
￼1

CIS 5560

Lecture 12
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s25

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Announcements
• Midterm March 6th in class.
• HW4 due on Friday.
• HW5 out tomorrow.

2

Recap of last lecture

3

Generic attack
Algorithm:

1. Choose random messages in : (distinct

w.h.p)

2. For = compute

3. Look for a collision . If not found, go back to step 1. 

Expected number of iteration ≈ 2

Running time: O(2n/2) (space O(2n/2))

2n/2 ℳ m1, …, m2n/2

i 1,…,2n/2 ti = H(mi) ∈ {0,1}n

(ti = tj)

4

The birthday paradox
Let be IID integers.

Thm: When then

Proof: for uniformly independent ,

r1, …, rn ∈ {1,…, B}

n ≈ B Pr[ri = rj |∃i ≠ j] ≥
1
2

r1, …, rn

5

The Merkle-Damgard iterated construction

Given h: T × X ⟶ T (compression function)

we obtain H: X≤L ⟶ T . Hi - chaining variables

PB: padding block

h h h

m[0] m[1] m[2] m[3] ll PB

h
IV

(fixed)

H(m)
H0 H1 H2 H3 H4

1000…0 ll msg len

64 bits

If no space for PB
add another block

6

HMAC in pictures

Similar to the NMAC PRF.
	 main difference: the two keys k1, k2 are dependent

h h

m[0] m[1] m[2] ll PB

h

h
tag

> > >h

k⨁ipad

IV
(fixed)

>

>IV
(fixed)

h
>

k⨁opad

7

Goals
An authenticated encryption system (Gen, Enc, Dec) is a cipher
where

	 As usual:

 		 but

Security: the system must provide

• IND-CPA, and

• ciphertext integrity:  

 attacker cannot create new ciphertexts that decrypt properly

𝖤𝗇𝖼 : 𝒦 × ℳ → 𝒞
𝖣𝖾𝖼 : 𝒦 × 𝒞 → ℳ

8

ciphertext

is rejected

∪{⊥}

Ciphertext integrity
Let (Gen, Enc, Dec) be a cipher with message space .

Def: (Gen, Enc, Dec) has ciphertext integrity if for all PPT : 
	

ℳ

A
𝖠𝖽𝗏𝖢𝖨[A] = Pr[b = 1] = 𝗇𝖾𝗀𝗅(λ)

9

Chal. Adv.
k ← 𝖦𝖾𝗇(1λ)

c

m1 ∈ ℳ
c1 ← 𝖤𝗇𝖼(k, m1)

 if and

 otherwise

b = 1 𝖣𝖾𝖼(k, c) ≠ ⊥ c ∉ {c1, …, cq}
b = 0

b

m2, …, mq
c2, …, cq

Chosen ciphertext security

Adversary’s power: both CPA and CCA

• Can obtain the encryption of arbitrary messages of his

choice

• Can decrypt any ciphertext of his choice, other than

challenge

	 	 (conservative modeling of real life)

Adversary’s goal:

Learn partial information about challenge plaintext 10

Chosen ciphertext security: definition
Let (Gen, Enc, Dec) be a cipher with message space ℳ

11

Challenger Adversary

k ← 𝖦𝖾𝗇(1λ)

b′￼∈ {0,1}

mi,0, mi,1 ∈ ℳ : |mi,0 | = |mi,1 |

ci ← 𝖤𝗇𝖼(k, mi,b)

for :

 (1) CPA query:

 (2) CCA query:

i ∈ {1,…, q}

cj ∈ 𝒞

mj ← 𝖣(k, cj) : mj ∈ ℳ ∪ { ⊥ }

b ← {0,1}

: cj ∉ {c1, …, ci}

Today’s Lecture
• Constructions of AE

• Number Theory refresher

• Arithmetic modulo primes

• Fermat's Little Theorem

• Quadratic residuosity

• Discrete Logarithms

• Arithmetic modulo composites

• Euler's Theorem

• Factoring

12

Dan Boneh

Constructions of AE

13

… but first, some history

Authenticated Encryption (AE): introduced in 2000 [KY’00, BN’00]

Crypto APIs before then:
• Provide API for CPA-secure encryption (e.g. CBC with rand. IV)
• Provide API for MAC (e.g. HMAC)

Every project had to combine the two itself without
a well defined goal
• Not all combinations provide AE …

14

Combining MAC and ENC (CCA)
	 	 Encryption key . MAC key = kE kM

15

always correct

msg m msg m tag t

𝖤𝗇𝖼(kE, m | | t)𝖬𝖠𝖢(kM, m)
Option 1: (SSL)

msg m

𝖤𝗇𝖼(kE, m)
tag t

𝖬𝖠𝖢(kM, c)
Option 2: (IPsec)

msg m

𝖤𝗇𝖼(kE, m)
tag t

𝖬𝖠𝖢(kM, m)
Option 3: (SSH)

A.E. Theorems
Let (E,D) be CPA secure cipher and (S,V) secure MAC. Then:

1. Encrypt-then-MAC: always provides A.E.

2. MAC-then-encrypt: may be insecure against CCA attacks

	 however: when (E,D) is rand-CTR mode or rand-CBC
	 	 	 M-then-E provides A.E.

16

Security of Encrypt-then-MAC

Security of Encrypt-then-MAC
Recall: MAC security implies (m , t) (m , t’)

Why? Suppose not: (m , t) ⟶ (m , t’)

Then Encrypt-then-MAC would not have Ciphertext Integrity !!

18

⇏

Chal.
b

Adv.

k←K

m0, m1

c ← E(k, mb) = (c0, t)

c’ = (c0 , t’) ≠ c

D(k, c’) = mb

b

(c0, t)

(c0, t’)

Number Theory Background
We will use a bit of number theory to construct:

• Key exchange protocols

• Digital signatures

• Public-key encryption

This module: crash course on relevant concepts

More info:	 read parts of Shoup’s book referenced  
	 at end of module

19

Notation
From here on:

• denotes a positive integer.

• denote a prime.

Notation:

Can do addition and multiplication modulo

N
p

ℤN = {0,1,…, N − 1}

N

20

Greatest common divisor
Def: For all , is the greatest common divisor of

Example:	

Fact: for all , there exist such that

	 can be found efficiently using the extended Euclid algorithm

If , we say that and are relatively prime

x, y ∈ ℤ gcd(x, y) x, y

gcd(12,18) = 6

x, y ∈ ℤ a, b ∈ ℤ
a ⋅ x + b ⋅ y = gcd(x, y)

a, b

gcd(x, y) = 1 x y
21

Modular inversion
Over the rationals, inverse of 2 is ½ . What about ?

Def: The inverse of is an element s.t.

	 is denoted .

Example: let be an odd integer. What is the inverse of ?

ℤN

x ∈ ℤN y ∈ ℤN

x ⋅ y = 1 mod N
y x−1

N 2 mod N

22

Modular inversion
Which elements have an inverse in ?

Lemma: has an inverse if and only if

Proof:

 ⇒ ∀a: gcd(a⋅x, N) > 1 ⇒ a⋅x ≠ 1 in

ℤN

x ∈ ℤN gcd(x, N) = 1

gcd(x, N) = 1 ⟹ ∃a, b : a ⋅ x + b ⋅ N = 1
⟹ a ⋅ x = 1 mod N

gcd(x, N) ≠ 1

23

Invertible elements
Def: = set of invertible elements in

 =

Examples:

1. for prime ,

2.

For , we can find using extended Euclid algorithm.

ℤ*N ℤN

{x ∈ ℤN : gcd(x, N) = 1}

p ℤ*p := {0,…, p − 1}

ℤ*12 := {1,5,7,11}

x ∈ ℤN x−1

24

Solving modular linear equations
Solve: , where

	 Solution:

Find using extended Euclid algorithm.

Run time: O(log2 N)

a ⋅ x + b = 0 a, x, b ∈ ℤN

x = − b ⋅ a−1 mod N

a−1

25

Fermat’s theorem (1640)

Thm: Let be a prime. Then,

Example: p=5. 34 = 81 = 1 in Z5

How can we use this to compute inverses?

 (less efficient than Euclid)

p

∀x ∈ ℤ*p : xp−1 = 1 mod p

x ∈ ℤ*p ⇒ x ⋅ xp−2 = 1 ⇒ x−1 = xp−2

26

Application: generating random primes
Suppose we want to generate a large random prime

	 say, prime of length 1024 bits (i.e. p ≈ 21024)

Step 1: sample

Step 2: test if

	 If so, output and stop. If not, goto step 1 .

Simple algorithm (not the best).

p

p ∈ [21024,21025 − 1]
2p−1 = 1 mod p

p

Pr[p ∉ PRIMES | test passes] < 2−60 27

The structure of ℤ*p
Thm (Euler): is a cyclic group, that is

	 such that

 is called a generator of

Example: . {1, 3, 32, 33, 34, 35} = {1, 3, 2, 6, 4, 5} =

Not every elem. is a generator: {1, 2, 22, 23, 24, 25} = {1, 2, 4}

ℤ*p

∃g ∈ ℤ*p {1,g, g2, g3, …, gp−2} = ℤ*p

g ℤ*p

p = 7 ℤ*7

28

Order
For the set is called  

	 the group generated by g, denoted

Def: the order of is the size of

	 ordp(g) = | | = (smallest a > 0 s.t.)

Examples: ord7(3) = 6 ; ord 7(2) = 3 ; ord7(1) = 1

Thm (Lagrange): ∀g∈(Zp)* : ordp(g) divides p - 1

g ∈ ℤ*p {1,g, g2, g3, …}

⟨g⟩

g ∈ ℤ*p ⟨g⟩

⟨g⟩ ga = 1 mod p

29

How to come up with a generator g

(1) There are lots of generators: fraction
of are generators (where p is an n-bit prime).

≈ 1/log𝑛
ℤ∗

𝑝

(2) Testing if is a generator: 𝒈

Theorem: let be the prime factors of .
Then, g is a generator of if and only if 	 	

 for all i.

𝑞1, …, 𝑞𝑘 𝑝 − 1
ℤ∗

𝑝
𝑔(𝑝−1)/𝑞𝑖 ≠ 1 (mod 𝑝)

OPEN: Can you test if g is a generator without knowing
the prime factorization of p-1?
OPEN: Deterministically come up with a generator?

The Multiplicative Group ℤ∗
𝒑

: (group operation: mod)ℤ∗
𝑝 {1,…, p − 1}, ∙ 𝑝

• Computing the group operation is easy.

• Computing inverses is easy: Extended Euclid.

• Exponentiation (given and , find mod
p) is easy: Repeated Squaring Algorithm.

•

𝑔 ∈ ℤ∗
𝑝 𝑥 ∈ ℤ𝑝−1 𝑔𝑥

• The discrete logarithm problem (given a generator
, find s.t. mod p) is hard, to

the best of our knowledge!
𝑔 and h ∈ ℤ∗

𝑝 𝑥 ∈ ℤ𝑝−1 h = gx

The Discrete Log Assumption

Distributions…

1. Is the discrete log problem hard for a random p?
Could it be easy for some p?

2. Given p: is the problem hard for all generators g?

3. Given p and g: is the problem hard for all x?

The discrete logarithm problem is: given a generator
, find s.t. mod p.𝑔 and h ∈ ℤ∗

𝑝 𝑥 ∈ ℤ𝑝−1 h = 𝑔𝑥

Random Self-Reducibility of DLOG
Theorem: If there is an p.p.t. algorithm s.t.

 	

for some , random generator of , and random in ,
then there is a p.p.t. algorithm s.t.

for all g and x.

𝐴
Pr[𝐴(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥] > 1/poly(log𝑝)

𝑝 𝑔 ℤ∗
𝑝 𝑥 ℤ𝑝−1

𝐵
𝐵(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥

Proof: On the board.

Random Self-Reducibility of DLOG
Theorem: If there is an p.p.t. algorithm s.t.

 	

for some , random generator of , and random in ,
then there is a p.p.t. algorithm s.t.

for all g and x.

𝐴
Pr[𝐴(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥] > 1/poly(log𝑝)

𝑝 𝑔 ℤ∗
𝑝 𝑥 ℤ𝑝−1

𝐵
𝐵(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥

2. Given p: is the problem hard for all generators g?

3. Given p and g: is the problem hard for all x?
… as hard for any generator is it for a random one.

… as hard for any x is it for a random one.

Algorithms for Discrete Log  
(for General Groups)

• Pohlig-Hellman algorithm: time where is the largest
prime factor of the order of group (e.g. in the case of

). That is, there are dlog-easy primes.

𝑂(𝑞) 𝑞
𝑝 − 1

𝑍∗
𝑝

• Baby Step-Giant Step algorithm: time —and space— .𝑂(𝑝)

The Discrete Log (DLOG) Assumption

W.r.t. a random prime: for every p.p.t. algorithm
there is a negligible function s.t.

𝐴,
𝜇

Pr
𝑝 ← 𝑃𝑅𝐼𝑀𝐸𝑆𝑛; 𝑔 ← 𝐺𝐸𝑁(ℤ∗

𝑝);

𝑥 ← ℤ𝑝−1: 𝐴(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥
= 𝜇(𝑛)

Sophie-Germain Primes and Safe Primes

• Safe primes are maximally hard for the Pohlig-
Hellman algorithm.

• A prime is called a Sophie-Germain prime if
 is also prime. In this case, is called

a safe prime.

𝑞
𝑝 = 2𝑞 + 1 𝑞

• It is unknown if there are infinitely many safe primes,
let alone that they are sufficiently dense. Yet,
heuristically, about of -bit integers seem to be
safe primes (for some constant).

𝐶/𝑛2 𝑛
𝐶

The Discrete Log (DLOG) Assumption

W.r.t. a random safe prime: for every p.p.t.
algorithm there is a negligible function s.t.

𝐴, 𝜇

Pr
𝑝 ← 𝑆𝐴𝐹𝐸𝑃𝑅𝐼𝑀𝐸𝑆𝑛; 𝑔 ← 𝐺𝐸𝑁(ℤ∗

𝑝);

𝑥 ← ℤ𝑝−1: 𝐴(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥
= 𝜇(𝑛)

(the “safe prime” version)

One-way Permutation (Family)

𝐹(𝑝, 𝑔, 𝑥) = (𝑝, 𝑔, 𝑔𝑥 mod p)

 where ℱ𝑛 = {𝐹𝑛,𝑝,𝑔} 𝐹𝑛,𝑝,𝑔(𝑥) = (𝑝, 𝑔, 𝑔𝑥 mod p)

Theorem: Under the discrete log assumption,
is a one-way permutation (resp. is a one-way
permutation family).

𝐹
ℱ𝑛

Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm
there is a negligible function s.t.

𝐴,
𝜇

Pr
𝑝 ← 𝑃𝑅𝐼𝑀𝐸𝑆𝑛; 𝑔 ← 𝐺𝐸𝑁(ℤ∗

𝑝);

𝑥, 𝑦 ← ℤ𝑝−1: 𝐴(𝑝, 𝑔, 𝑔𝑥, 𝑔𝑦) = 𝑔𝑥𝑦
= 𝜇(𝑛)

CDH DLOG
OPEN

DLOG: more generally
Let be a finite cyclic group and g a generator of

	 = { 1 , g , g2 , g3 , … , gq-1 } (q is called the order of G)

Def: We say that DLOG is hard in G if for all efficient alg. A:

	 Pr g⟵G, x ⟵Zq [A(G, q, g, gx) = x] < negligible

Example candidates:

	 (1) (Zp)* for large p, (2) Elliptic curve groups mod p

𝔾 𝔾

𝔾

41

Computing Dlog in (Zp)* (n-bit prime p)

Best known algorithm (GNFS): run time exp()

	 cipher key size	 	 modulus size		

	 80 bits	 	 	 1024 bits	 	

	 128 bits	 	 	 3072 bits	 	

	 256 bits (AES)	 	 15360 bits 	 	

As a result: slow transition away from (mod p) to elliptic
curves

42

Elliptic Curve 
group size

160 bits

256 bits

512 bits

An application: collision resistance
Choose a group G where Dlog is hard (e.g. (Zp)* for large p)

Let q = |G| be a prime. Choose generators g, h of G

	 For x,y ∈ {1,…,q} define H(x,y) = gx ⋅ hy in G

Lemma: finding collision for H(.,.) is as hard as computing Dlogg(h)

Proof: Suppose we are given a collision H(x0,y0) = H(x1,y1)

then gx0⋅hy0 = gx1⋅hy1 ⇒ gx0-x1 = hy1-y0 ⇒ h = g x0-x1/y1-y043

Further reading
• A Computational Introduction to Number Theory and

Algebra, 
V. Shoup, 2008 (V2), Chapter 1-4, 11, 12

	 Available at //shoup.net/ntb/ntb-v2.pdf

44

