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CIS 5560

Lecture 8
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s25/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/


Announcements
• HW 3 out on Wednesday 

• Due Friday, Feb 21 at 5PM on Gradescope

• Covers PRFs, IND-CPA
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Recap of last lecture
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Semantic Security for Many Msgs
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Challenger

1.
2.
3.

4. 

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

ci
b′￼

mi,0, mi,1

For every PPT Eve, there exists a negligible fn , 


                             

ε

Pr 𝖤𝗏𝖾(cq) = b

k ← 𝒦
b ← {0,1}

For i in 1,…, q :
(mi,0, mi,1) ← 𝖤𝗏𝖾(ci−1)

ci = 𝖤𝗇𝖼(k, mi,b)

<
1
2

+ε(n)



Alternate (Stronger?) definition
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Challenger

1.

2.
3.

4. 

k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

ci = 𝖤𝗇𝖼(k, mi)

b′￼

mi

(m0, m1)
c

Also called “IND-CPA”: Indistinguishability under Chosen-Plaintext Attacks

Equivalent to previous definition: just set mi,0 = mi,1 = mi



Pseudorandom Functions

 Generate a random -bit key . 𝐆𝐞𝐧(1𝑛): 𝑛 𝑘

 is a poly-time algorithm that outputs  𝐄𝐯𝐚𝐥(𝑘, 𝑥) Fk(x)

Collection of functions ℱℓ = {Fk : {0,1}ℓ → {0,1}m}k∈{0,1}n

• indexed by a key  𝑘
• : key length, : input length,  output length.𝑛 ℓ 𝑚:

• Independent parameters, all poly(sec-param) = poly( ) 𝑛

• #functions in    (singly exponential in )ℱℓ ≤ 2𝑛 𝑛
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Security: Cannot distinguish from random function
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Pr [Afk(1n) = 1 | k ← {0,1}ℓ] − Pr [AF(1n) = 1 | F ← 𝖥𝗇𝗌] ≤ 𝗇𝖾𝗀𝗅(n) .



: Generate a random -bit key  that defines  𝖦𝖾𝗇(1n) 𝑛 k

: 𝖤𝗇𝖼(k, m) Pick a random  and  
let the ciphertext be the pair   

𝑥
𝑐  (x, y = Fk(x) ⊕ m)

:𝖣𝖾𝖼(k, c = (x, y))

Fk : {0,1}ℓ → {0,1}m
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Output Fk(x) ⊕ c

Randomized encryption w/ PRFs
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Indistinguishable distributions
Definition: Two distributions  and  are computationally indistinguishable  
                   if for every efficient distinguisher


                    


Denoted by 


Eg: PRG security says that   

Eg: Single msg security says that


  

X Y

Pr[D(x) = 1 | x ← X ] − Pr[D(y) = 1 | y ← Y ] = 𝗇𝖾𝗀𝗅(n)

X ≈ Y

X := {G(x) |x ← {0,1}n} ≈ Y := {y |y ← {0,1}m}

{c ← 𝖤𝗇𝖼(k, m0) | k ← 𝒦} ≈ {c ← 𝖤𝗇𝖼(k, m1) | k ← 𝒦}



Single msg security says that the following dists are indistinguishable.

 and 


How to do this? Let’s create more (supposedly) indistinguishable distributions:



{c ← 𝖤𝗇𝖼(k, m0) | k ← 𝒦} {c ← 𝖤𝗇𝖼(k, m1) | k ← 𝒦}

H0 = {c := (r, m0 ⊕ Fk(r) | r ← {0,1}n; k ← 𝒦}

H5 = {c := (r, m1 ⊕ Fk(r) | r ← {0,1}n; k ← 𝒦} 10

Proof by hybrid argument
: 𝖤𝗇𝖼(k, m) Pick a random  and output   𝑥 (x, y = Fk(x) ⊕ m)
:𝖣𝖾𝖼(k, c = (x, y)) Output Fk(x) ⊕ c










H1 = {c := (r, m0 ⊕ R(r) | r ← {0,1}n; R ← 𝖥𝗇𝗌}
H2 = {c := (r, m0 ⊕ r′￼| r ← {0,1}n; r′￼← {0,1}n}
H3 = {c := (r, m1 ⊕ r′￼| r ← {0,1}n; r′￼← {0,1}n}
H4 = {c := (r, m1 ⊕ R(r) | r ← {0,1}n; R ← 𝖥𝗇𝗌}

 by PRF security≈

 defn of random fn≈

 one time pad≈

 defn of random fn≈

 by PRF security≈



Today’s Lecture
• Multi-message secure encryption

• Block ciphers, PRPs, encryption for long messages

• PRGs → PRFs
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: Generate a random -bit key  that defines  𝖦𝖾𝗇(1n) 𝑛 k

: 𝖤𝗇𝖼(k, m) Pick a random  and  
let the ciphertext be the pair   

𝑥
𝑐  (x, y = Fk(x) ⊕ m)

:𝖣𝖾𝖼(k, c = (x, y))

Fk : {0,1}ℓ → {0,1}m
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Output Fk(x) ⊕ c

Randomized encryption w/ PRFs















H1 = {(𝖤𝗇𝖼𝟤(m0), …, 𝖤𝗇𝖼𝟤(mn)) | R ← 𝖥𝗇𝗌}
H2 = {(𝖤𝗇𝖼𝟥(m0), …, 𝖤𝗇𝖼𝟥(mn)) | r′￼i ← {0,1}n}
H3 = {(𝖤𝗇𝖼𝟥(m′￼0), …, 𝖤𝗇𝖼𝟥(m′￼n)) | r′￼i ← {0,1}n}
H4 = {(𝖤𝗇𝖼𝟤(m′￼0), …, 𝖤𝗇𝖼𝟤(m′￼n)) | R ← 𝖥𝗇𝗌}
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Multi-msg security proof
Can be written as 


     


  


How to prove? Define  for a random fn , and 
 for a random . 

 

{(𝖤𝗇𝖼(k, m0), 𝖤𝗇𝖼(k, m1), …, 𝖤𝗇𝖼(k, mn)) | k ← 𝒦}
≈ {(𝖤𝗇𝖼(k, m′￼0), 𝖤𝗇𝖼(k, m′￼1), …, 𝖤𝗇𝖼(k, m′￼n)) | k ← 𝒦}

𝖤𝗇𝖼𝟤(m) = (r, R(r) ⊕ m) R
𝖤𝗇𝖼𝟥(m) = (r, r′￼⊕ m) r′￼

H0 = {(𝖤𝗇𝖼(k, m0), …, 𝖤𝗇𝖼(k, mn)) | k ← 𝒦}

Hn = {(𝖤𝗇𝖼(k, m′￼0), …, 𝖤𝗇𝖼(k, m′￼n)) | k ← 𝒦}

 PRF security≈

 Defn of random fn=

 OTP security=
 Defn of random fn≈

 PRF security≈



So far
Multi-msg security via randomized encryption 
Pros: 
• Relies on existing tools 
• Generally fast 
• No need to run PRF from start! 
Cons: 
• Ciphertext is ~2x larger:  

• Can only encrypt fixed-size  bit msg at a time 
• Thus, sending a message of, say,  bits, requires 

-sized ciphertext

(r, m ⊕ Fk(r))
n

10n
20n

14



Multi-msg security for long msgs
New concept: modes of operation

Ideas?

Recall:
• Counter-based encryption
• Randomized encryption

Can we combine them?
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Construction 2:  rand ctr-mode

m[0] m[1] …

Fk(r | |0) Fk(r | |1) …

m[L]

Fk(r | |L)

⊕

c[0] c[1] … c[L]

r

r

 -  chosen at random for every message


note:  parallelizable

r

msg

ciphertext

F: PRF defined over  where  and (K, X, Y ) X = {0,1}2n Y = {0,1}n

(counter counts mod )2𝑛

(e.g.,  n=128)



Randomized counter mode:   random IV.


Counter-mode Theorem:     For any L>0, 
	 If F is a secure PRF over (K,X,Y) then  
	 ECTR is IND-CPA-secure.


	 	 In particular, for a q-query adversary  attacking ECTR 

	 there exists a PRF adversary   s.t.:


	 	    AdvCPA[ , ECTR] ≤  2⋅AdvPRF[ , F]  +  2 q2 L / |X|


Note:    ctr-mode only secure as long as   q2⋅L    |X|

A

B

A B

≪
17

rand ctr-mode:   CPA analysis



Multi-msg security via randomized encryption

Pros: 
• Pretty fast

• Ciphertext is ~ (1 + 1/L) larger → small for large L

• Parallelizable!

Cons: 
• PRFs somewhat difficult to find, kind of slow 

Good for us: Pseudorandom Permutations are 
easier to find! 18
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PRPs and PRFs
• Pseudo Random Function   (PRF)    defined over (K,X,Y):


	 	 	 F:  K × X  →  Y    

	 such that exists “efficient” algorithm to evaluate F(k,x)


• Pseudo Random Permutation   (PRP)    defined over (K,X):


	 	 	 E:   K × X  →  X     

	 such that: 

	 1. Exists “efficient” algorithm to evaluate  E(k,x)

	 	 2. The function   E( k, ⋅ )   is  one-to-one


	 	 3. Exists “efficient” inversion algorithm   D(k,x)



Also called a Block Cipher
A block cipher is a pair of efficient algs. (E, D):
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E, D CT Block
n bits

PT Block
n bits

Key k bits

Canonical examples:

1. AES:     n=128 bits,   k = 128, 192, 256 bits

2. 3DES:   n= 64 bits,    k = 168 bits    (historical)
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Running example

• Example PRPs:    3DES,   AES,   …


   AES128:   K × X  →  X        where      K = X = {0,1}128  


	 DES:   K × X  →  X        where      X = {0,1}64 ,  K = {0,1}56


	 3DES:   K × X  →  X      where      X = {0,1}64 ,  K = {0,1}168


• Functionally, any PRP where K and X are large is also a PRF.

– A PRP is a PRF where X=Y and is efficiently invertible
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Incorrect use of a PRP

Electronic Code Book (ECB):


Problem:   

– if    m1=m2     then   c1=c2

PT:

CT:

m1 m2

c1 c2

Apply Ek( ⋅ )
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In pictures

(courtesy B. Preneel)
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ECB is not Semantically Secure even for 1 msg

ECB is not semantically secure for messages that contain  
two or more blocks.

Two blocks
Chal.

b∈{0,1}

Adv. 𝒜
k←K

(c1,c2) ← E(k, mb)

m0 = “Hello  World” 
m1 = “Hello  Hello”

If  c1=c2 output 1,  else output 0

Then  AdvSS[ , ECB] = 1 𝒜
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Secure Construction 1:   CBC with random nonce

Cipher block chaining with a random IV        (IV = nonce)

 

E(k,⋅) E(k,⋅) E(k,⋅)

m[0] m[1] m[2] m[3]IV

⊕ ⊕⊕

E(k,⋅)

⊕

c[0] c[1] c[2] c[3]IV

ciphertext

note:   CBC where attacker can predict the IV is not CPA-secure.  HW.
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CBC:    CPA Analysis
CBC Theorem:     For any L>0, 
	 If E is a secure PRP over (K,X) then  
	 ECBC is a sem. sec. under CPA over (K, XL, XL+1).


	 	 In particular,  for a q-query adversary A attacking ECBC 

	 there exists a PRP adversary B  s.t.:


	 	    AdvCPA[A, ECBC] ≤  2⋅AdvPRP[B, E]  +  2 q2 L2 / |X|


Note:    CBC is only secure as long as   q2⋅L2    |X|≪
# messages enc. with key max msg length
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CBC:    CPA Analysis
CBC Theorem:     For any L>0, 
	 If E is a secure PRP over (K,X) then  
	 ECBC is a sem. sec. under CPA over (K, XL, XL+1).


	 	 In particular,  for a q-query adversary A attacking ECBC 

	 there exists a PRP adversary B  s.t.:


	 	    AdvCPA[A, ECBC] ≤  2⋅AdvPRP[B, E]  +  2 q2 L2 / |X|


Note:    CBC is only secure as long as   q2⋅L2    |X|≪
# messages enc. with key max msg length



• PRPs and block cipher modes of operation

• PRGs → PRFs

• MACs, if we have time



Theorem: Let G:  be a PRG. Then, for every 
polynomial m(n), there is a PRG G’: 

{0,1}𝑛  → {0,1}𝑛+1

{0,1}𝑛  → {0,1}𝑚(𝑛) .

Let’s Look Back at Length Extension…



 𝐺1(𝐺1(𝐺1
(𝑠))) 𝐺0(𝐺1(𝐺1(𝑠)))

 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

𝐺0(𝑠)  𝐺1(𝑠)

Construction: Let G(s) =  where  is 1 bit 
and  is n bits .

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠)
𝐺1(𝑠)

Let’s Look Back at Length Extension…

𝑠 Problem: Accessing the  
output bit takes time .

𝑖𝑡h

≈ 𝑖



Goldreich-Goldwasser-Micali PRF
Theorem: Let G be a PRG. Then, for every polynomials  = (n),  

(n), there exists a PRF family .
ℓ ℓ 𝑚

= 𝑚 ℱℓ = {𝑓𝑠:{0,1}ℓ → {0,1}𝑚}𝑠∈{0,1}𝑛

Note: We will focus on .  
The output length could be made smaller (by truncation) or larger 
(by expansion with a PRG).

𝑚 = ℓ

What is the standard way to improve 



 𝐺1(𝐺1(𝐺1
(𝑠))) 𝐺0(𝐺1(𝐺1(𝑠)))

 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

𝐺0(𝑠)  𝐺1(𝑠)

Construction: Let G(s) =  where  is 1 bit 
and  is n bits .

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠)
𝐺1(𝑠)

Let’s Look Back at Length Extension…

𝑠 Problem: Accessing the  
output bit takes time .

𝑖𝑡h

≈ 𝑖

What data structure does 
this remind you of?

Ans: a list!
No wonder it’s linear time!

What is the standard technique
to do better?



 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) =  where  and  are 
both n bits each.

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠) 𝐺1(𝑠)

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠)  𝐺1(𝑠)

𝑠

 𝐺0(𝐺0(…𝐺0(𝑠))  𝐺1(𝐺1(…𝐺1(𝑠)) 𝑮𝒙ℓ
(𝑮

𝒙ℓ−𝟏
(…𝑮𝒙𝟏

(𝒔))

D
epth 

 ℓ

Each path/leaf labeled by  corresponds to   𝑥 ∈ {0,1}ℓ 𝑓𝑠(𝑥) .



Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) =  where  and  are 
both n bits each.

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠) 𝐺1(𝑠)

The pseudorandom function family  is defined by a collection 
of functions  where:

ℱℓ
𝑓𝑠

𝑓𝑠(𝑥1𝑥2…𝑥ℓ) = 𝑮𝒙ℓ
(𝑮

𝒙ℓ−𝟏
(…𝑮𝒙𝟏

(𝒔)) 

-bit inputℓ

⧫  defines  pseudorandom bits.𝑓𝑠 2ℓ

⧫ The  bit can be computed using  evaluations of the 
PRG G (as opposed to  evaluations as before.) 

𝑥𝑡h ℓ
𝑥 ≈ 2ℓ


