

CIS 5560

Cryptography Lecture 11

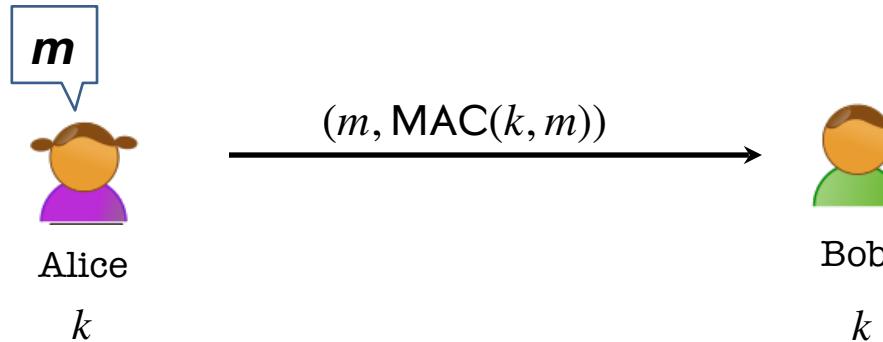
Course website:
pratyushmishra.com/classes/cis-5560-s25/

Announcements

- **HW4 will be out today**
- **HW3 due tomorrow!**

Recap of last lecture

Constructing a MAC



$\text{Gen}(1^n)$: Produces a PRF key $k \leftarrow K$.

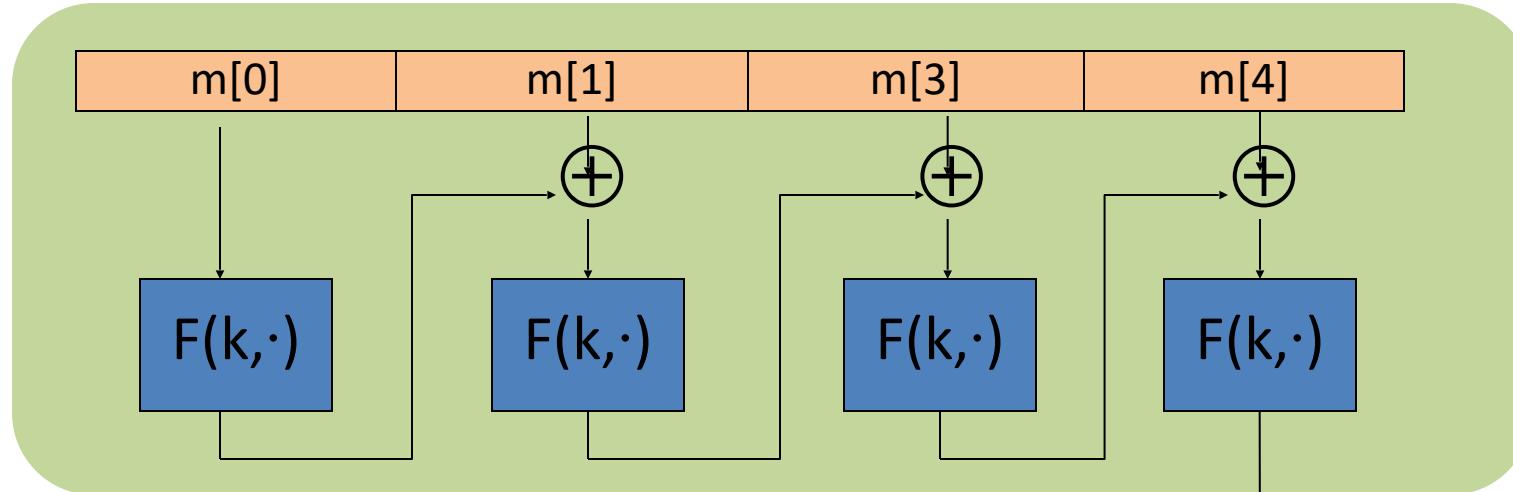
$\text{MAC}(k, m)$: Output $F_k(m)$.

$\text{Ver}(k, m, t)$: Accept if $F_k(m) = t$, reject otherwise.

Security: ??

Construction: encrypted CBC-MAC

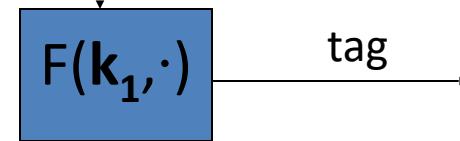
raw CBC



$$X^{\leq L} = \bigcup_{i=1}^L X^i$$

Let $F: K \times X \rightarrow X$ be a PRP

Define new PRF $F_{ECBC}: K^2 \times X^{\leq L} \rightarrow X$



Formal Definition: Collision-Resistant Hash Functions

A compressing **family of functions** $\mathcal{H} = \{h : \{0,1\}^m \rightarrow \{0,1\}^n\}$ (where $m > n$) for which it is computationally hard to find collisions.

Def: \mathcal{H} is collision-resistant if for every PPT algorithm A , there is a negligible function μ s.t.

$$\Pr_{h \leftarrow \mathcal{H}} \left[A(1^n, h) = (x, y) : x \neq y, h(x) = h(y) \right] = \mu(n)$$

MACs from Collision Resistance

Let MAC be a MAC for short messages over (K, M, T) (e.g. AES)

Let $H: M^{\text{big}} \rightarrow M$ be a hash function

Def: $\text{MAC}^{\text{big}} = (\text{MAC}^{\text{big}}, \text{Ver}^{\text{big}})$ over (K, M^{big}, T) as:

$$\text{MAC}^{\text{big}}(k, m) = S(k, H(m)) ; \quad \text{Ver}^{\text{big}}(k, m, t) = V(k, H(m), t)$$

Thm: If MAC is a secure MAC and H is collision resistant
then MAC^{big} is a secure MAC.

Example: $\text{MAC}(k, m) = \text{AES}_{2\text{-block-cbc}}(k, \text{SHA-256}(m))$ is a secure MAC.

Generic attack on CRHFs

Let $H : \mathcal{M} \rightarrow \{0,1\}^n$ be a hash function $(|\mathcal{M}| \gg 2^n)$

Generic algorithm to find a collision **in time $O(2^{n/2})$** hashes:

Algorithm:

1. Choose $2^{n/2}$ random messages in \mathcal{M} : $m_1, \dots, m_{2^{n/2}}$ (distinct w.h.p)
2. For $i = 1, \dots, 2^{n/2}$ compute $t_i = H(m_i) \in \{0,1\}^n$
3. Look for a collision ($t_i = t_j$). If not found, go back to step 1.

How well will this work?

Today

- Constructing CRHFs with long inputs
- HMAC
- Encryption schemes with confidentiality *and* integrity
- Authenticated Encryption
 - IND-CPA + Ciphertext integrity
 - IND-CCA
 -

The birthday paradox

Let $r_1, \dots, r_n \in \{1, \dots, B\}$ be IID integers.

Thm: When $n \approx \sqrt{B}$ then $\Pr[r_i = r_j \mid \exists i \neq j] \geq \frac{1}{2}$

Proof: for uniformly independent r_1, \dots, r_n ,

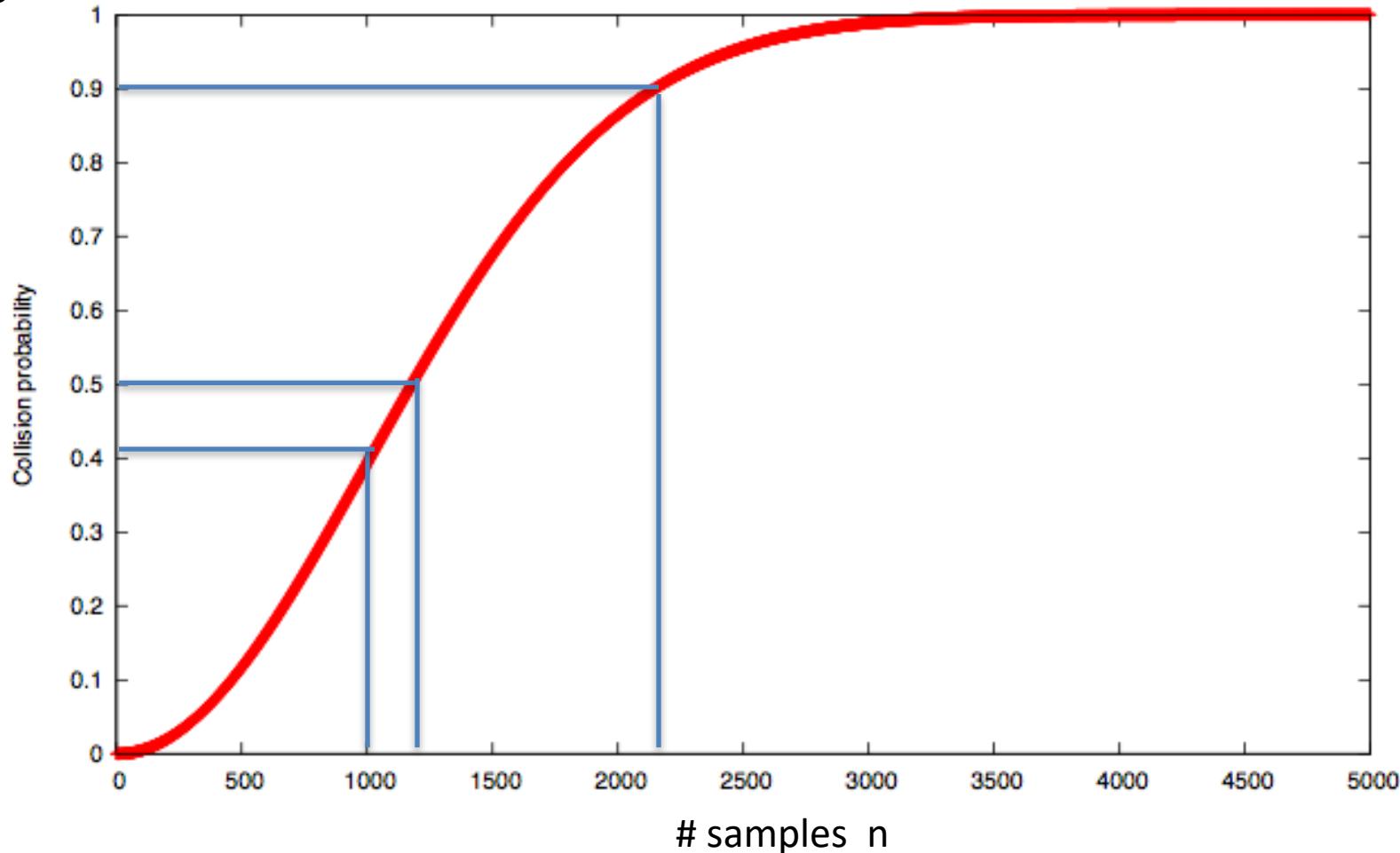
$$\begin{aligned} \Pr[\exists i \neq j : r_i = r_j] &= 1 - \Pr[\forall i \neq j : r_i \neq r_j] = 1 - \left(\frac{B-1}{B}\right)\left(\frac{B-2}{B}\right) \cdots \left(\frac{B-n+1}{B}\right) = \\ &= 1 - \prod_{i=1}^{n-1} \left(1 - \frac{1}{B}\right) \geq 1 - \prod_{i=1}^{n-1} e^{-1/B} = 1 - e^{-\frac{1}{B} \sum_{i=1}^{n-1} i} \geq 1 - e^{-n^2/2B} \end{aligned}$$

$1-x \leq e^{-x}$

$\frac{n^2}{2B} = 0.72$

$\geq 1 - e^{-0.72} = 0.53 > \frac{1}{2}$

$B=10^6$



Generic attack

Algorithm:

1. Choose $2^{n/2}$ random messages in \mathcal{M} : $m_1, \dots, m_{2^{n/2}}$ (distinct w.h.p)
2. For $i = 1, \dots, 2^{n/2}$ compute $t_i = H(m_i) \in \{0,1\}^n$
3. Look for a collision ($t_i = t_j$). If not found, go back to step 1.

Expected number of iteration ≈ 2

Running time: **$O(2^{n/2})$** (space $O(2^{n/2})$)

Sample CRHFs:

Crypto++ 5.6.0 [Wei Dai]

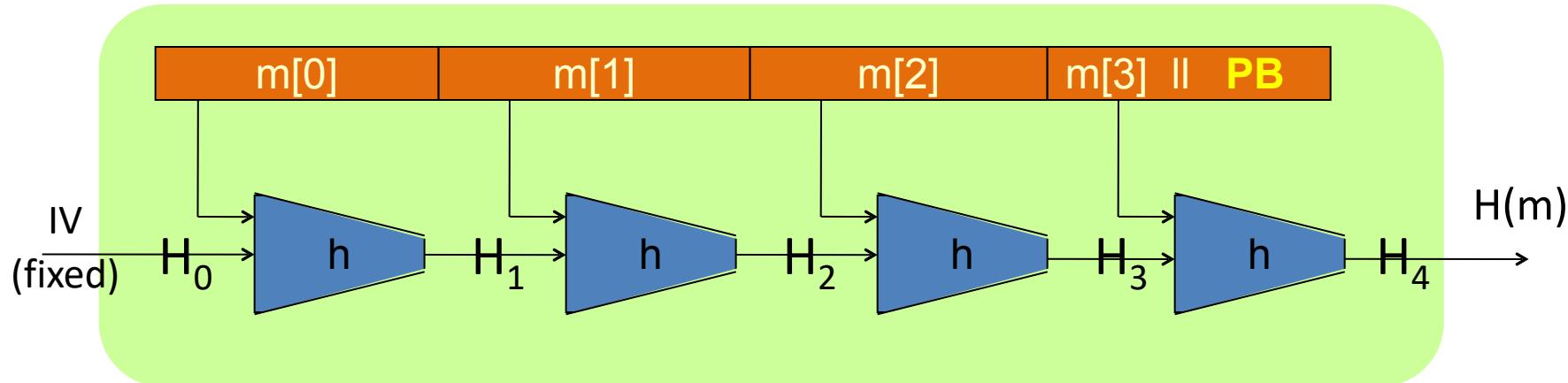
AMD Opteron, 2.2 GHz (Linux)

<u>function</u>	<u>digest size (bits)</u>	<u>Speed (MB/sec)</u>	<u>generic attack time</u>
NIST standards	SHA-1	160	2^{80}
	SHA-256	256	2^{128}
	SHA-512	512	2^{256}
	Whirlpool	512	2^{256}

* SHA-1 is broken; do not use!

Constructing CRHFs for long messages: The Merkle-Damgard Paradigm

The Merkle-Damgaard iterated construction



Given $h: T \times X \rightarrow T$ (compression function)

we obtain $H: X^{\leq L} \rightarrow T$. H_i - chaining variables

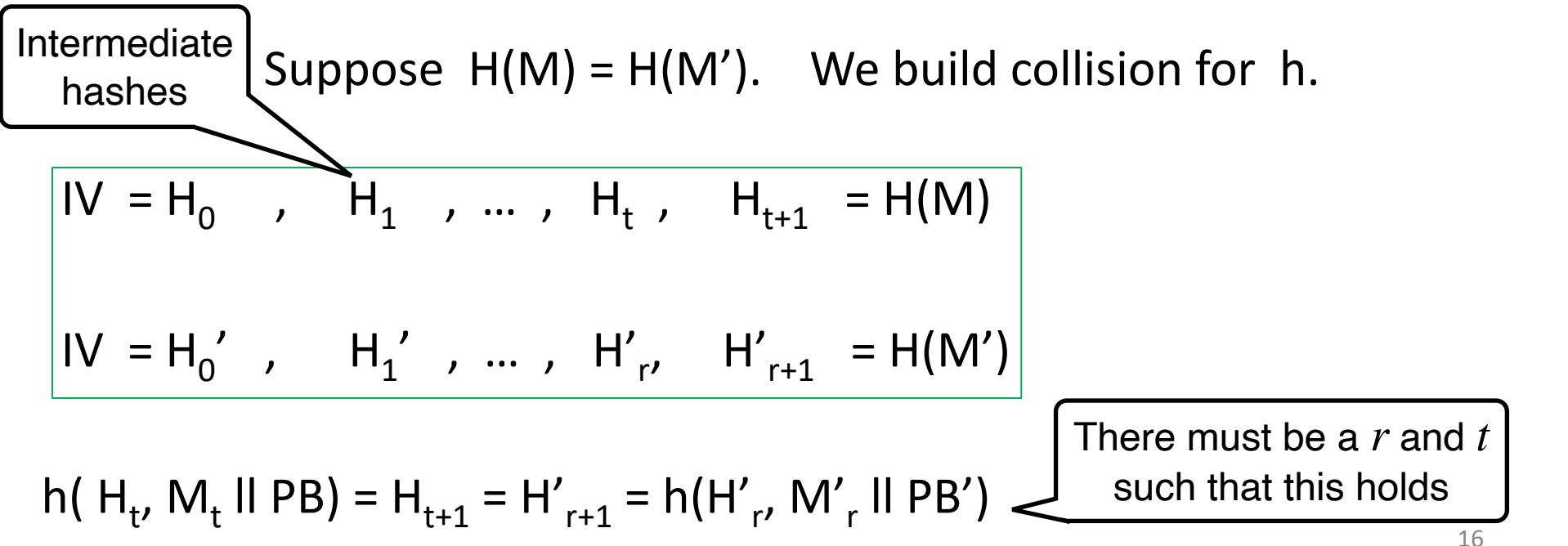
PB: padding block

If no space for PB
add another block

MD collision resistance

Thm: if h is collision resistant then so is H .

Proof: collision on $H \Rightarrow$ collision on h



Otherwise,

Suppose $H_t = H'_r$ and $M_t = M'_r$ and $PB = PB'$

$$\Downarrow t = r$$

Then: $h(H_{t-1}, M_{t-1}) = H_t = H'_r = h(H'_{t-1}, M'_{t-1})$

If $\begin{bmatrix} H_{t-1} \neq H'_{t-1} \\ \text{or} \\ M_{t-1} \neq M'_{t-1} \end{bmatrix}$ then we have a collision on h . STOP.

Otherwise, $H_{t-1} = H'_{t-1}$ and $M_t = M'_r$ and $M_{t-1} = M'_{t-1}$.

Iterate all the way to beginning and either:

(1) find collision on h , or

(2) $\forall i: M_i = M'_i \Rightarrow M = M'$

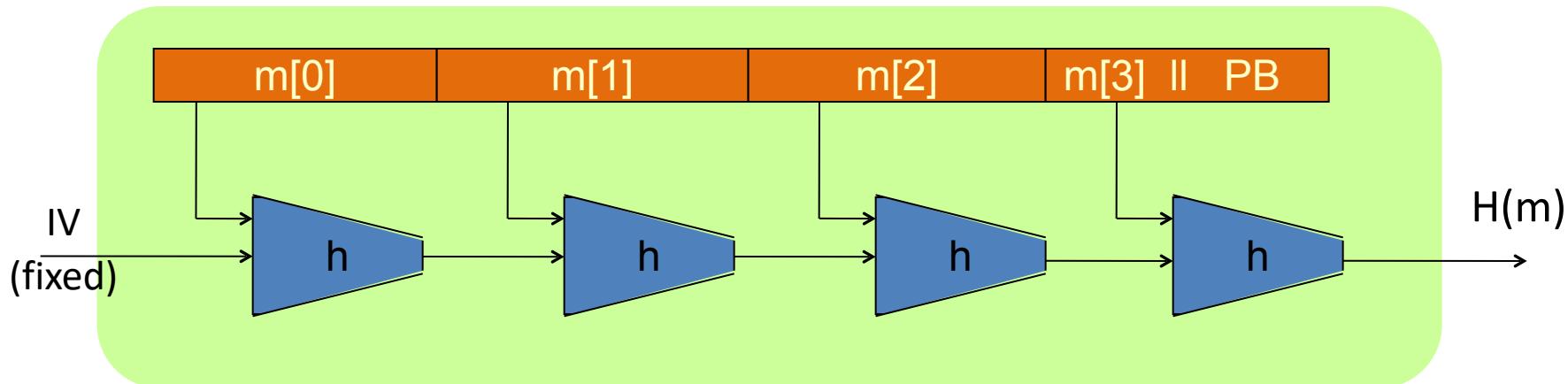
cannot happen
because M, M'
are collision
on H .

⇒ To construct C.R. function,
suffices to construct compression function

End of Segment

HMAC: a MAC from SHA-256

The Merkle-Damgaard iterated construction



Thm: h collision resistant \Rightarrow H collision resistant

Can we use H to directly build a MAC?

MAC from a Merkle-Damgard Hash Function

$H: X^{\leq L} \rightarrow T$ a C.R. Merkle-Damgard Hash Function

Attempt #1: $S(k, m) = H(k \parallel m)$

This MAC is insecure because:

- Given $H(k \parallel m)$ can compute $H(w \parallel k \parallel m \parallel PB)$ for any w .
- Given $H(k \parallel m)$ can compute $H(k \parallel m \parallel w)$ for any w .
- Given $H(k \parallel m)$ can compute $H(k \parallel m \parallel PB \parallel w)$ for any w .
- Anyone can compute $H(k \parallel m)$ for any m .

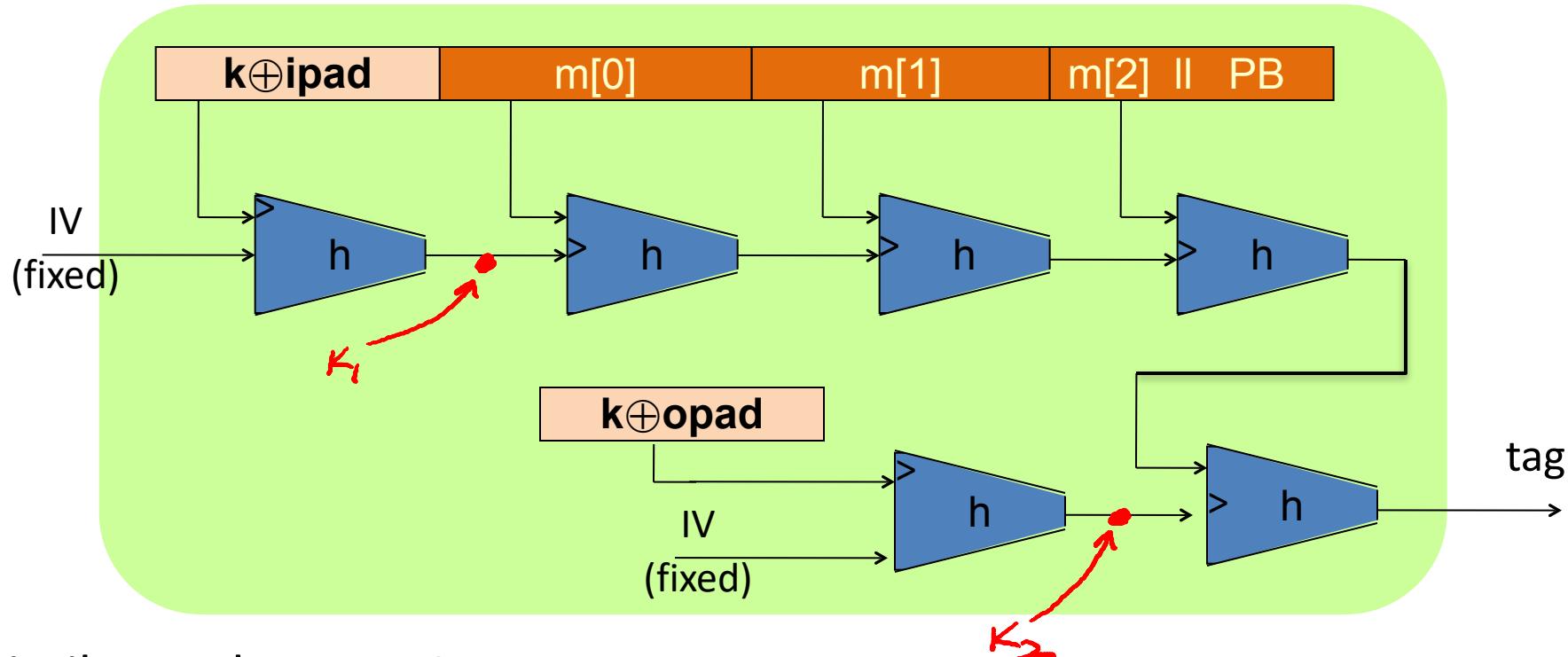
Standardized method: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

Building a MAC out of a hash function H :

$$\text{HMAC: } \text{MAC}(k, m) = H(k \oplus \text{opad} \mid\mid H(k \oplus \text{ipad} \mid\mid m))$$

HMAC in pictures



Similar to the NMAC PRF.

main difference: the two keys k_1, k_2 are dependent

HMAC properties

Built from a black-box implementation of SHA-256.

HMAC is assumed to be a secure PRF

- Can be proven under certain PRF assumptions about $h(.,.)$
- Security bounds similar to NMAC
 - Need $q^2/|T|$ to be negligible ($q \ll |T|^{\frac{1}{2}}$)

Story so far

Confidentiality: semantic security against a CPA attack

- Encryption secure against **eavesdropping only**

Integrity:

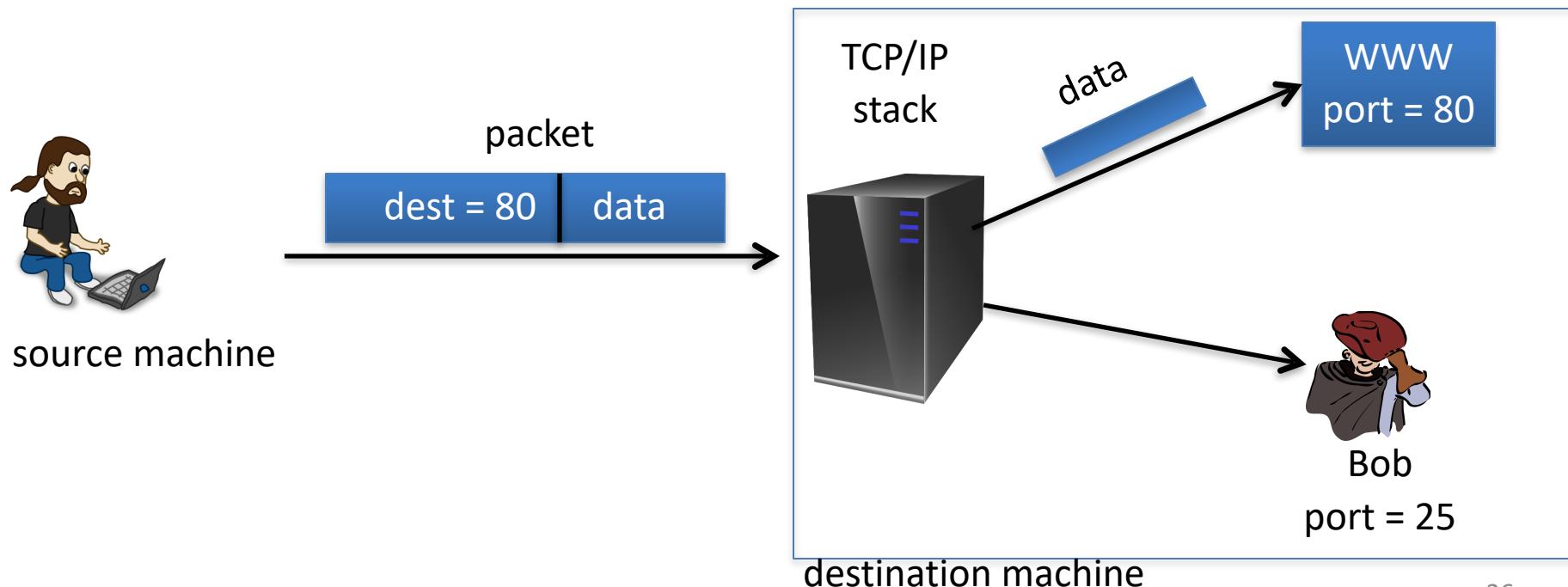
- Existential unforgeability under a chosen message attack
- CBC-MAC, HMAC, PMAC, CW-MAC

This module: encryption secure against **tampering**

- Ensuring both confidentiality and integrity

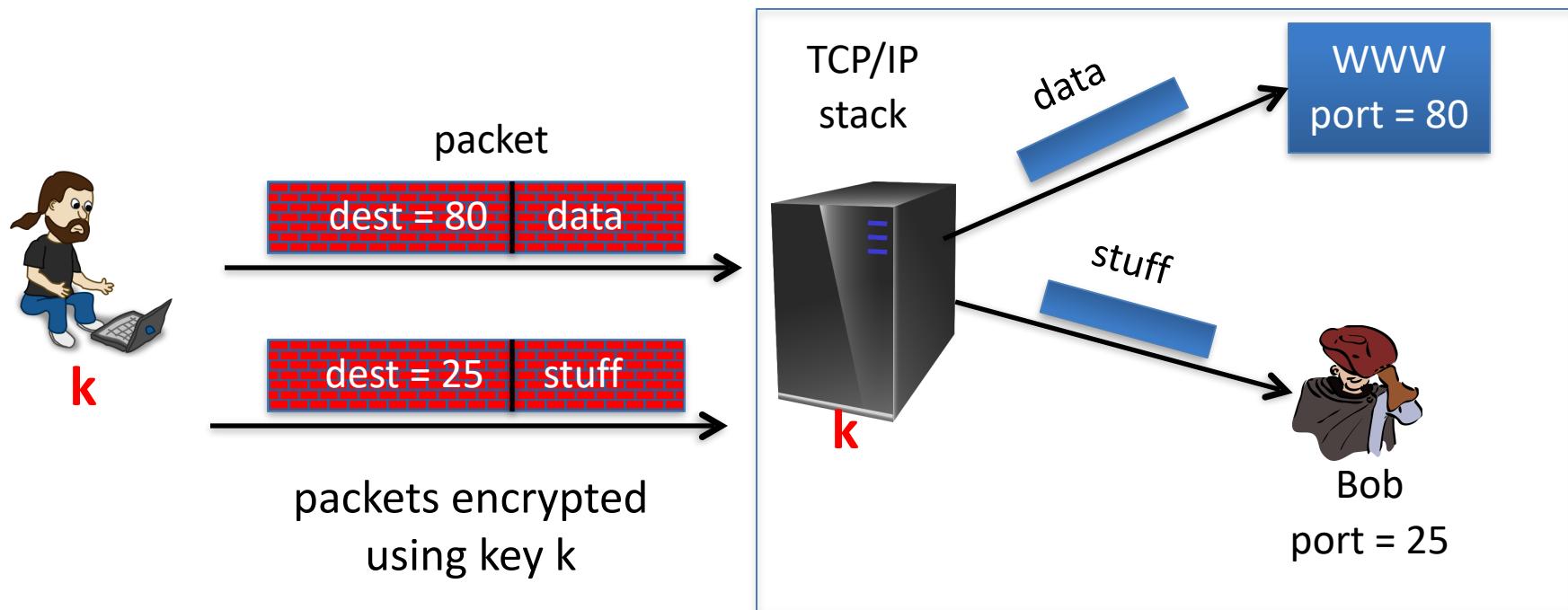
Sample tampering attacks

TCP/IP: (highly abstracted)



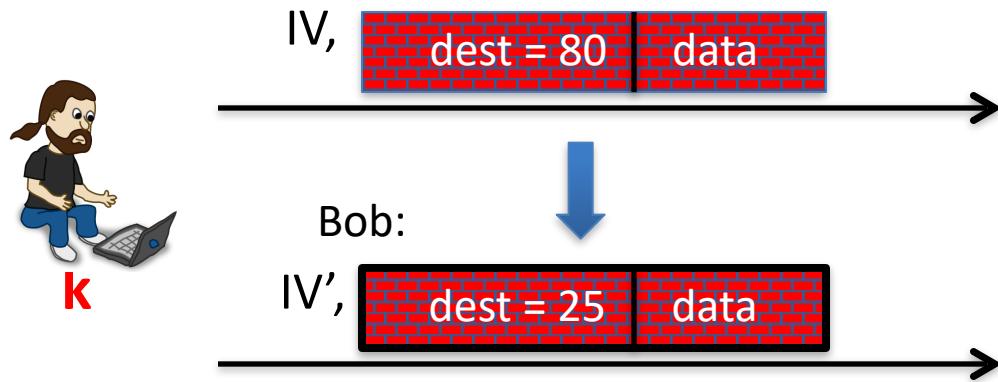
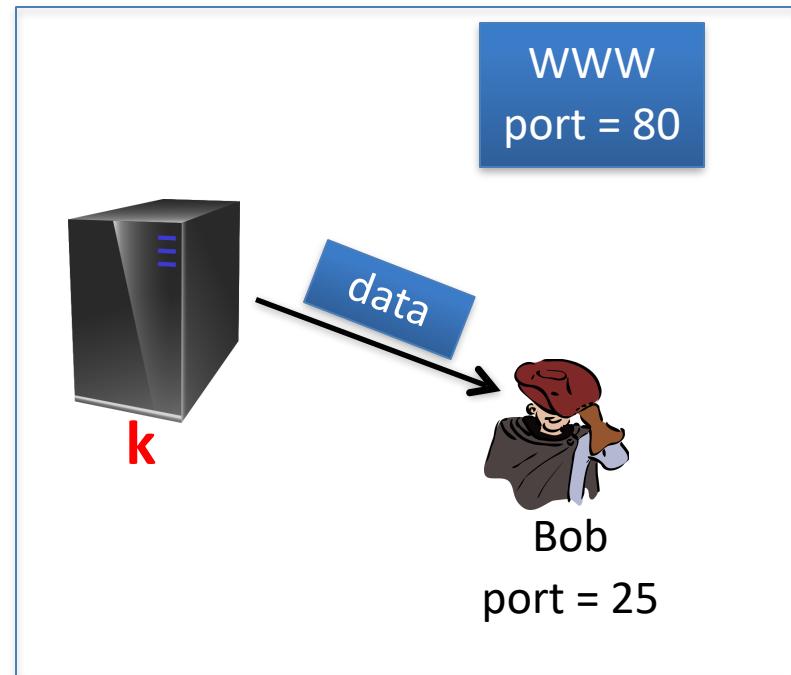
Sample tampering attacks

IPsec: (highly abstracted)



Reading someone else's data

Note: attacker obtains decryption of any ciphertext beginning with “dest=25”



Easy to do for CBC with rand. IV
(only IV is changed)

Encryption is done with CBC with a random IV.

What should IV' be?

$$m[0] = D(k, c[0]) \oplus \text{IV} = \text{"dest=80..."}$$

- $\text{IV}' = \text{IV} \oplus (\dots 25\dots)$
- $\text{IV}' = \text{IV} \oplus (\dots 80\dots)$
- $\text{IV}' = \text{IV} \oplus (\dots 80\dots) \oplus (\dots 25\dots)$
- It can't be done

The lesson

CPA security cannot guarantee secrecy under active attacks.

Only use one of two modes:

- If message needs integrity but no confidentiality:
use a **MAC**
- If message needs both integrity and confidentiality:
use **authenticated encryption** modes (this module)

Goals

An **authenticated encryption** system $(\text{Gen}, \text{Enc}, \text{Dec})$ is a cipher where

As usual: $\text{Enc} : \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C}$

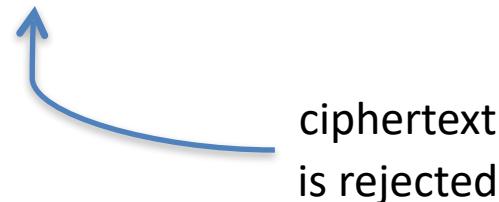
but $\text{Dec} : \mathcal{K} \times \mathcal{C} \rightarrow \mathcal{M} \cup \{\perp\}$

Security: the system must provide

- IND-CPA, and

- **ciphertext integrity**:

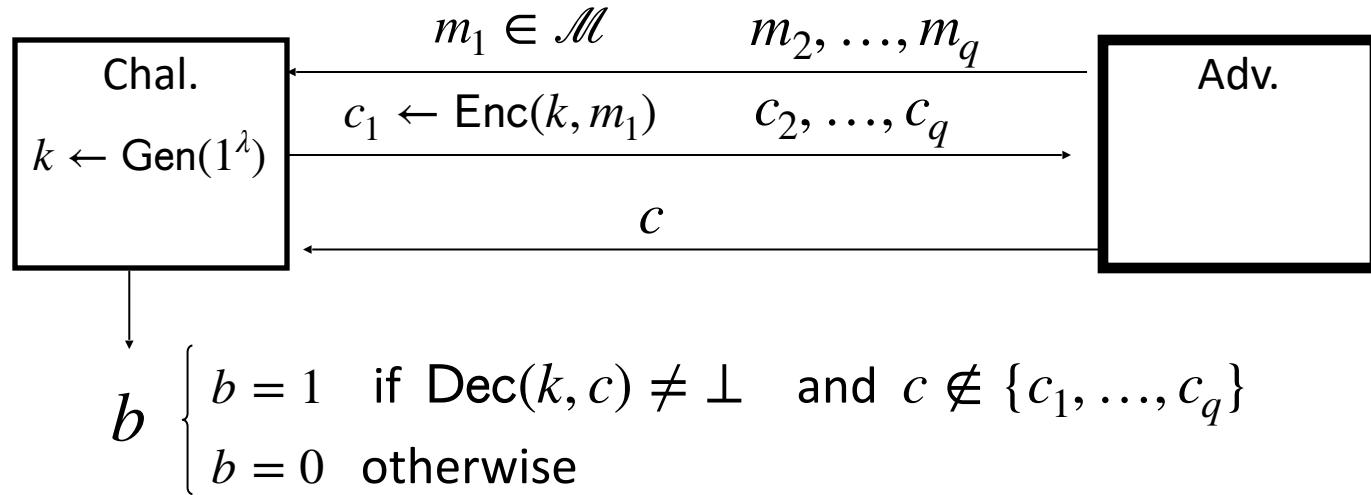
attacker cannot create new ciphertexts that decrypt properly



ciphertext
is rejected

Ciphertext integrity

Let $(\text{Gen}, \text{Enc}, \text{Dec})$ be a cipher with message space \mathcal{M} .



Def: $(\text{Gen}, \text{Enc}, \text{Dec})$ has ciphertext integrity if for all PPT A :

$$\text{Adv}_{\text{CI}}[A] = \Pr[b = 1] = \text{negl}(\lambda)$$

Authenticated encryption

Def: (G, E, D) provides **authenticated encryption (AE)** if it

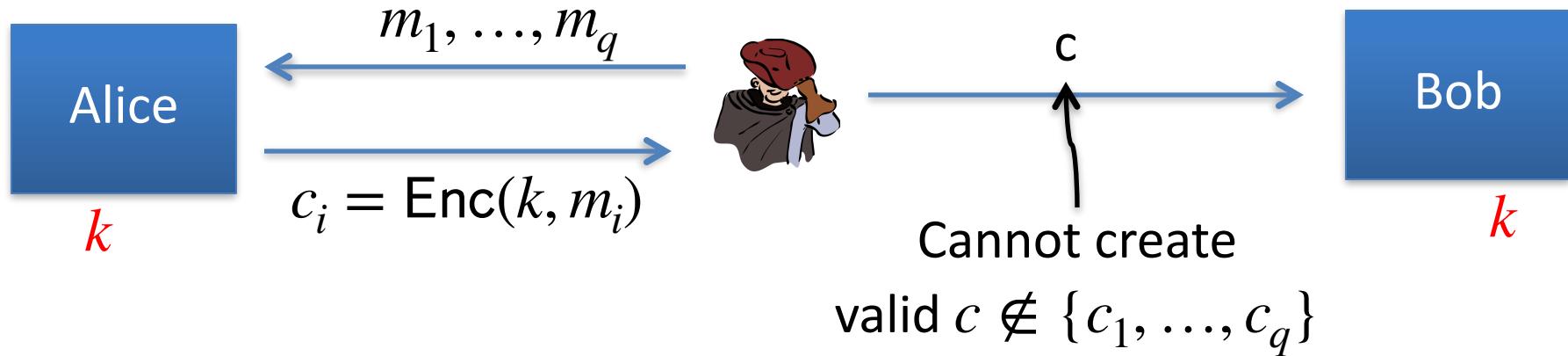
- (1) is IND-CPA secure, and
- (2) has ciphertext integrity

Bad example: CBC with rand. IV does not provide AE

- $D(k, \cdot)$ never outputs \perp , hence adv. easily wins CI game

Implication 1: authenticity

Attacker cannot fool Bob into thinking a message was sent from Alice



\Rightarrow if $\text{Dec}(k, c) \neq \perp$ Bob knows message is from someone who knows k
(but message could be a replay)

Implication 2

Authenticated encryption

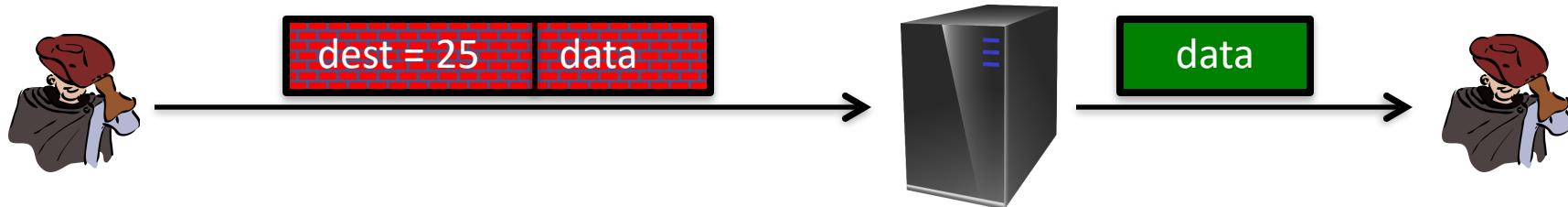
Security against **chosen ciphertext attacks**

Chosen ciphertext attacks

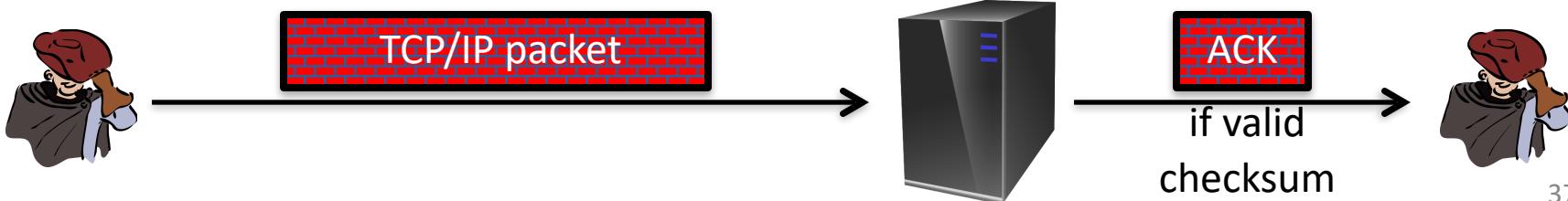
Example chosen ciphertext attacks

Adversary A has ciphertext c that it wants to decrypt

- Often, A can fool server into decrypting **other** ciphertexts (not c)



- Often, adversary can learn partial information about plaintext



Chosen ciphertext security

Adversary's power: both CPA and CCA

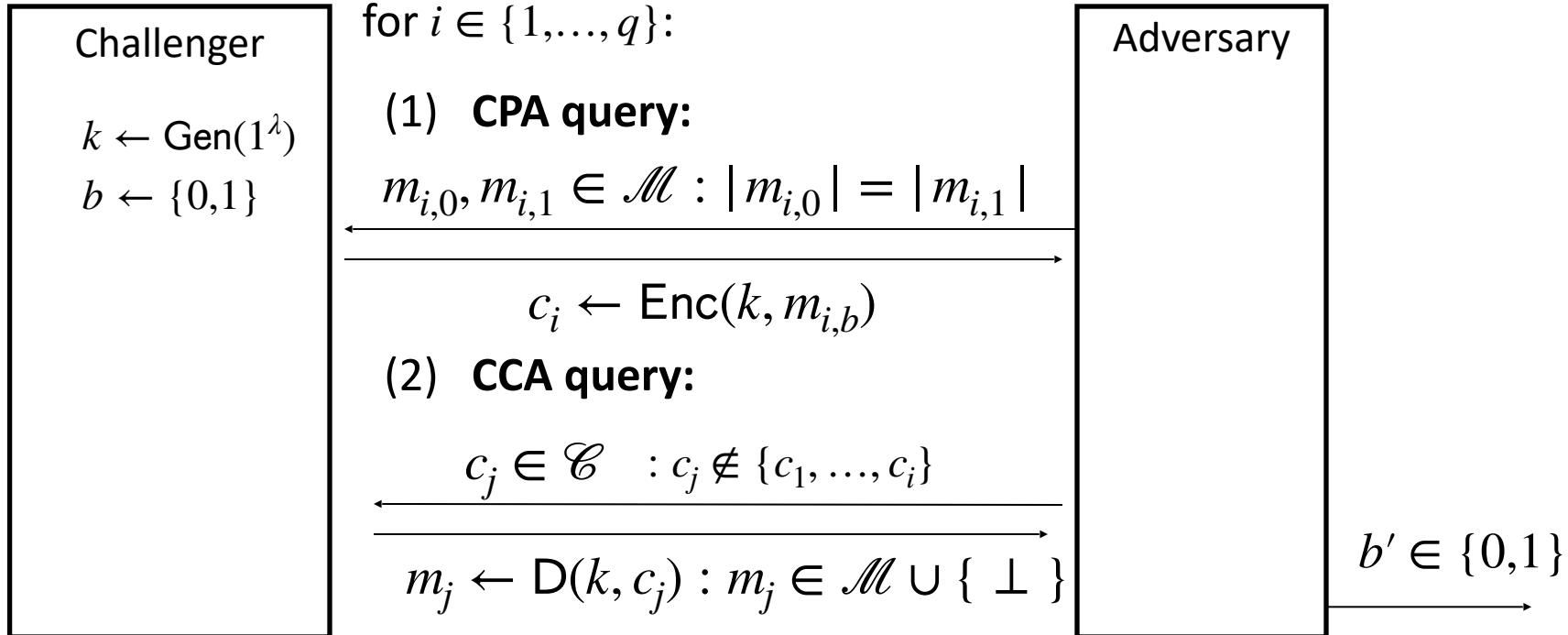
- Can obtain the encryption of arbitrary messages of his choice
- Can decrypt any ciphertext of his choice, other than challenge
(conservative modeling of real life)

Adversary's goal:

Learn partial information about challenge plaintext

Chosen ciphertext security: definition

Let $(\text{Gen}, \text{Enc}, \text{Dec})$ be a cipher with message space \mathcal{M}



Chosen ciphertext security: definition

E is CCA secure if for all “efficient” A : $\Pr[b = b'] = 1/2 + \mu(\lambda)$

Question: Is CBC with rand. IV CCA-secure?

Authenticated enc. \Rightarrow CCA security

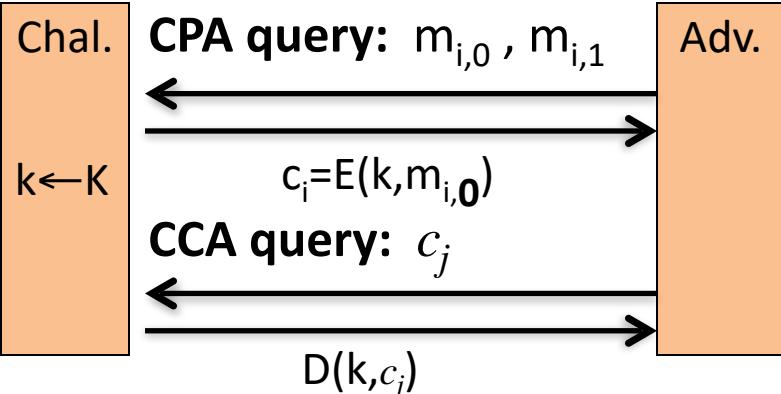
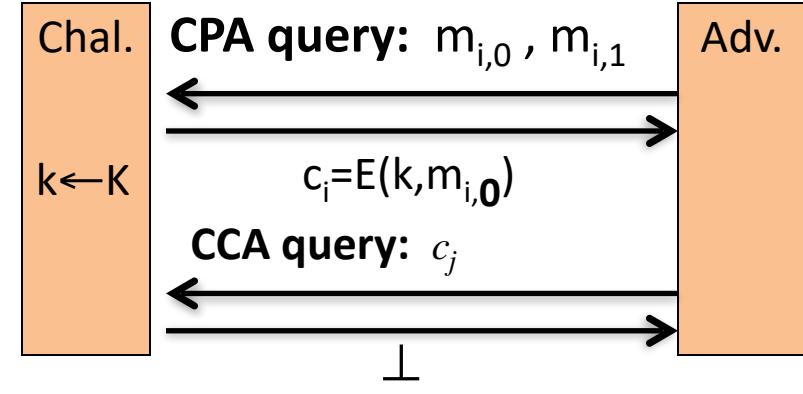
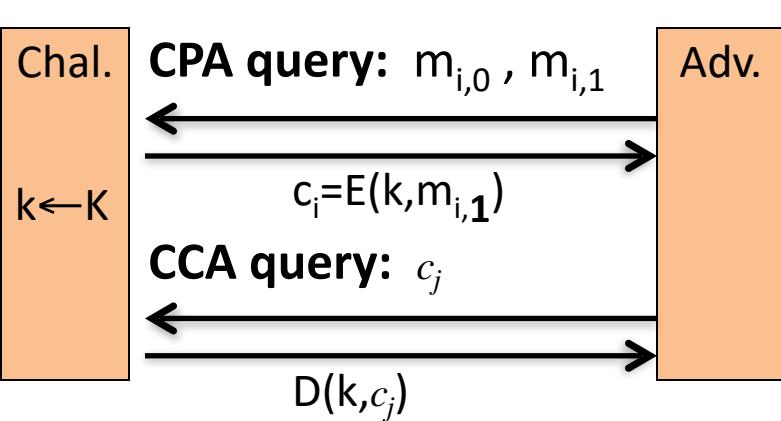
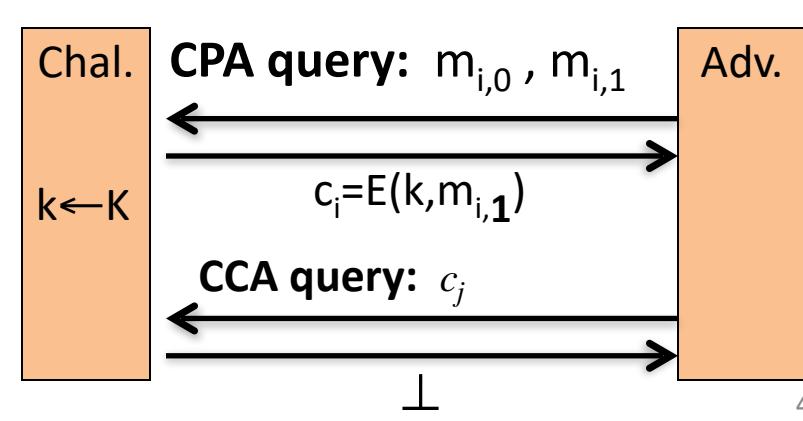
Thm: Let (E, D) be a cipher that provides AE.

Then (E, D) is CCA secure !

In particular, for any q -query eff. A there exist eff. B_1, B_2 s.t.

$$\text{Adv}_{\text{CCA}}[A, E] \leq 2q \cdot \text{Adv}_{\text{CI}}[B_1, E] + \text{Adv}_{\text{CPA}}[B_2, E]$$

Proof by pictures



So what?

Authenticated encryption:

- ensures confidentiality against an active adversary that can decrypt some ciphertexts

Limitations:

- does not prevent replay attacks
- does not account for side channels (timing)

Constructions of AE

... but first, some history

Authenticated Encryption (AE): introduced in 2000 [KY'00, BN'00]

Crypto APIs before then:

- Provide API for CPA-secure encryption (e.g. CBC with rand. IV)
- Provide API for MAC (e.g. HMAC)

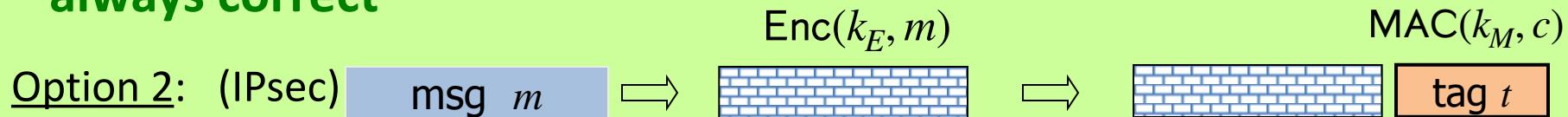
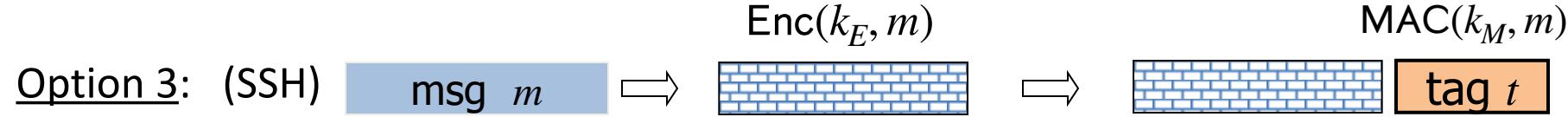
Every project had to combine the two itself without a well defined goal

- Not all combinations provide AE ...

Combining MAC and ENC (CCA)

Encryption key k_E . MAC key = k_M

always correct



A.E. Theorems

Let (E, D) be CPA secure cipher and (S, V) secure MAC. Then:

1. **Encrypt-then-MAC:** always provides A.E.
2. **MAC-then-encrypt:** may be insecure against CCA attacks
however: when (E, D) is rand-CTR mode or rand-CBC
M-then-E provides A.E.

Security of Encrypt-then-MAC

Security of Encrypt-then-MAC

Recall: MAC security implies $(m, t) \not\Rightarrow (m, t')$

Why? Suppose not: $(m, t) \rightarrow (m, t')$

Then Encrypt-then-MAC would not have Ciphertext Integrity !!

