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CIS 5560

Lecture 9
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s25/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/


Announcements
• HW 3 due next Friday 
• HW2 due tomorrow!
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Recap of last lecture

3



Pseudorandom Functions

 Generate a random -bit key . 𝐆𝐞𝐧(1𝑛): 𝑛 𝑘

 is a poly-time algorithm that outputs  𝐄𝐯𝐚𝐥(𝑘, 𝑥) Fk(x)

Collection of functions ℱℓ = {Fk : {0,1}ℓ → {0,1}m}k∈{0,1}n

• indexed by a key  𝑘
• : key length, : input length,  output length.𝑛 ℓ 𝑚:

• Independent parameters, all poly(sec-param) = poly( ) 𝑛

• #functions in    (singly exponential in )ℱℓ ≤ 2𝑛 𝑛
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Security: Cannot distinguish from random function
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Pr [Afk(1n) = 1 | k ← {0,1}ℓ] − Pr [AF(1n) = 1 | F ← 𝖥𝗇𝗌] ≤ 𝗇𝖾𝗀𝗅(n) .



PRP/Block Cipher
A block cipher is a pair of efficient algs. (E, D):
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E, D CT Block
n bits

PT Block
n bits

Key k bits

Canonical examples:

1. AES:     n=128 bits,   k = 128, 192, 256 bits

2. 3DES:   n= 64 bits,    k = 168 bits    (historical)



 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) =  where  and  are 
both n bits each.

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠) 𝐺1(𝑠)

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠)  𝐺1(𝑠)

𝑠

 𝐺0(𝐺0(…𝐺0(𝑠))  𝐺1(𝐺1(…𝐺1(𝑠)) 𝑮𝒙ℓ
(𝑮

𝒙ℓ−𝟏
(…𝑮𝒙𝟏

(𝒔))

D
epth 

 ℓ

Each path/leaf labeled by  corresponds to   𝑥 ∈ {0,1}ℓ 𝑓𝑠(𝑥) .



Today’s Lecture
• Proof of security for MAC

• Short MAC → Long MACs
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 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) =  where  and  are 
both n bits each.

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠) 𝐺1(𝑠)

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠)  𝐺1(𝑠)

𝑠

 𝐺0(𝐺0(…𝐺0(𝑠))  𝐺1(𝐺1(…𝐺1(𝑠)) 𝑮𝒙ℓ
(𝑮

𝒙ℓ−𝟏
(…𝑮𝒙𝟏

(𝒔))

D
epth 

 ℓ

Each path/leaf labeled by  corresponds to   𝑥 ∈ {0,1}ℓ 𝑓𝑠(𝑥) .



Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) =  where  and  are 
both n bits each.

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠) 𝐺1(𝑠)

The pseudorandom function family  is defined by a collection 
of functions  where:

ℱℓ
𝑓𝑠

𝑓𝑠(𝑥1𝑥2…𝑥ℓ) = 𝑮𝒙ℓ
(𝑮

𝒙ℓ−𝟏
(…𝑮𝒙𝟏

(𝒔)) 

-bit inputℓ

⧫  defines  pseudorandom bits.𝑓𝑠 2ℓ

⧫ The  bit can be computed using  evaluations of the 
PRG G (as opposed to  evaluations as before.) 

𝑥𝑡h ℓ
𝑥 ≈ 2ℓ



 𝑓 ← ℱℓ

Distinguisher D 

The pseudorandom world 

𝑥 𝑓(𝑥)

The random world 

f ← 𝖥𝗇𝗌

Distinguisher D 

𝑥 𝑓(𝑥)

0/1 0/1

By contradiction. Assume there is a ppt  and a poly function  s.t. D 𝑝

GGM PRF: Proof of Security

Pr [Afk(1n) = 1 | k ← {0,1}ℓ] − Pr [AF(1n) = 1 | F ← 𝖥𝗇𝗌] ≥ 1/p(n) .



The pseudorandom world:

Hybrid 0 

𝑥 𝑓(𝑥)

Problem:  
Hybrid argument on leaves 

doesn’t work. Why?

D 

𝑠

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠)  𝐺1(𝑠)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 …   𝒃𝒙 …   𝒃𝟐ℓ

 𝐺𝑥ℓ
(𝐺

𝑥ℓ−1
(…(𝑠)))



The pseudorandom world:

Hybrid 0 

𝑥 𝑓(𝑥)

Key Idea:  
Hybrid argument by levels 

of the tree 

D 

𝑠

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠)  𝐺1(𝑠)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 …   𝒃𝒙 …   𝒃𝟐ℓ

 𝐺𝑥ℓ
(𝐺

𝑥ℓ−1
(…(𝑠)))



The pseudorandom world:

Hybrid 0 

𝑥 𝑓(𝑥)

Hybrid 1

D D 

𝑥 𝑓(𝑥)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 . .   𝒃𝒙 …   𝒃𝟐ℓ

 𝐺1(𝐺0(𝑠))

𝑠0  𝑠1

 and  are random 𝒔𝟎 𝒔𝟏
𝑠

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠)  𝐺1(𝑠)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 …   𝒃𝒙 …   𝒃𝟐ℓ

 𝐺𝑥ℓ
(𝐺

𝑥ℓ−1
(…(𝑠)))



Hybrid 2

D 

𝑥 𝑓(𝑥)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 . .   𝒃𝒙 …   𝒃𝟐ℓ

𝑠00  𝑠10

  are random 𝒔𝟎𝟎, … 𝒔𝟏𝟏

Hybrid 1

D 

𝑥 𝑓(𝑥)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 . .   𝒃𝒙 …   𝒃𝟐ℓ

 𝐺1(𝐺0(𝑠))

𝑠0  𝑠1

 and  are random 𝒔𝟎 𝒔𝟏

𝑠01  𝑠11



The random world:

Hybrid   ℓ

D 

𝑥 𝑓(𝑥)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 . .   𝒃𝒙 …   𝒃𝟐ℓ

…
  𝒃𝟏   𝒃𝟐   𝒃𝟐ℓ



Hybrid 𝒊
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𝑥 𝑓(𝑥)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 . .   𝒃𝒙 …   𝒃𝟐ℓ

𝑠𝟎𝒊

  are random 𝒔𝟎𝒊, … 𝒔𝟏𝒊

 𝑠𝟏𝒊

Q: Is the function in the 
hybrid efficiently 
computable?

A: Yes! Lazy Evaluation.



GGM PRF

Theorem: Let G be a PRG. Then, for every polynomials , there 
exists a PRF family .

ℓ, 𝑚
ℱℓ = {𝑓𝑠:{0,1}ℓ → {0,1}𝑚}𝑠∈{0,1}𝑛

⧫ Expensive:  invocations of a PRG.ℓ

⧫ Sequential: bit-by-bit,  sequential invocations of a PRG.ℓ

⧫ Loss in security reduction: break PRF with advantage 
 break PRG with advantage , where  is an 

arbitrary polynomial = #queries of the PRF distinguisher.  
     Tighter reduction? Avoid the loss?

𝜀 ⟹ 𝜀/𝑞ℓ 𝑞

Some nits:



The authentication problem

Alice Bob

m

 k  k

𝑚

This is known as a man-in-the-middle attack.

How can Bob check if the message is indeed from Alice?

𝑚′￼

Can also alter/
inject more 
messages!



The authentication problem

Alice Bob

m

 k  k
Can also alter/
inject more 
messages!

(𝑚,  𝑡) or (𝑚,  𝑡)  ⊥

We want Alice to generate a tag for the message m 
which is hard to generate without the secret key k.



Wait… Does encryption not solve this?

Alice Bob

m

K  ey 𝑘 Key  𝑘

𝐸𝑛𝑐(𝑘,  𝑚)



Wait… Does encryption not solve this?

Alice Bob

m

k k

 𝑚 ⊕ 𝑘

One-time pad (and encryption schemes in 
general) are malleable.

 𝑚′￼⊕ 𝑘

Can toggle 
between m 
and m’



Alice Bob

m
) (𝑟, 𝑓𝑘(𝑟) ⊕ 𝑚  (𝑟, 𝑓𝑘(𝑟) ⊕ 𝑚′￼)

Can toggle 
between m 
and m’

One-time pad (and encryption schemes in 
general) are malleable.


Privacy and Integrity are very different goals!

Wait… Does encryption not solve this?

k k



A triple of algorithms (Gen, MAC, Ver):

• Gen : Produces a key .

• MAC : Outputs a tag  (may be deterministic).

• Ver : Outputs Accept or Reject.


Correctness:   
Security: Hard to forge. Intuitively, it should be hard to 
come up with a new pair (m’, t’) such that Ver accepts.

(1𝑛) k ← 𝒦
(𝑘,  𝑚) 𝑡

(𝑘,  𝑚,  𝑡)

Pr[𝖵𝖾𝗋(k, m, 𝖬𝖠𝖢(k, m) = 1] = 1

Message Authentication Codes (MACs)



What is the power of the adversary?

Alice Bob

m
(𝑚,  𝑀𝐴𝐶(𝑘,  𝑚))  

or 

(𝑚,  𝑀𝐴𝐶(𝑘,  𝑚))
⊥

• Can see many pairs 


• Can access a MAC oracle 

– Obtain tags for message of choice.


This is called a chosen message attack (CMA).

(𝑚,  𝑀𝐴𝐶(𝑘,  𝑚)) .
𝑀𝐴𝐶(𝑘,    ∙  )



• Total break: The adversary should not be able to 
recover the key k.


• Universal break: The adversary can generate a 
valid tag for every message.


• Existential break: The adversary can generate a 
new valid tag t for some message m.  

We will require MACs to be secure against the 
existential break!!

Defining MAC Security



Existentially Unforgeable against Chosen Message Attacks

EUF-CMA Security

𝑚1

t1 = 𝖬𝖠𝖢(k, m1)
𝑚2

t2 = 𝖬𝖠𝖢(k, m2)

…

(𝑚,  𝑡)

𝑘 ← 𝐾

Accept if  
for all , and 

(𝑚,  𝑡) ≠ (𝑚𝑖,  𝑡𝑖)
𝑖

𝖵𝖾𝗋(k, m, t) = 1

Want:  

where  is the set of queries  that  makes.

Pr((𝑚,  𝑡) ← 𝐴𝑀𝐴𝐶(𝑘,   ∙ )(1𝑛),  𝑉𝑒𝑟(𝑘,  𝑚,  𝑡) = 1,  (𝑚,  𝑡) ∉ 𝑄)) = 𝑛𝑒𝑔𝑙(𝑛) .
𝑄 {(𝑚𝑖,  𝑡𝑖)}𝑖

𝐴



Let  I = (S,V) be a MAC. 

Suppose an attacker is able to find  m0 ≠ m1 such that 

	 MAC(k, m0) = MAC(k, m1)     for  ½ of the keys k in K 

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for m0 or m1

No, this MAC can be broken using a chosen msg attack
It depends on the details of the MAC



Let  I = (S,V) be a MAC. 

Suppose MAC(k,m) is always 5 bits long 

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for any message
It depends on the details of the MAC
No, an attacker can simply guess the tag for messages



• The adversary could send an old valid (m, tag) at a 
later time.


– In fact, our definition of security does not rule this 
out.


• In practice: 
– Append a time-stamp to the message. Eg. (m, T, 

MAC(m, T)) where T = 21 Sep 2022, 1:47pm.

– Sequence numbers appended to the message (this 

requires the MAC algorithm to be stateful).

Dealing with Replay Attacks


