

CIS 5560

Cryptography Lecture 12

Course website:
pratyushmishra.com/classes/cis-5560-s25

Announcements

- **Midterm March 6th in class.**
- **HW4 due on Friday.**
- **HW5 out tomorrow.**

Recap of last lecture

Generic attack

Algorithm:

1. Choose $2^{n/2}$ random messages in \mathcal{M} : $m_1, \dots, m_{2^{n/2}}$ (distinct w.h.p)
2. For $i = 1, \dots, 2^{n/2}$ compute $t_i = H(m_i) \in \{0,1\}^n$
3. Look for a collision ($t_i = t_j$). If not found, go back to step 1.

Expected number of iteration ≈ 2

Running time: **$O(2^{n/2})$** (space $O(2^{n/2})$)

The birthday paradox

Let $r_1, \dots, r_n \in \{1, \dots, B\}$ be IID integers.

Thm: When $n \approx \sqrt{B}$ then $\Pr[r_i = r_j \mid \exists i \neq j] \geq \frac{1}{2}$

Proof: for uniformly independent r_1, \dots, r_n ,

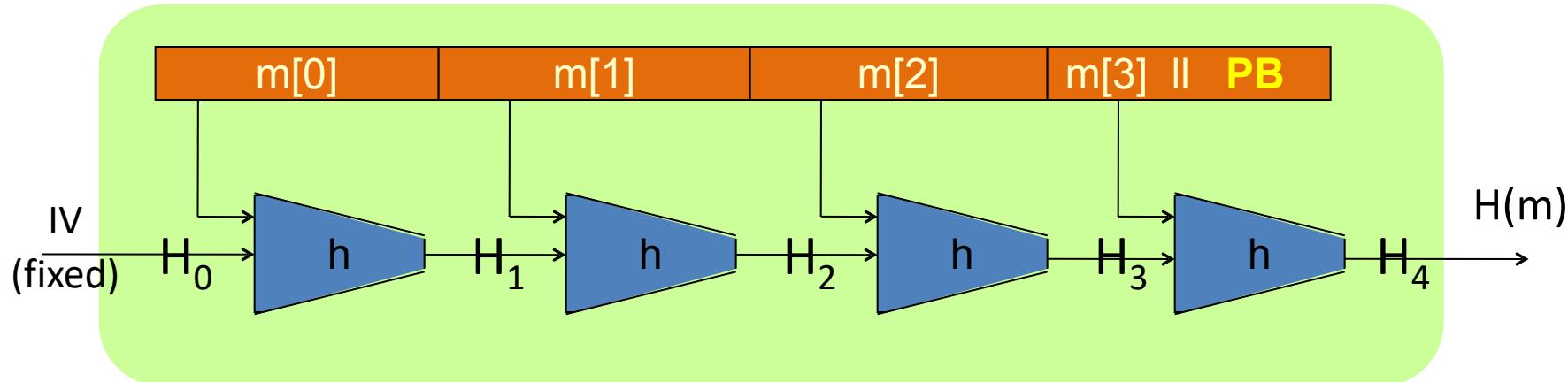
$$\begin{aligned} \Pr[\exists i \neq j : r_i = r_j] &= 1 - \Pr[\forall i \neq j : r_i \neq r_j] = 1 - \left(\frac{B-1}{B}\right)\left(\frac{B-2}{B}\right) \cdots \left(\frac{B-n+1}{B}\right) = \\ &= 1 - \prod_{i=1}^{n-1} \left(1 - \frac{1}{B}\right) \geq 1 - \prod_{i=1}^{n-1} e^{-1/B} = 1 - e^{-\frac{1}{B} \sum_{i=1}^{n-1} i} \geq 1 - e^{-n^2/2B} \end{aligned}$$

$1-x \leq e^{-x}$

$\frac{n^2}{2B} = 0.72$

$\geq 1 - e^{-0.72} = 0.53 > \frac{1}{2}$

The Merkle-Damgaard iterated construction



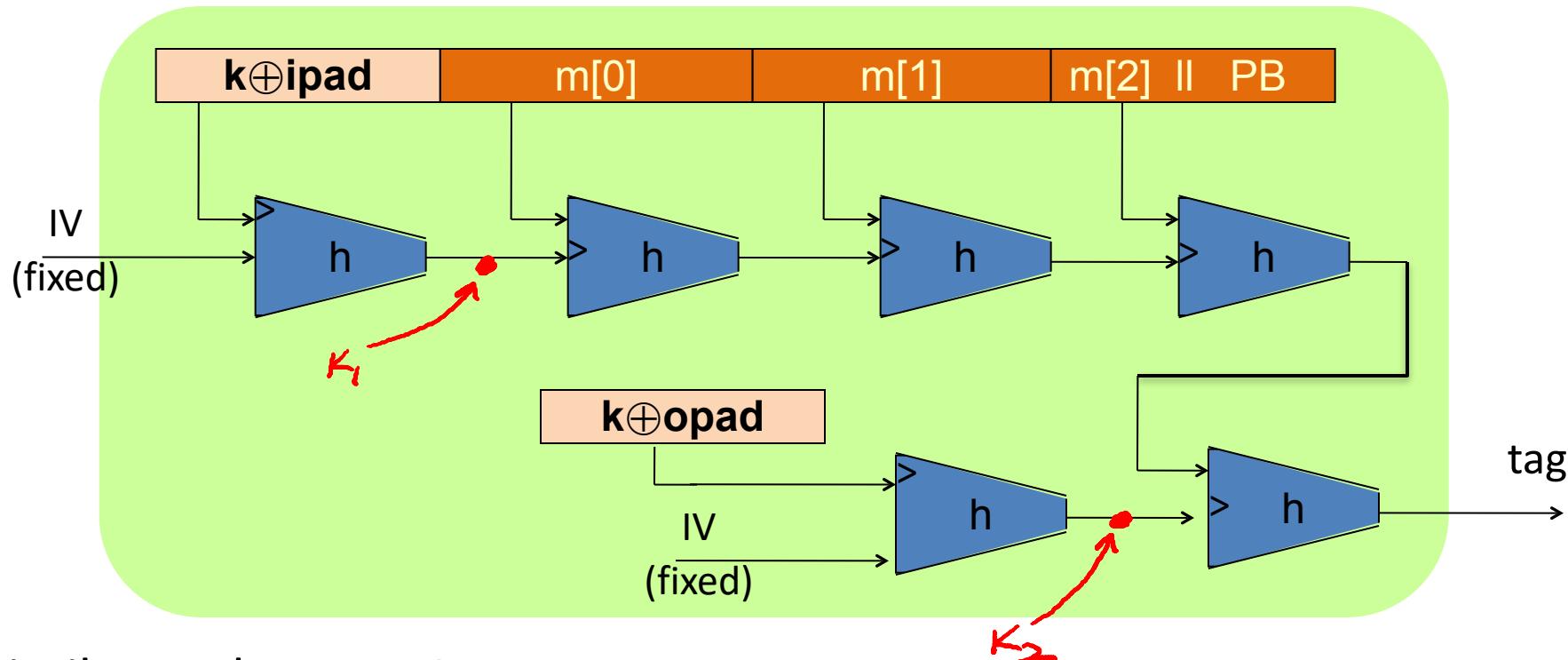
Given $h: T \times X \rightarrow T$ (compression function)

we obtain $H: X^{\leq L} \rightarrow T$. H_i - chaining variables

PB: padding block

If no space for PB
add another block

HMAC in pictures



Similar to the NMAC PRF.

main difference: the two keys k_1, k_2 are dependent

Goals

An **authenticated encryption** system $(\text{Gen}, \text{Enc}, \text{Dec})$ is a cipher where

As usual: $\text{Enc} : \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C}$

but $\text{Dec} : \mathcal{K} \times \mathcal{C} \rightarrow \mathcal{M}$

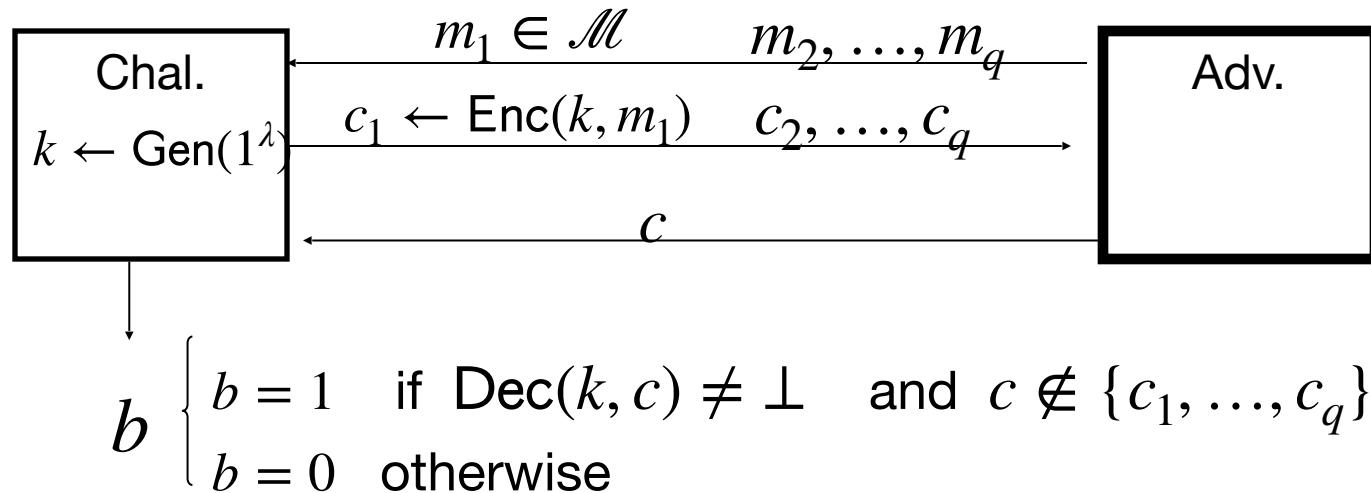
ciphertext
is rejected

Security: the system must provide

- IND-CPA, and
- **ciphertext integrity**:
attacker cannot create new ciphertexts that decrypt properly

Ciphertext integrity

Let $(\text{Gen}, \text{Enc}, \text{Dec})$ be a cipher with message space \mathcal{M} .



Def: $(\text{Gen}, \text{Enc}, \text{Dec})$ has ciphertext integrity if for all PPT A :

$$\text{Adv}_{\text{CI}}[A] = \Pr[b = 1] = \text{negl}(\lambda)$$

Chosen ciphertext security

Adversary's power: both CPA and CCA

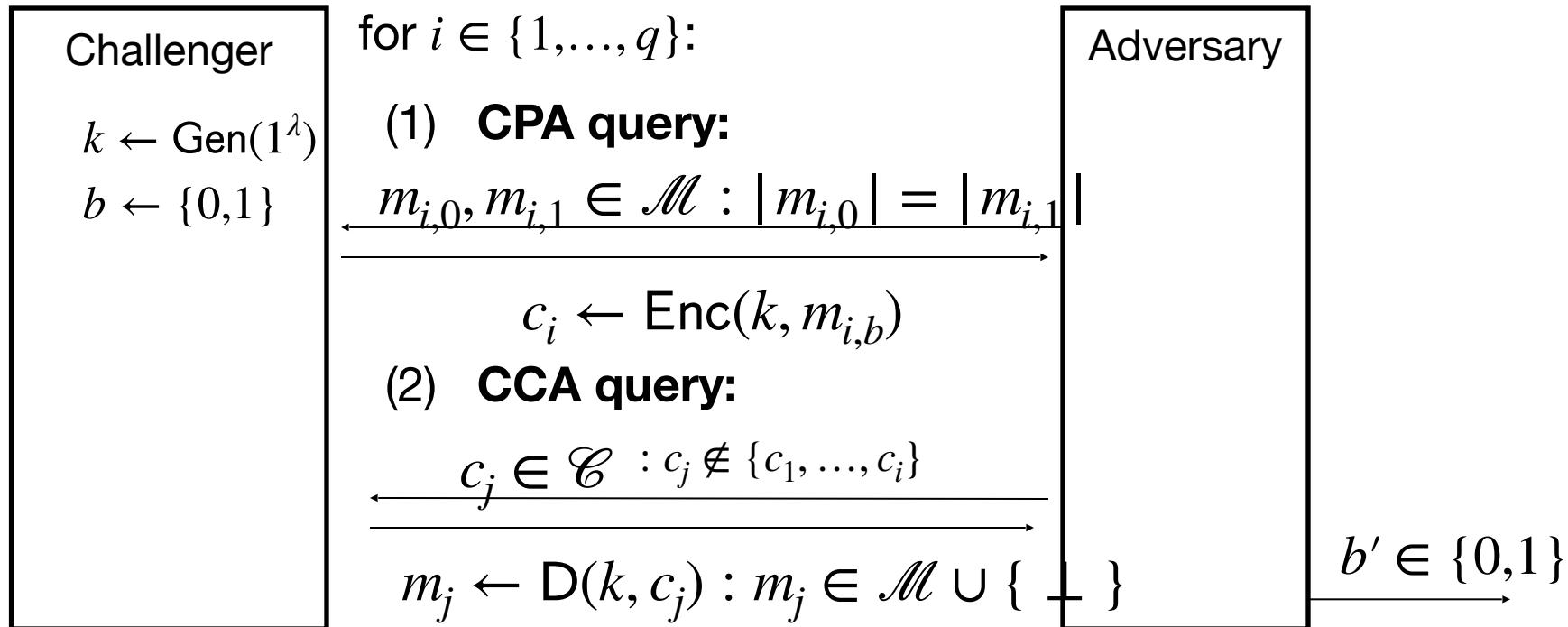
- Can obtain the encryption of arbitrary messages of his choice
- Can decrypt any ciphertext of his choice, other than challenge
(conservative modeling of real life)

Adversary's goal:

Learn partial information about challenge plaintext

Chosen ciphertext security: definition

Let $(\text{Gen}, \text{Enc}, \text{Dec})$ be a cipher with message space \mathcal{M}



Today's Lecture

- Constructions of AE
- Number Theory refresher
 - Arithmetic modulo primes
 - Fermat's Little Theorem
 - Quadratic residuosity
 - Discrete Logarithms
 - Arithmetic modulo composites
 - Euler's Theorem
 - Factoring

Constructions of AE

... but first, some history

Authenticated Encryption (AE): introduced in 2000 [KY'00, BN'00]

Crypto APIs before then:

- Provide API for CPA-secure encryption (e.g. CBC with rand. IV)
- Provide API for MAC (e.g. HMAC)

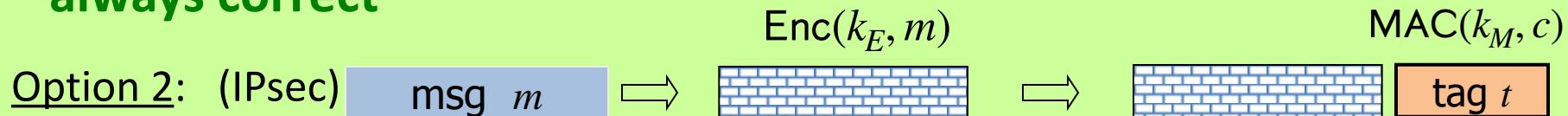
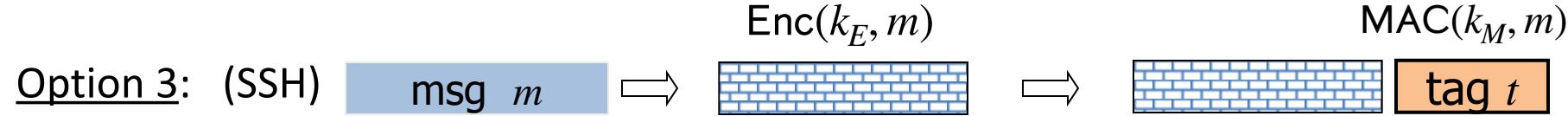
Every project had to combine the two itself without a well defined goal

- Not all combinations provide AE ...

Combining MAC and ENC (CCA)

Encryption key k_E . MAC key = k_M

always correct



A.E. Theorems

Let (E, D) be CPA secure cipher and (S, V) secure MAC. Then:

1. **Encrypt-then-MAC:** always provides A.E.
2. **MAC-then-encrypt:** may be insecure against CCA attacks
however: when (E, D) is rand-CTR mode or rand-CBC
M-then-E provides A.E.

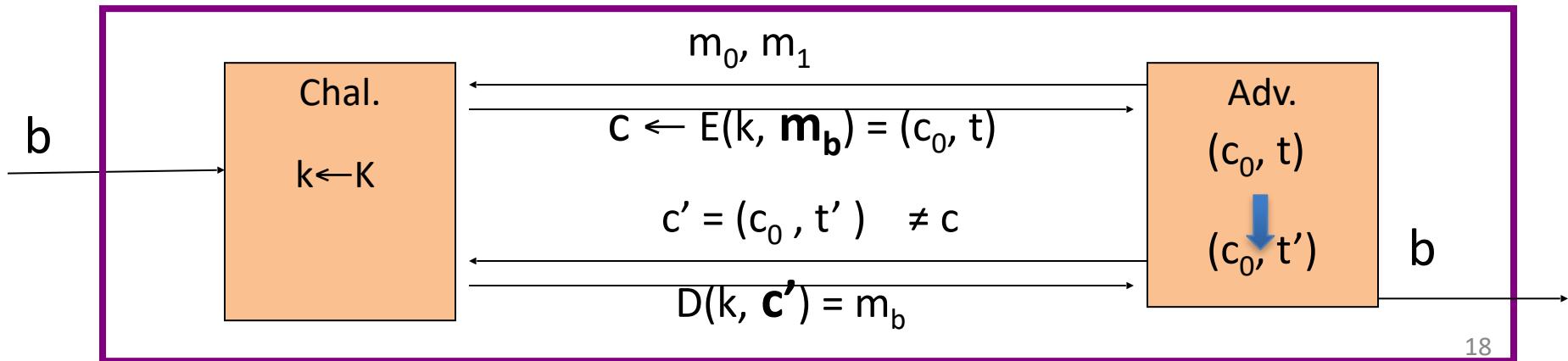
Security of Encrypt-then-MAC

Security of Encrypt-then-MAC

Recall: MAC security implies $(m, t) \not\Rightarrow (m, t')$

Why? Suppose not: $(m, t) \rightarrow (m, t')$

Then Encrypt-then-MAC would not have Ciphertext Integrity !!



Number Theory Background

We will use a bit of number theory to construct:

- Key exchange protocols
- Digital signatures
- Public-key encryption

This module: crash course on relevant concepts

More info: read parts of Shoup's book referenced
at end of module

Notation

From here on:

- N denotes a positive integer.
- p denote a prime.

Notation: $\mathbb{Z}_N = \{0, 1, \dots, N-1\}$

Can do addition and multiplication modulo N

Greatest common divisor

Def: For all $x, y \in \mathbb{Z}$, $\gcd(x, y)$ is the greatest common divisor of x, y

Example: $\gcd(12, 18) = 6$

Fact: for all $x, y \in \mathbb{Z}$, there exist $a, b \in \mathbb{Z}$ such that

$$a \cdot x + b \cdot y = \gcd(x, y)$$

a, b can be found efficiently using the extended Euclid algorithm

If $\gcd(x, y) = 1$, we say that x and y are relatively prime

Modular inversion

Over the rationals, inverse of 2 is $\frac{1}{2}$. What about \mathbb{Z}_N ?

Def: The **inverse** of $x \in \mathbb{Z}_N$ is an element $y \in \mathbb{Z}_N$ s.t.

$$x \cdot y = 1 \pmod{N}$$

y is denoted x^{-1} .

Example: let N be an odd integer. What is the inverse of $2 \pmod{N}$?

Modular inversion

Which elements have an inverse in \mathbb{Z}_N ?

Lemma: $x \in \mathbb{Z}_N$ has an inverse if and only if $\gcd(x, N) = 1$

Proof:

$$\begin{aligned}\gcd(x, N) = 1 \quad &\implies \quad \exists a, b : a \cdot x + b \cdot N = 1 \\ &\implies \quad a \cdot x = 1 \pmod{N}\end{aligned}$$

$$\gcd(x, N) \neq 1 \quad \Rightarrow \quad \forall a : \gcd(a \cdot x, N) > 1 \quad \Rightarrow \quad a \cdot x \neq 1 \text{ in }$$

Invertible elements

Def: $\mathbb{Z}_N^* =$ set of invertible elements in \mathbb{Z}_N
 $= \{x \in \mathbb{Z}_N : \gcd(x, N) = 1\}$

Examples:

1. for prime p , $\mathbb{Z}_p^* := \{0, \dots, p-1\}$

2. $\mathbb{Z}_{12}^* := \{1, 5, 7, 11\}$

For $x \in \mathbb{Z}_N$, we can find x^{-1} using extended Euclid algorithm.

Solving modular linear equations

Solve: $a \cdot x + b = 0$, where $a, x, b \in \mathbb{Z}_N$

Solution: $x = -b \cdot a^{-1} \pmod{N}$

Find a^{-1} using extended Euclid algorithm.

Run time: $O(\log^2 N)$

Fermat's theorem (1640)

Thm: Let p be a prime. Then,

$$\forall x \in \mathbb{Z}_p^* : x^{p-1} = 1 \pmod{p}$$

Example: $p=5$. $3^4 = 81 = 1$ in \mathbb{Z}_5

How can we use this to compute inverses?

$$x \in \mathbb{Z}_p^* \Rightarrow x \cdot x^{p-2} = 1 \Rightarrow x^{-1} = x^{p-2}$$

(less efficient than Euclid)

Application: generating random primes

Suppose we want to generate a large random prime

say, prime p of length 1024 bits (i.e. $p \approx 2^{1024}$)

Step 1: sample $p \in [2^{1024}, 2^{1025} - 1]$

Step 2: test if $2^{p-1} = 1 \pmod p$

If so, output p and stop. If not, goto step 1 .

Simple algorithm (not the best).

$\Pr[p \notin \text{PRIMES} \mid \text{test passes}] < 2^{-60}$

The structure of \mathbb{Z}_p^*

Thm (Euler): \mathbb{Z}_p^* is a **cyclic group**, that is

$$\exists g \in \mathbb{Z}_p^* \text{ such that } \{1, g, g^2, g^3, \dots, g^{p-2}\} = \mathbb{Z}_p^*$$

g is called a **generator** of \mathbb{Z}_p^*

Example: $p = 7$. $\{1, 3, 3^2, 3^3, 3^4, 3^5\} = \{1, 3, 2, 6, 4, 5\} = \mathbb{Z}_7^*$

Not every elem. is a generator: $\{1, 2, 2^2, 2^3, 2^4, 2^5\} = \{1, 2, 4\}$

Order

For $g \in \mathbb{Z}_p^*$ the set $\{1, g, g^2, g^3, \dots\}$ is called

the **group generated by g**, denoted $\langle g \rangle$

Def: the **order** of $g \in \mathbb{Z}_p^*$ is the size of $\langle g \rangle$

$$\text{ord}_p(g) = |\langle g \rangle| = (\text{smallest } a > 0 \text{ s.t. } g^a \equiv 1 \pmod{p})$$

Examples: $\text{ord}_7(3) = 6$; $\text{ord}_7(2) = 3$; $\text{ord}_7(1) = 1$

Thm (Lagrange): $\forall g \in (\mathbb{Z}_p)^* : \text{ord}_p(g)$ divides $p - 1$

How to come up with a generator g

(1) **There are lots of generators:** $\approx 1/\log n$ fraction of \mathbb{Z}_p^* are generators (where p is an n-bit prime).

(2) **Testing if g is a generator:**

Theorem: let q_1, \dots, q_k be the prime factors of $p - 1$.

Then, g is a generator of \mathbb{Z}_p^* if and only if

$g^{(p-1)/q_i} \neq 1 \pmod{p}$ for all i.

OPEN: Can you test if g is a generator without knowing the prime factorization of $p-1$?

OPEN: Deterministically come up with a generator?

The Multiplicative Group \mathbb{Z}_p^*

\mathbb{Z}_p^* : $(\{1, \dots, p-1\}, \text{ group operation: } \bullet \bmod p)$

- Computing the group operation is easy.
- Computing inverses is easy: Extended Euclid.
- Exponentiation (given $g \in \mathbb{Z}_p^*$ and $x \in \mathbb{Z}_{p-1}$, find $g^x \bmod p$) is easy: **Repeated Squaring Algorithm**.
-
- The discrete logarithm problem (given a generator g and $h \in \mathbb{Z}_p^*$, find $x \in \mathbb{Z}_{p-1}$ s.t. $h = g^x \bmod p$) is **hard**, to the best of our knowledge!

The Discrete Log Assumption

The discrete logarithm problem is: given a generator g and $h \in \mathbb{Z}_p^*$, find $x \in \mathbb{Z}_{p-1}$ s.t. $h = g^x \bmod p$.

Distributions...

1. Is the discrete log problem hard for a random p ?
Could it be easy for some p ?
2. Given p : is the problem hard for all generators g ?
3. Given p and g : is the problem hard for all x ?

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.

$$\Pr\left[A(p, g, g^x \bmod p) = x\right] > 1/\text{poly}(\log p)$$

for some p , random generator g of \mathbb{Z}_p^* , and random x in \mathbb{Z}_{p-1} ,
then there is a p.p.t. algorithm B s.t.

$$B(p, g, g^x \bmod p) = x$$

for all g and x .

Proof: On the board.

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.

$$\Pr\left[A(p, g, g^x \bmod p) = x\right] > 1/\text{poly}(\log p)$$

for some p , random generator g of \mathbb{Z}_p^* , and random x in \mathbb{Z}_{p-1} ,
then there is a p.p.t. algorithm B s.t.

$$B(p, g, g^x \bmod p) = x$$

for all g and x .

2. Given p : is the problem hard for all generators g ?
... as hard for any generator is it for a random one.
3. Given p and g : is the problem hard for all x ?
... as hard for any x is it for a random one.

Algorithms for Discrete Log (for General Groups)

- Baby Step-Giant Step algorithm: time – and space – $O(\sqrt{p})$.
- Pohlig-Hellman algorithm: time $O(\sqrt{q})$ where q is the largest prime factor of the order of group (e.g. $p - 1$ in the case of \mathbb{Z}_p^*). That is, there are dlog-easy primes.

The Discrete Log (DLOG) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A ,
there is a negligible function μ s.t.

$$\Pr \left[\begin{array}{l} p \leftarrow \text{PRIMES}_n; g \leftarrow \text{GEN}(\mathbb{Z}_p^*); \\ x \leftarrow \mathbb{Z}_{p-1}: A(p, g, g^x \bmod p) = x \end{array} \right] = \mu(n)$$

Sophie-Germain Primes and Safe Primes

- A prime q is called a **Sophie-Germain** prime if $p = 2q + 1$ is also prime. In this case, q is called a **safe prime**.
- Safe primes are maximally hard for the Pohlig-Hellman algorithm.
- It is unknown if there are infinitely many safe primes, let alone that they are sufficiently dense. Yet, heuristically, about C/n^2 of n -bit integers seem to be safe primes (for some constant C).

The Discrete Log (DLOG) Assumption

(the “safe prime” version)

W.r.t. a random safe prime: for every p.p.t. algorithm A , there is a negligible function μ s.t.

$$\Pr \left[\begin{array}{l} p \leftarrow \text{SAFEPRIMES}_n; g \leftarrow \text{GEN}(\mathbb{Z}_p^*); \\ x \leftarrow \mathbb{Z}_{p-1}: A(p, g, g^x \bmod p) = x \end{array} \right] = \mu(n)$$

One-way Permutation (Family)

$$F(p, g, x) = (p, g, g^x \bmod p)$$

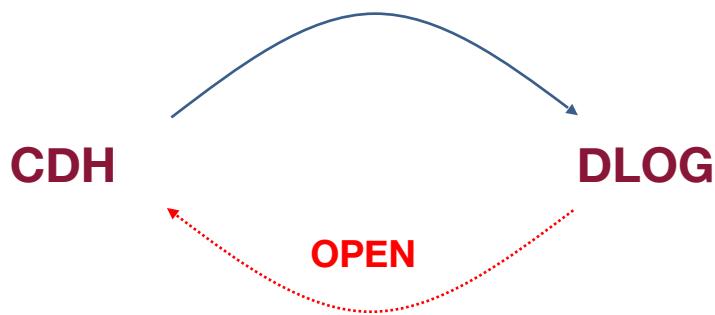
$$\mathcal{F}_n = \{F_{n,p,g}\} \text{ where } F_{n,p,g}(x) = (p, g, g^x \bmod p)$$

Theorem: Under the discrete log assumption, F is a one-way permutation (resp. \mathcal{F}_n is a one-way permutation family).

Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A ,
there is a negligible function μ s.t.

$$\Pr \left[\begin{array}{l} p \leftarrow PRIMES_n; g \leftarrow GEN(\mathbb{Z}_p^*); \\ x, y \leftarrow \mathbb{Z}_{p-1}: A(p, g, g^x, g^y) = g^{xy} \end{array} \right] = \mu(n)$$



DLOG: more generally

Let \mathbb{G} be a finite cyclic group and g a generator of \mathbb{G}

$$\mathbb{G} = \{ 1, g, g^2, g^3, \dots, g^{q-1} \} \quad (q \text{ is called the order of } G)$$

Def: We say that **DLOG is hard in G** if for all efficient alg. A :

$$\Pr_{g \leftarrow \mathbb{G}, x \leftarrow \mathbb{Z}_q} [A(\mathbb{G}, q, g, g^x) = x] < \text{negligible}$$

Example candidates:

- (1) $(\mathbb{Z}_p)^*$ for large p ,
- (2) Elliptic curve groups mod p

Computing Dlog in $(\mathbb{Z}_p)^*$ (n-bit prime p)

Best known algorithm (GNFS): run time $\exp(\tilde{O}(\sqrt[3]{n}))$

<u>cipher key size</u>	<u>modulus size</u>	<u>Elliptic Curve group size</u>
80 bits	1024 bits	160 bits
128 bits	3072 bits	256 bits
256 bits (AES)	<u>15360</u> bits	512 bits

As a result: slow transition away from $(\text{mod } p)$ to elliptic curves

An application: collision resistance

Choose a group G where Dlog is hard (e.g. $(\mathbb{Z}_p)^*$ for large p)

Let $q = |G|$ be a prime. Choose generators g, h of G

For $x, y \in \{1, \dots, q\}$ define

$$H(x, y) = g^x \cdot h^y \quad \text{in } G$$

Lemma: finding collision for $H(\dots)$ is as hard as computing $\text{Dlog}_g(h)$

Proof: Suppose we are given a collision $H(x_0, y_0) = H(x_1, y_1)$

then $g^{x_0} \cdot h^{y_0} = g^{x_1} \cdot h^{y_1} \Rightarrow g^{x_0 - x_1} = h^{y_1 - y_0} \Rightarrow h = g^{x_0 - x_1 / y_1 - y_0}$

≠ 0

43

Further reading

- A Computational Introduction to Number Theory and Algebra,
V. Shoup, 2008 (V2), Chapter 1-4, 11, 12

Available at [**//shoup.net/ntb/ntb-v2.pdf**](http://shoup.net/ntb/ntb-v2.pdf)