } \bullet \bmod p)$

- Computing the group operation is easy.
- Computing inverses is easy: Extended Euclid.
- Exponentiation (given $g \in \mathbb{Z}_p^*$ and $x \in \mathbb{Z}_{p-1}$, find $g^x \bmod p$) is easy: **Repeated Squaring Algorithm**.
-
- The discrete logarithm problem (given a generator g and $h \in \mathbb{Z}_p^*$, find $x \in \mathbb{Z}_{p-1}$ s.t. $h = g^x \bmod p$) is **hard**, to the best of our knowledge!

Key management

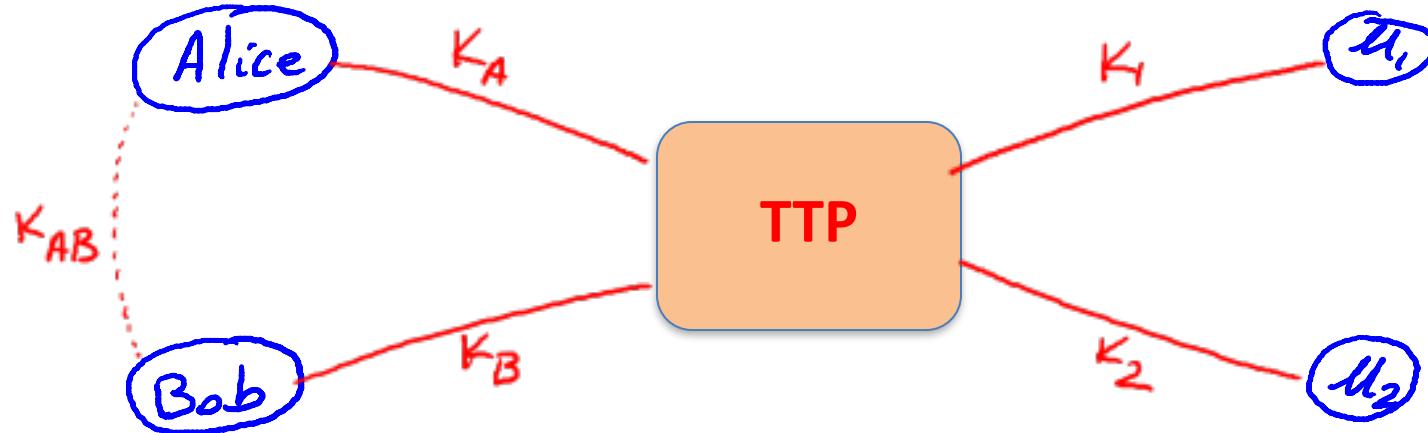
Problem: n users. Storing mutual secret keys is difficult



Total: $O(n)$ keys per user

A better (?) solution

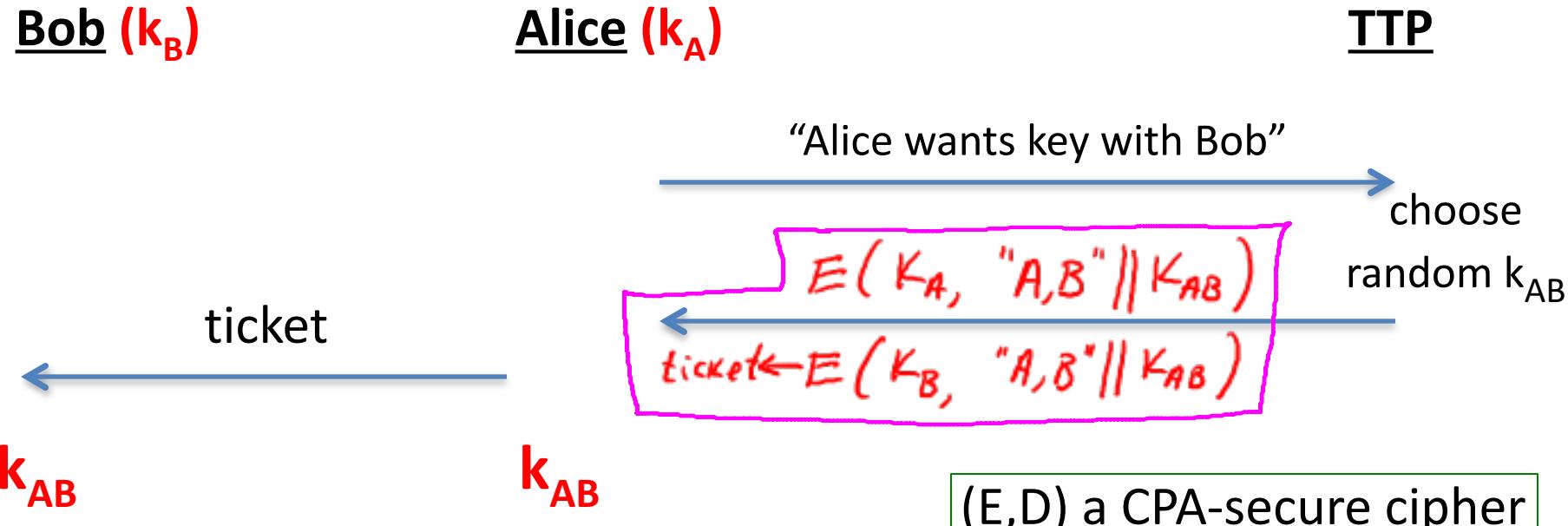
Online Trusted 3rd Party (TTP)



Every user only remembers one key.

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.



Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Eavesdropper sees: $E(k_A, "A, B" \parallel k_{AB})$; $E(k_B, "A, B" \parallel k_{AB})$

(E, D) is CPA-secure \Rightarrow

eavesdropper learns nothing about k_{AB}

Note: TTP needed for every key exchange, knows all session keys.
(basis of Kerberos system)

Toy protocol: insecure against active attacks

Example: insecure against replay attacks

Attacker records session between Alice and merchant Bob

- For example a book order

Attacker replays session to Bob

- Bob thinks Alice is ordering another copy of book

Key question

Can we generate shared keys without an **online** trusted 3rd party?

Answer: yes!

Starting point of public-key cryptography:

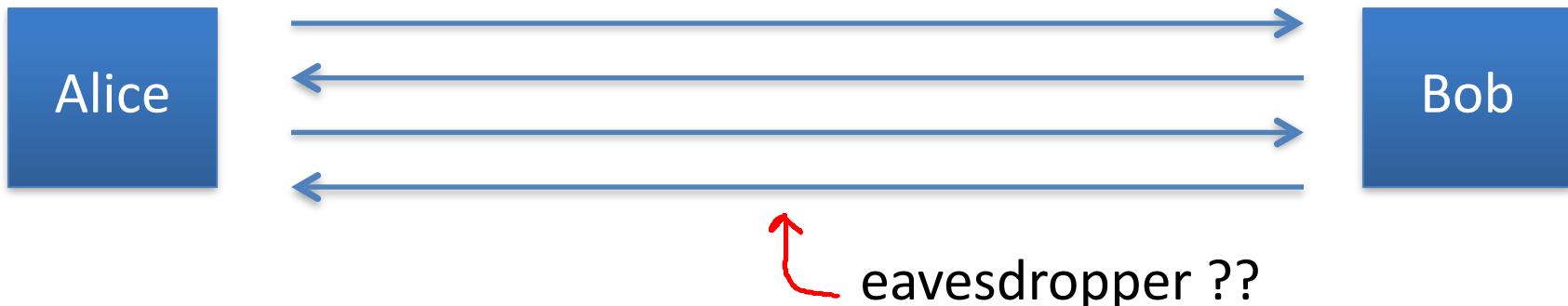
- Merkle (1974), Diffie-Hellman (1976), RSA (1977)
- More recently: ID-based enc. (BF 2001), Functional enc. (BSW 2011)

Basic key exchange: Merkle Puzzles

Key exchange without an online TTP?

Goal: Alice and Bob want shared key, unknown to eavesdropper

- For now: security against eavesdropping only (no tampering)



Can this be done using generic symmetric crypto?

Merkle Puzzles (1974)

Answer: yes, but very inefficient

Main tool: puzzles

- Problems that can be solved with some effort
- Example: $E(k,m)$ a symmetric cipher with $k \in \{0,1\}^{128}$
 - $\text{puzzle}(P) = E(P, \text{"message"})$ where $P = 0^{96} \parallel b_1 \dots b_{32}$
 - Goal: find P by trying all 2^{32} possibilities

Merkle puzzles

Alice: prepare 2^{32} puzzles

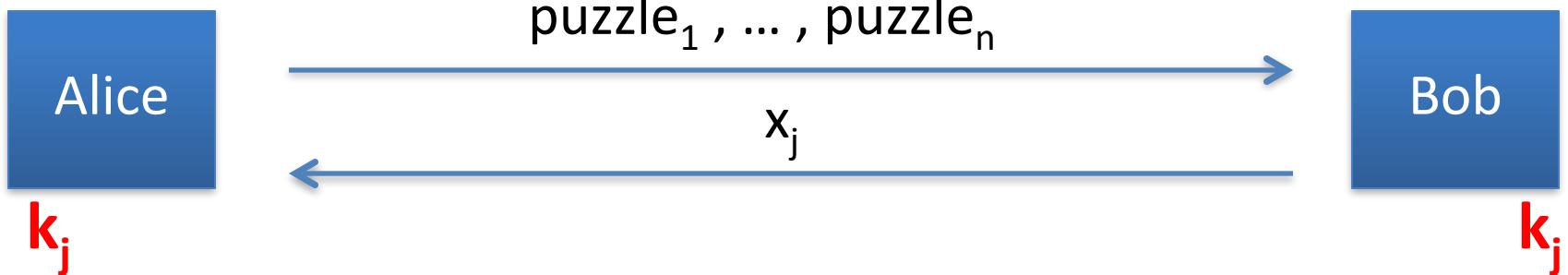
- For $i=1, \dots, 2^{32}$ choose random $P_i \in \{0,1\}^{32}$ and $x_i, k_i \in \{0,1\}^{128}$
set $\text{puzzle}_i \leftarrow E(0^{96} \parallel P_i, \text{“Puzzle \# } x_i \text{”} \parallel k_i)$
- Send $\text{puzzle}_1, \dots, \text{puzzle}_{2^{32}}$ to Bob

Bob: choose a random puzzle_j and solve it. Obtain (x_j, k_j) .

- Send x_j to Alice

Alice: lookup puzzle with number x_j . Use k_j as shared secret

In a figure



Alice's work: $O(n)$ (prepare n puzzles)

Bob's work: $O(n)$ (solve one puzzle)

Eavesdropper's work: $O(n^2)$ (e.g. 2^{64} time)

Impossibility Result

Can we achieve a better gap using a general symmetric cipher?

Answer: unknown

But: roughly speaking,

quadratic gap is best possible if we treat cipher as
a black box oracle [IR'89, BM'09]

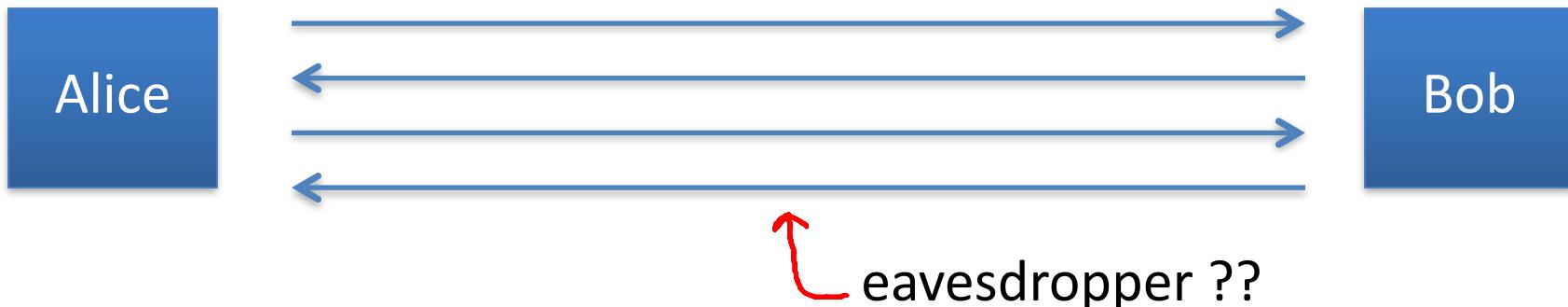
Better key exchange:

Diffie—Hellman

Key exchange without an online TTP?

Goal: Alice and Bob want shared secret, unknown to eavesdropper

- For now: security against eavesdropping only (no tampering)



Can this be done with an exponential gap?

The Diffie-Hellman protocol (informally)

Fix a large prime p (e.g. 600 digits)

Fix generator g of \mathbb{Z}_p^*

Alice

choose random a in $\{1, \dots, p-1\}$

Bob

choose random b in $\{1, \dots, p-1\}$

"Alice", $A \leftarrow g^a \pmod{p}$

"Bob", $B \leftarrow g^b \pmod{p}$

$$B^a \pmod{p} = (g^b)^a = k_{AB} = g^{ab} \pmod{p} = (g^a)^b = A^b \pmod{p}$$

Security (much more on this later)

Eavesdropper sees: $p, g, A=g^a \pmod{p}$, and $B=g^b \pmod{p}$

Can she compute $g^{ab} \pmod{p}$??

More generally: define $DH_g(g^a, g^b) = g^{ab} \pmod{p}$

How hard is the DH function mod p?

How hard is the DH function mod p?

Suppose prime p is n bits long.

Best known algorithm (GNFS): run time $\exp(\tilde{O}(\sqrt[3]{n}))$

<u>cipher key size</u>	<u>modulus size</u>	<u>Elliptic Curve size</u>
80 bits	1024 bits	160 bits
128 bits	3072 bits	256 bits
256 bits (AES)	<u>15360</u> bits	512 bits

As a result: slow transition away from $(\text{mod } p)$ to elliptic curves

[www.google.com](#)

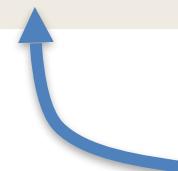
The identity of this website has been verified by Thawte SGC CA.

[Certificate Information](#)

Your connection to www.google.com is encrypted with 128-bit encryption.

The connection uses TLS 1.0.

The connection is encrypted using RC4_128, with SHA1 for message authentication and ECDHE_RSA as the key exchange mechanism.

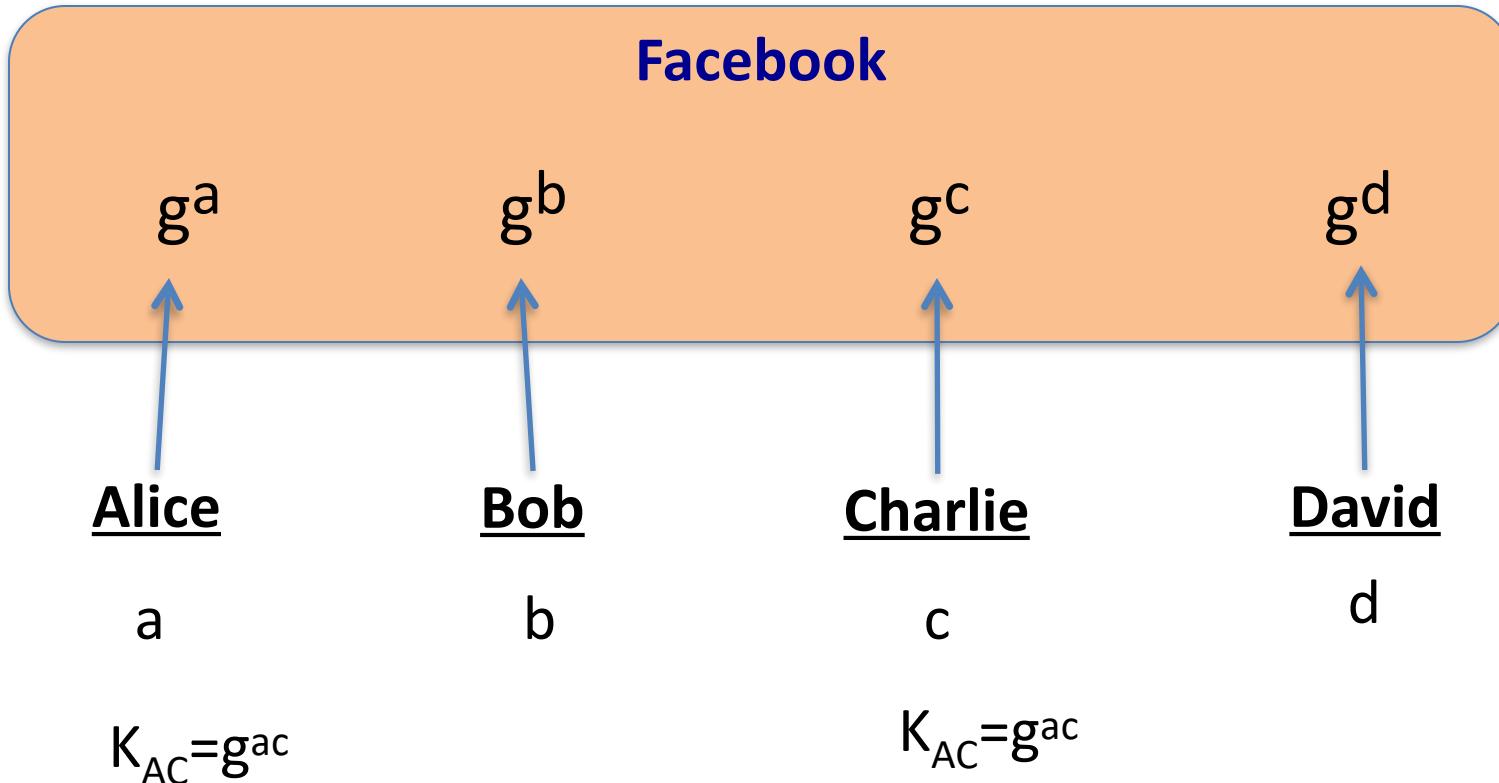


Elliptic curve
Diffie-Hellman

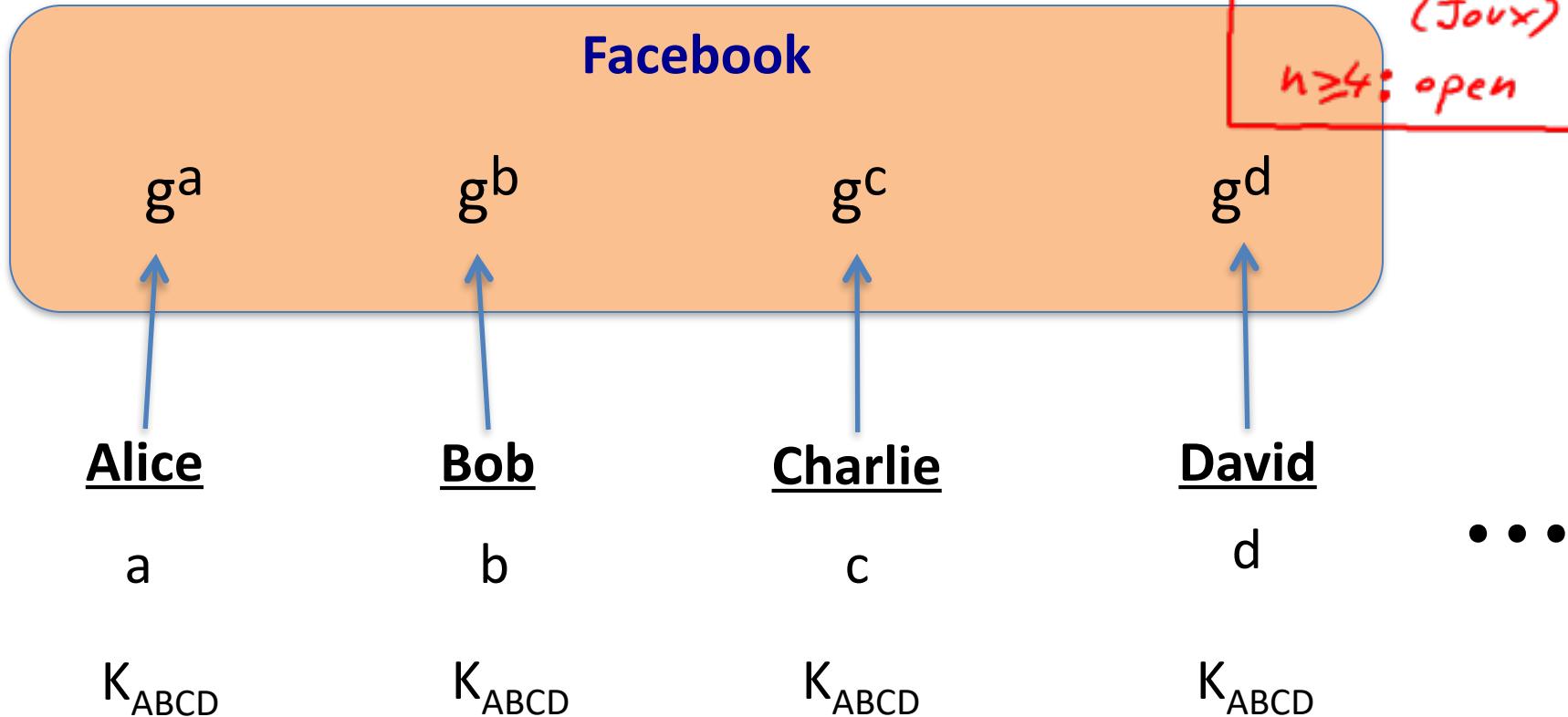
Security against man-in-the-middle?

As described, the protocol is insecure against **active** attacks

Another look at DH



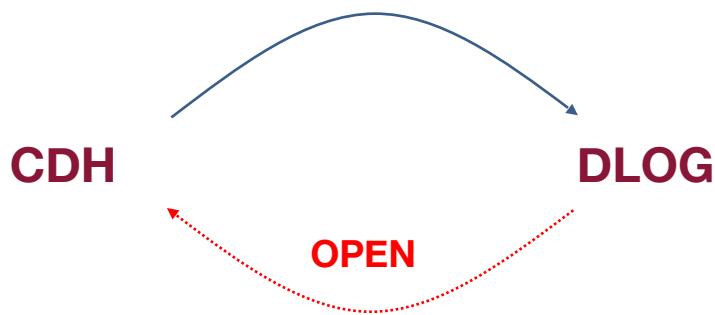
An open problem



Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A ,
there is a negligible function μ s.t.

$$\Pr \left[\begin{array}{l} p \leftarrow PRIMES_n; g \leftarrow GEN(\mathbb{Z}_p^*); \\ x, y \leftarrow \mathbb{Z}_{p-1}: A(p, g, g^x, g^y) = g^{xy} \end{array} \right] = \mu(n)$$



Further readings

- Merkle Puzzles are Optimal,
B. Barak, M. Mahmoody-Ghidary, Crypto '09
- On formal models of key exchange (sections 7-9)
V. Shoup, 1999

DLOG: more generally

Let \mathbb{G} be a finite cyclic group and g a generator of \mathbb{G}

$$\mathbb{G} = \{ 1, g, g^2, g^3, \dots, g^{q-1} \} \quad (q \text{ is called the order of } G)$$

Def: We say that **DLOG is hard in G** if for all efficient alg. A :

$$\Pr_{g \leftarrow \mathbb{G}, x \leftarrow \mathbb{Z}_q} [A(\mathbb{G}, q, g, g^x) = x] < \text{negligible}$$

Example candidates:

- (1) $(\mathbb{Z}_p)^*$ for large p ,
- (2) Elliptic curve groups mod p

Computing Dlog in $(\mathbb{Z}_p)^*$ (n-bit prime p)

Best known algorithm (GNFS): run time $\exp(\tilde{O}(\sqrt[3]{n}))$

<u>cipher key size</u>	<u>modulus size</u>	<u>Elliptic Curve group size</u>
80 bits	1024 bits	160 bits
128 bits	3072 bits	256 bits
256 bits (AES)	<u>15360</u> bits	512 bits

As a result: slow transition away from $(\text{mod } p)$ to elliptic curves