
￼1

CIS 5560

Lecture 9
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s25/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Announcements
• HW 3 due next Friday
• HW2 due tomorrow!

2

Recap of last lecture

3

Pseudorandom Functions

 Generate a random -bit key . 𝐆𝐞𝐧(1𝑛): 𝑛 𝑘

 is a poly-time algorithm that outputs 𝐄𝐯𝐚𝐥(𝑘, 𝑥) Fk(x)

Collection of functions ℱℓ = {Fk : {0,1}ℓ → {0,1}m}k∈{0,1}n

• indexed by a key 𝑘
• : key length, : input length, output length.𝑛 ℓ 𝑚:

• Independent parameters, all poly(sec-param) = poly() 𝑛

• #functions in (singly exponential in)ℱℓ ≤ 2𝑛 𝑛

4

Security: Cannot distinguish from random function

5

Pr [Afk(1n) = 1 | k ← {0,1}ℓ] − Pr [AF(1n) = 1 | F ← 𝖥𝗇𝗌] ≤ 𝗇𝖾𝗀𝗅(n) .

PRP/Block Cipher
A block cipher is a pair of efficient algs. (E, D):

6

E, D CT Block
n bits

PT Block
n bits

Key k bits

Canonical examples:

1. AES: n=128 bits, k = 128, 192, 256 bits

2. 3DES: n= 64 bits, k = 168 bits (historical)

 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) = where and are
both n bits each.

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠) 𝐺1(𝑠)

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠) 𝐺1(𝑠)

𝑠

 𝐺0(𝐺0(…𝐺0(𝑠)) 𝐺1(𝐺1(…𝐺1(𝑠)) 𝑮𝒙ℓ
(𝑮

𝒙ℓ−𝟏
(…𝑮𝒙𝟏

(𝒔))

D
epth

 ℓ

Each path/leaf labeled by corresponds to 𝑥 ∈ {0,1}ℓ 𝑓𝑠(𝑥) .

Today’s Lecture
• Proof of security for MAC

• Short MAC → Long MACs

8

 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) = where and are
both n bits each.

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠) 𝐺1(𝑠)

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠) 𝐺1(𝑠)

𝑠

 𝐺0(𝐺0(…𝐺0(𝑠)) 𝐺1(𝐺1(…𝐺1(𝑠)) 𝑮𝒙ℓ
(𝑮

𝒙ℓ−𝟏
(…𝑮𝒙𝟏

(𝒔))

D
epth

 ℓ

Each path/leaf labeled by corresponds to 𝑥 ∈ {0,1}ℓ 𝑓𝑠(𝑥) .

Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) = where and are
both n bits each.

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠) 𝐺1(𝑠)

The pseudorandom function family is defined by a collection
of functions where:

ℱℓ
𝑓𝑠

𝑓𝑠(𝑥1𝑥2…𝑥ℓ) = 𝑮𝒙ℓ
(𝑮

𝒙ℓ−𝟏
(…𝑮𝒙𝟏

(𝒔))

-bit inputℓ

⧫ defines pseudorandom bits.𝑓𝑠 2ℓ

⧫ The bit can be computed using evaluations of the
PRG G (as opposed to evaluations as before.)

𝑥𝑡h ℓ
𝑥 ≈ 2ℓ

 𝑓 ← ℱℓ

Distinguisher D

The pseudorandom world

𝑥 𝑓(𝑥)

The random world

f ← 𝖥𝗇𝗌

Distinguisher D

𝑥 𝑓(𝑥)

0/1 0/1

By contradiction. Assume there is a ppt and a poly function s.t. D 𝑝

GGM PRF: Proof of Security

Pr [Afk(1n) = 1 | k ← {0,1}ℓ] − Pr [AF(1n) = 1 | F ← 𝖥𝗇𝗌] ≥ 1/p(n) .

The pseudorandom world:

Hybrid 0

𝑥 𝑓(𝑥)

Problem:
Hybrid argument on leaves

doesn’t work. Why?

D

𝑠

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠) 𝐺1(𝑠)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 … 𝒃𝒙 … 𝒃𝟐ℓ

 𝐺𝑥ℓ
(𝐺

𝑥ℓ−1
(…(𝑠)))

The pseudorandom world:

Hybrid 0

𝑥 𝑓(𝑥)

Key Idea:
Hybrid argument by levels

of the tree

D

𝑠

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠) 𝐺1(𝑠)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 … 𝒃𝒙 … 𝒃𝟐ℓ

 𝐺𝑥ℓ
(𝐺

𝑥ℓ−1
(…(𝑠)))

The pseudorandom world:

Hybrid 0

𝑥 𝑓(𝑥)

Hybrid 1

D D

𝑥 𝑓(𝑥)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 . . 𝒃𝒙 … 𝒃𝟐ℓ

 𝐺1(𝐺0(𝑠))

𝑠0 𝑠1

 and are random 𝒔𝟎 𝒔𝟏
𝑠

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠) 𝐺1(𝑠)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 … 𝒃𝒙 … 𝒃𝟐ℓ

 𝐺𝑥ℓ
(𝐺

𝑥ℓ−1
(…(𝑠)))

Hybrid 2

D

𝑥 𝑓(𝑥)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 . . 𝒃𝒙 … 𝒃𝟐ℓ

𝑠00 𝑠10

 are random 𝒔𝟎𝟎, … 𝒔𝟏𝟏

Hybrid 1

D

𝑥 𝑓(𝑥)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 . . 𝒃𝒙 … 𝒃𝟐ℓ

 𝐺1(𝐺0(𝑠))

𝑠0 𝑠1

 and are random 𝒔𝟎 𝒔𝟏

𝑠01 𝑠11

The random world:

Hybrid ℓ

D

𝑥 𝑓(𝑥)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 . . 𝒃𝒙 … 𝒃𝟐ℓ

…
 𝒃𝟏 𝒃𝟐 𝒃𝟐ℓ

Hybrid 𝒊

D

𝑥 𝑓(𝑥)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 . . 𝒃𝒙 … 𝒃𝟐ℓ

𝑠𝟎𝒊

 are random 𝒔𝟎𝒊, … 𝒔𝟏𝒊

 𝑠𝟏𝒊

Q: Is the function in the
hybrid efficiently
computable?

A: Yes! Lazy Evaluation.

GGM PRF

Theorem: Let G be a PRG. Then, for every polynomials , there
exists a PRF family .

ℓ, 𝑚
ℱℓ = {𝑓𝑠:{0,1}ℓ → {0,1}𝑚}𝑠∈{0,1}𝑛

⧫ Expensive: invocations of a PRG.ℓ

⧫ Sequential: bit-by-bit, sequential invocations of a PRG.ℓ

⧫ Loss in security reduction: break PRF with advantage
 break PRG with advantage , where is an

arbitrary polynomial = #queries of the PRF distinguisher.
 Tighter reduction? Avoid the loss?

𝜀 ⟹ 𝜀/𝑞ℓ 𝑞

Some nits:

The authentication problem

Alice Bob

m

 k k

𝑚

This is known as a man-in-the-middle attack.

How can Bob check if the message is indeed from Alice?

𝑚′￼

Can also alter/
inject more
messages!

The authentication problem

Alice Bob

m

 k k
Can also alter/
inject more
messages!

(𝑚, 𝑡) or (𝑚, 𝑡) ⊥

We want Alice to generate a tag for the message m
which is hard to generate without the secret key k.

Wait… Does encryption not solve this?

Alice Bob

m

K ey 𝑘 Key 𝑘

𝐸𝑛𝑐(𝑘, 𝑚)

Wait… Does encryption not solve this?

Alice Bob

m

k k

 𝑚 ⊕ 𝑘

One-time pad (and encryption schemes in
general) are malleable.

 𝑚′￼⊕ 𝑘

Can toggle
between m
and m’

Alice Bob

m
) (𝑟, 𝑓𝑘(𝑟) ⊕ 𝑚 (𝑟, 𝑓𝑘(𝑟) ⊕ 𝑚′￼)

Can toggle
between m
and m’

One-time pad (and encryption schemes in
general) are malleable.

Privacy and Integrity are very different goals!

Wait… Does encryption not solve this?

k k

A triple of algorithms (Gen, MAC, Ver):

• Gen : Produces a key .

• MAC : Outputs a tag (may be deterministic).

• Ver : Outputs Accept or Reject.

Correctness:
Security: Hard to forge. Intuitively, it should be hard to
come up with a new pair (m’, t’) such that Ver accepts.

(1𝑛) k ← 𝒦
(𝑘, 𝑚) 𝑡

(𝑘, 𝑚, 𝑡)

Pr[𝖵𝖾𝗋(k, m, 𝖬𝖠𝖢(k, m) = 1] = 1

Message Authentication Codes (MACs)

What is the power of the adversary?

Alice Bob

m
(𝑚, 𝑀𝐴𝐶(𝑘, 𝑚))

or

(𝑚, 𝑀𝐴𝐶(𝑘, 𝑚))
⊥

• Can see many pairs

• Can access a MAC oracle

– Obtain tags for message of choice.

This is called a chosen message attack (CMA).

(𝑚, 𝑀𝐴𝐶(𝑘, 𝑚)) .
𝑀𝐴𝐶(𝑘, ∙)

• Total break: The adversary should not be able to
recover the key k.

• Universal break: The adversary can generate a
valid tag for every message.

• Existential break: The adversary can generate a
new valid tag t for some message m.

We will require MACs to be secure against the
existential break!!

Defining MAC Security

Existentially Unforgeable against Chosen Message Attacks

EUF-CMA Security

𝑚1

t1 = 𝖬𝖠𝖢(k, m1)
𝑚2

t2 = 𝖬𝖠𝖢(k, m2)

…

(𝑚, 𝑡)

𝑘 ← 𝐾

Accept if
for all , and

(𝑚, 𝑡) ≠ (𝑚𝑖, 𝑡𝑖)
𝑖

𝖵𝖾𝗋(k, m, t) = 1

Want:

where is the set of queries that makes.

Pr((𝑚, 𝑡) ← 𝐴𝑀𝐴𝐶(𝑘, ∙)(1𝑛), 𝑉𝑒𝑟(𝑘, 𝑚, 𝑡) = 1, (𝑚, 𝑡) ∉ 𝑄)) = 𝑛𝑒𝑔𝑙(𝑛) .
𝑄 {(𝑚𝑖, 𝑡𝑖)}𝑖

𝐴

Let I = (S,V) be a MAC.

Suppose an attacker is able to find m0 ≠ m1 such that

	 MAC(k, m0) = MAC(k, m1) for ½ of the keys k in K

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for m0 or m1

No, this MAC can be broken using a chosen msg attack
It depends on the details of the MAC

Let I = (S,V) be a MAC.

Suppose MAC(k,m) is always 5 bits long

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for any message
It depends on the details of the MAC
No, an attacker can simply guess the tag for messages

• The adversary could send an old valid (m, tag) at a
later time.

– In fact, our definition of security does not rule this
out.

• In practice:
– Append a time-stamp to the message. Eg. (m, T,

MAC(m, T)) where T = 21 Sep 2022, 1:47pm.

– Sequence numbers appended to the message (this

requires the MAC algorithm to be stateful).

Dealing with Replay Attacks

