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CIS 5560

Lecture 12
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s25 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/


Announcements
• Midterm March 6th in class. 
• HW4 due on Friday. 
• HW5 out tomorrow.
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Recap of last lecture
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Generic attack
Algorithm:

1. Choose  random messages in :    (distinct 

w.h.p )

2. For  =   compute    

3. Look for a collision .    If not found, go back to step 1. 

Expected number of iteration ≈   2


Running time:  O(2n/2)         (space  O(2n/2) )

2n/2 ℳ m1, …, m2n/2

i 1,…,2n/2 ti = H(mi) ∈ {0,1}n

(ti = tj)
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The birthday paradox
Let      be IID integers. 


Thm:   When    then    

Proof:   for uniformly independent ,

r1, …, rn ∈ {1,…, B}

n ≈ B Pr[ri = rj |∃i ≠ j] ≥
1
2

r1, …, rn
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The Merkle-Damgard iterated construction

Given   h: T × X ⟶ T         (compression function) 

we obtain    H: X≤L ⟶ T .            Hi  -  chaining variables 

PB:    padding block 

h h h

m[0] m[1] m[2] m[3]  ll   PB

h
IV 

(fixed)

H(m)
H0 H1 H2 H3 H4

1000…0  ll  msg len

64 bits

If no space for PB  
add another block
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HMAC in pictures

Similar to the NMAC PRF.         
	 main difference:  the two keys k1, k2 are dependent

h h

m[0] m[1] m[2]  ll   PB

h

h
tag

> > >h

k⨁ipad

IV 
(fixed)

>

>IV 
(fixed)

h
>

k⨁opad
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Goals
An authenticated encryption system (Gen, Enc, Dec) is a cipher 
where 


	 As usual:     

     		 but                

Security:   the system must provide

• IND-CPA,  and

• ciphertext integrity:   

   attacker cannot create new ciphertexts that decrypt properly

𝖤𝗇𝖼 : 𝒦 × ℳ → 𝒞
𝖣𝖾𝖼 : 𝒦 × 𝒞 → ℳ
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ciphertext

is rejected

∪{⊥}



Ciphertext integrity
Let  (Gen, Enc, Dec)  be a cipher with message space .   


Def:  (Gen, Enc, Dec)  has ciphertext integrity if for all PPT  : 
	          

ℳ

A
𝖠𝖽𝗏𝖢𝖨[A] = Pr[b = 1] = 𝗇𝖾𝗀𝗅(λ)
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Chal. Adv.
k ← 𝖦𝖾𝗇(1λ)

c

m1 ∈ ℳ
c1 ← 𝖤𝗇𝖼(k, m1)

    if     and  

   otherwise

b = 1 𝖣𝖾𝖼(k, c) ≠ ⊥ c ∉ {c1, …, cq}
b = 0

b

m2, …, mq
c2, …, cq



Chosen ciphertext security

Adversary’s power:    both CPA and CCA

• Can obtain the encryption of arbitrary messages of his 

choice

• Can decrypt any ciphertext of his choice, other than 

challenge

	 	 (conservative modeling of real life)


Adversary’s goal:    

Learn partial information about challenge plaintext 10



Chosen ciphertext security:  definition
Let  (Gen, Enc, Dec)  be a cipher with message space ℳ
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Challenger Adversary

k ← 𝖦𝖾𝗇(1λ)

b′￼∈ {0,1}

mi,0, mi,1 ∈ ℳ : |mi,0 | = |mi,1 |

ci ← 𝖤𝗇𝖼(k, mi,b)

for :


  (1)   CPA query: 

  (2)   CCA query:

i ∈ {1,…, q}

cj ∈ 𝒞

mj ← 𝖣(k, cj) : mj ∈ ℳ ∪ { ⊥ }

b ← {0,1}

: cj ∉ {c1, …, ci}



Today’s Lecture
• Constructions of AE

• Number Theory refresher


• Arithmetic modulo primes

• Fermat's Little Theorem

• Quadratic residuosity

• Discrete Logarithms

• Arithmetic modulo composites

• Euler's Theorem

• Factoring
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Dan Boneh

Constructions of AE
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… but first,  some history

Authenticated Encryption (AE):     introduced in 2000    [KY’00, BN’00] 

Crypto APIs before then: 
• Provide API for CPA-secure encryption  (e.g. CBC with rand. IV) 
• Provide API for MAC  (e.g. HMAC) 

Every project had to combine the two itself without  
a well defined goal 
• Not all combinations provide AE …
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Combining MAC and ENC   (CCA)
	 	 Encryption key  .      MAC key = kE kM
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always correct

msg  m msg  m tag t

𝖤𝗇𝖼(kE, m | | t)𝖬𝖠𝖢(kM, m)
Option 1:   (SSL)

msg  m

𝖤𝗇𝖼(kE, m)
tag t

𝖬𝖠𝖢(kM, c)
Option 2:   (IPsec)

msg  m

𝖤𝗇𝖼(kE, m)
tag t

𝖬𝖠𝖢(kM, m)
Option 3:   (SSH)



A.E.   Theorems
Let   (E,D)   be CPA secure cipher   and   (S,V) secure MAC.    Then: 

1. Encrypt-then-MAC:   always provides  A.E. 

2. MAC-then-encrypt:   may be insecure against CCA attacks 

	 however:    when  (E,D)  is  rand-CTR mode or rand-CBC 
	 	 	 M-then-E  provides  A.E. 
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Security of Encrypt-then-MAC



Security of Encrypt-then-MAC
Recall:    MAC security implies       (m , t)              (m , t’ ) 

Why?     Suppose not:     (m , t)   ⟶   (m , t’) 

Then Encrypt-then-MAC would not have Ciphertext Integrity !!
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⇏

Chal.
b

Adv.

k←K

m0, m1

c ← E(k, mb) = (c0, t)

c’ = (c0 , t’ )    ≠ c

D(k, c’) = mb

b

(c0, t) 

(c0, t’) 



Number Theory Background
We will use a bit of number theory to construct:

• Key exchange protocols

• Digital signatures

• Public-key encryption


This module:   crash course on relevant concepts


More info:	 read parts of Shoup’s book referenced  
	 at end of module
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Notation
From here on:   

•  denotes a positive integer. 

•  denote a prime.


Notation: 


Can do addition and multiplication modulo   

N
p

ℤN = {0,1,…, N − 1}

N
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Greatest common divisor
Def:   For all ,    is the greatest common divisor of  


Example:	 


Fact:   for all , there exist  such that 



	  can be found efficiently using the extended Euclid algorithm 


If  , we say that  and  are relatively prime

x, y ∈ ℤ gcd(x, y) x, y

gcd(12,18) = 6

x, y ∈ ℤ a, b ∈ ℤ
a ⋅ x + b ⋅ y = gcd(x, y)

a, b

gcd(x, y) = 1 x y
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Modular inversion
Over the rationals, inverse of 2 is  ½ . What about ?


Def:    The inverse  of  is an element  s.t.


 
	  is denoted .


Example:    let  be an odd integer. What is the inverse of ?

ℤN

x ∈ ℤN y ∈ ℤN

x ⋅ y = 1 mod N
y x−1

N 2 mod N
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Modular inversion
Which elements have an inverse in ?


Lemma:     has an inverse if and only if  

Proof:


    


        ⇒    ∀a:  gcd( a⋅x, N ) > 1    ⇒    a⋅x ≠ 1  in 

ℤN

x ∈ ℤN gcd(x, N ) = 1

gcd(x, N ) = 1 ⟹ ∃a, b : a ⋅ x + b ⋅ N = 1
⟹ a ⋅ x = 1 mod N

gcd(x, N ) ≠ 1
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Invertible elements
Def:       =  set of invertible elements in  


                    =  


Examples:   


1. for prime , 


2.                       


For  , we can find   using extended Euclid algorithm.

ℤ*N ℤN

{x ∈ ℤN : gcd(x, N ) = 1}

p ℤ*p := {0,…, p − 1}

ℤ*12 := {1,5,7,11}

x ∈ ℤN x−1
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Solving modular linear equations
Solve:        , where  

	 Solution:          

Find   using extended Euclid algorithm.   

Run time:   O(log2 N)

a ⋅ x + b = 0 a, x, b ∈ ℤN

x = − b ⋅ a−1 mod N

a−1
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Fermat’s theorem    (1640)

Thm:     Let  be a prime. Then, 

  

Example:    p=5.         34 = 81 = 1    in   Z5


How can we use this to compute inverses?


                                      

                                (less efficient than Euclid)

p

∀x ∈ ℤ*p : xp−1 = 1 mod p

x ∈ ℤ*p ⇒ x ⋅ xp−2 = 1 ⇒ x−1 = xp−2
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Application:  generating random primes
Suppose we want to generate a large random prime


	 say, prime    of  length 1024 bits    ( i.e.   p ≈ 21024 )


Step 1:     sample  

Step 2:     test if       

	 If so, output    and stop.    If not, goto step 1 .


Simple algorithm (not the best). 

p

p ∈ [21024,21025 − 1]
2p−1 = 1 mod p

p

Pr[p ∉ PRIMES |  test passes ] < 2−60 27



The structure of  ℤ*p
Thm (Euler):        is a cyclic group, that is


	     such that     


     is called a generator of   


Example:    .      {1, 3, 32, 33, 34, 35} = {1, 3, 2, 6, 4, 5} =  


Not every elem. is a generator:     {1, 2, 22, 23, 24, 25} = {1, 2, 4} 

ℤ*p

∃g ∈ ℤ*p {1,g, g2, g3, …, gp−2} = ℤ*p

g ℤ*p

p = 7 ℤ*7
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Order
For    the set     is called  

	 the group generated by g,   denoted  


Def:    the order of  is the size of 


	     ordp(g)    =   | |   =  (smallest a > 0 s.t.  ) 

Examples:     ord7(3) = 6    ;   ord 7(2) = 3   ;  ord7(1) = 1


Thm (Lagrange):   ∀g∈(Zp)*   :     ordp(g)   divides    p - 1

g ∈ ℤ*p {1,g, g2, g3, …}

⟨g⟩

g ∈ ℤ*p ⟨g⟩

⟨g⟩ ga = 1 mod p
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How to come up with a generator g 

(1) There are lots of generators:  fraction 
of  are generators (where p is an n-bit prime).

≈ 1/log𝑛
ℤ∗

𝑝

(2) Testing if  is a generator: 𝒈

Theorem: let  be the prime factors of . 
Then, g is a generator of  if and only if  	 	

 for all i.

𝑞1, …, 𝑞𝑘 𝑝 − 1
ℤ∗

𝑝
𝑔(𝑝−1)/𝑞𝑖 ≠ 1 (mod 𝑝)

OPEN: Can you test if g is a generator without knowing 
the prime factorization of p-1?  
OPEN: Deterministically come up with a generator?  



The Multiplicative Group ℤ∗
𝒑

: (  group operation:  mod )ℤ∗
𝑝 {1,…, p − 1}, ∙ 𝑝

• Computing the group operation is easy.

• Computing inverses is easy: Extended Euclid.

• Exponentiation (given and , find  mod 
p) is easy: Repeated Squaring Algorithm.


•

𝑔 ∈ ℤ∗
𝑝  𝑥 ∈ ℤ𝑝−1 𝑔𝑥

• The discrete logarithm problem (given a generator 
, find  s.t.  mod p) is hard, to 

the best of our knowledge!
𝑔 and h ∈ ℤ∗

𝑝 𝑥 ∈ ℤ𝑝−1 h = gx



The Discrete Log Assumption

Distributions…

1. Is the discrete log problem hard for a random p? 
Could it be easy for some p?

2.   Given p: is the problem hard for all generators g?

3.   Given p and g: is the problem hard for all x?

The discrete logarithm problem is: given a generator 
, find  s.t.  mod p.𝑔 and h ∈ ℤ∗

𝑝 𝑥 ∈ ℤ𝑝−1 h = 𝑔𝑥



Random Self-Reducibility of DLOG
Theorem: If there is an p.p.t. algorithm  s.t.   

   	  

for some , random generator  of , and random  in , 
then there is a p.p.t. algorithm  s.t.


 
for all g and x.

𝐴
Pr[𝐴(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥] > 1/poly(log𝑝)

𝑝 𝑔 ℤ∗
𝑝 𝑥 ℤ𝑝−1

𝐵
𝐵(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥

Proof: On the board.



Random Self-Reducibility of DLOG
Theorem: If there is an p.p.t. algorithm  s.t.   

   	  

for some , random generator  of , and random  in , 
then there is a p.p.t. algorithm  s.t.


 
for all g and x.

𝐴
Pr[𝐴(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥] > 1/poly(log𝑝)

𝑝 𝑔 ℤ∗
𝑝 𝑥 ℤ𝑝−1

𝐵
𝐵(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥

2.   Given p: is the problem hard for all generators g?

3.   Given p and g: is the problem hard for all x?
… as hard for any generator is it for a random one.

… as hard for any x is it for a random one.



Algorithms for Discrete Log  
(for General Groups)

• Pohlig-Hellman algorithm: time  where  is the largest 
prime factor of the order of group (e.g.  in the case of 

). That is, there are dlog-easy primes.

𝑂( 𝑞) 𝑞
𝑝 − 1

𝑍∗
𝑝

• Baby Step-Giant Step algorithm: time —and space—  .𝑂( 𝑝)



The Discrete Log (DLOG) Assumption

W.r.t. a random prime: for every p.p.t. algorithm  
there is a negligible function  s.t.

  


 

𝐴,
𝜇

Pr
𝑝 ← 𝑃𝑅𝐼𝑀𝐸𝑆𝑛; 𝑔 ← 𝐺𝐸𝑁(ℤ∗

𝑝 );

𝑥 ← ℤ𝑝−1:  𝐴(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥
= 𝜇(𝑛)



Sophie-Germain Primes and Safe Primes

• Safe primes are maximally hard for the Pohlig-
Hellman algorithm.

• A prime  is called a Sophie-Germain prime if 
 is also prime. In this case,  is called 

a safe prime.

𝑞
𝑝 = 2𝑞 + 1 𝑞

• It is unknown if there are infinitely many safe primes, 
let alone that they are sufficiently dense. Yet, 
heuristically, about  of -bit integers seem to be 
safe primes (for some constant ).

𝐶/𝑛2 𝑛
𝐶



The Discrete Log (DLOG) Assumption

W.r.t. a random safe prime: for every p.p.t. 
algorithm  there is a negligible function  s.t.

  


 

𝐴, 𝜇

Pr
𝑝 ← 𝑆𝐴𝐹𝐸𝑃𝑅𝐼𝑀𝐸𝑆𝑛; 𝑔 ← 𝐺𝐸𝑁(ℤ∗

𝑝 );

𝑥 ← ℤ𝑝−1:  𝐴(𝑝, 𝑔, 𝑔𝑥 mod 𝑝) = 𝑥
= 𝜇(𝑛)

(the “safe prime” version)



One-way Permutation (Family)

𝐹(𝑝, 𝑔, 𝑥) = (𝑝, 𝑔, 𝑔𝑥 mod p)

 where ℱ𝑛 = {𝐹𝑛,𝑝,𝑔} 𝐹𝑛,𝑝,𝑔(𝑥) = (𝑝, 𝑔, 𝑔𝑥 mod p)

Theorem: Under the discrete log assumption,  
is a one-way permutation (resp.  is a one-way 
permutation family).

𝐹
ℱ𝑛



Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm  
there is a negligible function  s.t.

  


 

𝐴,
𝜇

Pr
𝑝 ← 𝑃𝑅𝐼𝑀𝐸𝑆𝑛; 𝑔 ← 𝐺𝐸𝑁(ℤ∗

𝑝 );

𝑥, 𝑦 ← ℤ𝑝−1:  𝐴(𝑝, 𝑔, 𝑔𝑥, 𝑔𝑦) = 𝑔𝑥𝑦
= 𝜇(𝑛)

CDH DLOG
OPEN



DLOG:   more generally
Let    be a finite cyclic group  and  g a generator of  


	  =  { 1 , g , g2 , g3 ,   …  ,  gq-1 }     ( q is called the order of G )


Def:  We say that DLOG is hard in G if for all efficient alg. A:


	 Pr g⟵G, x ⟵Zq [  A( G, q,  g, gx ) = x ]  <  negligible


Example candidates:

	 (1)    (Zp)*  for large p,         (2)  Elliptic curve groups mod p

𝔾 𝔾

𝔾
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Computing Dlog in (Zp)*     (n-bit prime p) 

Best known algorithm (GNFS):        run time     exp(              )


	 cipher key size	 	 modulus size		 

	    80 bits	 	 	   1024 bits	 	 

	   128 bits	 	 	   3072 bits	 	 

	   256 bits (AES)	 	 15360 bits 	 	 


As a result:    slow transition away from (mod p) to elliptic 
curves
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Elliptic Curve 
group size

160 bits

256 bits

512 bits



An application:  collision resistance
Choose a group G where Dlog is hard   (e.g.  (Zp)* for large p)


Let  q = |G| be a prime.   Choose generators  g, h  of G 


	 For  x,y ∈ {1,…,q}      define      H(x,y) = gx ⋅ hy       in G 

Lemma:   finding collision for H(.,.) is as hard as computing Dlogg(h)


Proof:   Suppose we are given a collision   H(x0,y0) = H(x1,y1)


then    gx0⋅hy0  = gx1⋅hy1    ⇒    gx0-x1  = hy1-y0    ⇒    h = g x0-x1/y1-y043



Further reading
• A Computational Introduction to Number Theory and 

Algebra, 
V. Shoup,  2008    (V2),     Chapter 1-4, 11, 12


	 Available at      //shoup.net/ntb/ntb-v2.pdf
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