
￼1

CIS 5560

Lecture 8
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s25/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Announcements
• HW 3 out on Wednesday

• Due Friday, Feb 21 at 5PM on Gradescope

• Covers PRFs, IND-CPA

2

Recap of last lecture

3

Semantic Security for Many Msgs

4

Challenger

1.
2.
3.

4.

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

ci
b′￼

mi,0, mi,1

For every PPT Eve, there exists a negligible fn ,

ε

Pr 𝖤𝗏𝖾(cq) = b

k ← 𝒦
b ← {0,1}

For i in 1,…, q :
(mi,0, mi,1) ← 𝖤𝗏𝖾(ci−1)

ci = 𝖤𝗇𝖼(k, mi,b)

<
1
2

+ε(n)

Alternate (Stronger?) definition

5

Challenger

1.

2.
3.

4.

k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

ci = 𝖤𝗇𝖼(k, mi)

b′￼

mi

(m0, m1)
c

Also called “IND-CPA”: Indistinguishability under Chosen-Plaintext Attacks

Equivalent to previous definition: just set mi,0 = mi,1 = mi

Pseudorandom Functions

 Generate a random -bit key . 𝐆𝐞𝐧(1𝑛): 𝑛 𝑘

 is a poly-time algorithm that outputs 𝐄𝐯𝐚𝐥(𝑘, 𝑥) Fk(x)

Collection of functions ℱℓ = {Fk : {0,1}ℓ → {0,1}m}k∈{0,1}n

• indexed by a key 𝑘
• : key length, : input length, output length.𝑛 ℓ 𝑚:

• Independent parameters, all poly(sec-param) = poly() 𝑛

• #functions in (singly exponential in)ℱℓ ≤ 2𝑛 𝑛

6

Security: Cannot distinguish from random function

7

Pr [Afk(1n) = 1 | k ← {0,1}ℓ] − Pr [AF(1n) = 1 | F ← 𝖥𝗇𝗌] ≤ 𝗇𝖾𝗀𝗅(n) .

: Generate a random -bit key that defines 𝖦𝖾𝗇(1n) 𝑛 k

: 𝖤𝗇𝖼(k, m) Pick a random and  
let the ciphertext be the pair

𝑥
𝑐 (x, y = Fk(x) ⊕ m)

:𝖣𝖾𝖼(k, c = (x, y))

Fk : {0,1}ℓ → {0,1}m

8

Output Fk(x) ⊕ c

Randomized encryption w/ PRFs

9

Indistinguishable distributions
Definition: Two distributions and are computationally indistinguishable
 if for every efficient distinguisher

Denoted by

Eg: PRG security says that

Eg: Single msg security says that

X Y

Pr[D(x) = 1 | x ← X] − Pr[D(y) = 1 | y ← Y] = 𝗇𝖾𝗀𝗅(n)

X ≈ Y

X := {G(x) |x ← {0,1}n} ≈ Y := {y |y ← {0,1}m}

{c ← 𝖤𝗇𝖼(k, m0) | k ← 𝒦} ≈ {c ← 𝖤𝗇𝖼(k, m1) | k ← 𝒦}

Single msg security says that the following dists are indistinguishable.

 and

How to do this? Let’s create more (supposedly) indistinguishable distributions:

{c ← 𝖤𝗇𝖼(k, m0) | k ← 𝒦} {c ← 𝖤𝗇𝖼(k, m1) | k ← 𝒦}

H0 = {c := (r, m0 ⊕ Fk(r) | r ← {0,1}n; k ← 𝒦}

H5 = {c := (r, m1 ⊕ Fk(r) | r ← {0,1}n; k ← 𝒦} 10

Proof by hybrid argument
: 𝖤𝗇𝖼(k, m) Pick a random and output 𝑥 (x, y = Fk(x) ⊕ m)
:𝖣𝖾𝖼(k, c = (x, y)) Output Fk(x) ⊕ c

H1 = {c := (r, m0 ⊕ R(r) | r ← {0,1}n; R ← 𝖥𝗇𝗌}
H2 = {c := (r, m0 ⊕ r′￼| r ← {0,1}n; r′￼← {0,1}n}
H3 = {c := (r, m1 ⊕ r′￼| r ← {0,1}n; r′￼← {0,1}n}
H4 = {c := (r, m1 ⊕ R(r) | r ← {0,1}n; R ← 𝖥𝗇𝗌}

 by PRF security≈

 defn of random fn≈

 one time pad≈

 defn of random fn≈

 by PRF security≈

Today’s Lecture
• Multi-message secure encryption

• Block ciphers, PRPs, encryption for long messages

• PRGs → PRFs

11

: Generate a random -bit key that defines 𝖦𝖾𝗇(1n) 𝑛 k

: 𝖤𝗇𝖼(k, m) Pick a random and  
let the ciphertext be the pair

𝑥
𝑐 (x, y = Fk(x) ⊕ m)

:𝖣𝖾𝖼(k, c = (x, y))

Fk : {0,1}ℓ → {0,1}m

12

Output Fk(x) ⊕ c

Randomized encryption w/ PRFs

H1 = {(𝖤𝗇𝖼𝟤(m0), …, 𝖤𝗇𝖼𝟤(mn)) | R ← 𝖥𝗇𝗌}
H2 = {(𝖤𝗇𝖼𝟥(m0), …, 𝖤𝗇𝖼𝟥(mn)) | r′￼i ← {0,1}n}
H3 = {(𝖤𝗇𝖼𝟥(m′￼0), …, 𝖤𝗇𝖼𝟥(m′￼n)) | r′￼i ← {0,1}n}
H4 = {(𝖤𝗇𝖼𝟤(m′￼0), …, 𝖤𝗇𝖼𝟤(m′￼n)) | R ← 𝖥𝗇𝗌}

13

Multi-msg security proof
Can be written as

How to prove? Define for a random fn , and
 for a random . 

{(𝖤𝗇𝖼(k, m0), 𝖤𝗇𝖼(k, m1), …, 𝖤𝗇𝖼(k, mn)) | k ← 𝒦}
≈ {(𝖤𝗇𝖼(k, m′￼0), 𝖤𝗇𝖼(k, m′￼1), …, 𝖤𝗇𝖼(k, m′￼n)) | k ← 𝒦}

𝖤𝗇𝖼𝟤(m) = (r, R(r) ⊕ m) R
𝖤𝗇𝖼𝟥(m) = (r, r′￼⊕ m) r′￼

H0 = {(𝖤𝗇𝖼(k, m0), …, 𝖤𝗇𝖼(k, mn)) | k ← 𝒦}

Hn = {(𝖤𝗇𝖼(k, m′￼0), …, 𝖤𝗇𝖼(k, m′￼n)) | k ← 𝒦}

 PRF security≈

 Defn of random fn=

 OTP security=
 Defn of random fn≈

 PRF security≈

So far
Multi-msg security via randomized encryption
Pros:
• Relies on existing tools
• Generally fast
• No need to run PRF from start!
Cons:
• Ciphertext is ~2x larger:

• Can only encrypt fixed-size bit msg at a time
• Thus, sending a message of, say, bits, requires

-sized ciphertext

(r, m ⊕ Fk(r))
n

10n
20n

14

Multi-msg security for long msgs
New concept: modes of operation

Ideas?

Recall:
• Counter-based encryption
• Randomized encryption

Can we combine them?

15

16

Construction 2: rand ctr-mode

m[0] m[1] …

Fk(r | |0) Fk(r | |1) …

m[L]

Fk(r | |L)

⊕

c[0] c[1] … c[L]

r

r

 - chosen at random for every message

note: parallelizable

r

msg

ciphertext

F: PRF defined over where and (K, X, Y) X = {0,1}2n Y = {0,1}n

(counter counts mod)2𝑛

(e.g., n=128)

Randomized counter mode: random IV.

Counter-mode Theorem: For any L>0, 
	 If F is a secure PRF over (K,X,Y) then  
	 ECTR is IND-CPA-secure.

	 	 In particular, for a q-query adversary attacking ECTR 

	 there exists a PRF adversary s.t.:

	 	 AdvCPA[, ECTR] ≤ 2⋅AdvPRF[, F] + 2 q2 L / |X|

Note: ctr-mode only secure as long as q2⋅L |X|

A

B

A B

≪
17

rand ctr-mode: CPA analysis

Multi-msg security via randomized encryption

Pros:
• Pretty fast

• Ciphertext is ~ (1 + 1/L) larger → small for large L

• Parallelizable!

Cons:
• PRFs somewhat difficult to find, kind of slow

Good for us: Pseudorandom Permutations are
easier to find! 18

19

PRPs and PRFs
• Pseudo Random Function (PRF) defined over (K,X,Y):

	 	 	 F: K × X → Y

	 such that exists “efficient” algorithm to evaluate F(k,x)

• Pseudo Random Permutation (PRP) defined over (K,X):

	 	 	 E: K × X → X

	 such that: 

	 1. Exists “efficient” algorithm to evaluate E(k,x)

	 	 2. The function E(k, ⋅) is one-to-one

	 	 3. Exists “efficient” inversion algorithm D(k,x)

Also called a Block Cipher
A block cipher is a pair of efficient algs. (E, D):

20

E, D CT Block
n bits

PT Block
n bits

Key k bits

Canonical examples:

1. AES: n=128 bits, k = 128, 192, 256 bits

2. 3DES: n= 64 bits, k = 168 bits (historical)

21

Running example

• Example PRPs: 3DES, AES, …

 AES128: K × X → X where K = X = {0,1}128

	 DES: K × X → X where X = {0,1}64 , K = {0,1}56

	 3DES: K × X → X where X = {0,1}64 , K = {0,1}168

• Functionally, any PRP where K and X are large is also a PRF.

– A PRP is a PRF where X=Y and is efficiently invertible

22

Incorrect use of a PRP

Electronic Code Book (ECB):

Problem:

– if m1=m2 then c1=c2

PT:

CT:

m1 m2

c1 c2

Apply Ek(⋅)

23

In pictures

(courtesy B. Preneel)

24

ECB is not Semantically Secure even for 1 msg

ECB is not semantically secure for messages that contain  
two or more blocks.

Two blocks
Chal.

b∈{0,1}

Adv. 𝒜
k←K

(c1,c2) ← E(k, mb)

m0 = “Hello World”
m1 = “Hello Hello”

If c1=c2 output 1, else output 0

Then AdvSS[, ECB] = 1 𝒜

25

Secure Construction 1: CBC with random nonce

Cipher block chaining with a random IV (IV = nonce)

E(k,⋅) E(k,⋅) E(k,⋅)

m[0] m[1] m[2] m[3]IV

⊕ ⊕⊕

E(k,⋅)

⊕

c[0] c[1] c[2] c[3]IV

ciphertext

note: CBC where attacker can predict the IV is not CPA-secure. HW.

26

CBC: CPA Analysis
CBC Theorem: For any L>0, 
	 If E is a secure PRP over (K,X) then  
	 ECBC is a sem. sec. under CPA over (K, XL, XL+1).

	 	 In particular, for a q-query adversary A attacking ECBC 

	 there exists a PRP adversary B s.t.:

	 	 AdvCPA[A, ECBC] ≤ 2⋅AdvPRP[B, E] + 2 q2 L2 / |X|

Note: CBC is only secure as long as q2⋅L2 |X|≪
messages enc. with key max msg length

27

CBC: CPA Analysis
CBC Theorem: For any L>0, 
	 If E is a secure PRP over (K,X) then  
	 ECBC is a sem. sec. under CPA over (K, XL, XL+1).

	 	 In particular, for a q-query adversary A attacking ECBC 

	 there exists a PRP adversary B s.t.:

	 	 AdvCPA[A, ECBC] ≤ 2⋅AdvPRP[B, E] + 2 q2 L2 / |X|

Note: CBC is only secure as long as q2⋅L2 |X|≪
messages enc. with key max msg length

• PRPs and block cipher modes of operation

• PRGs → PRFs

• MACs, if we have time

Theorem: Let G: be a PRG. Then, for every
polynomial m(n), there is a PRG G’:

{0,1}𝑛 → {0,1}𝑛+1

{0,1}𝑛 → {0,1}𝑚(𝑛) .

Let’s Look Back at Length Extension…

 𝐺1(𝐺1(𝐺1
(𝑠))) 𝐺0(𝐺1(𝐺1(𝑠)))

 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

𝐺0(𝑠) 𝐺1(𝑠)

Construction: Let G(s) = where is 1 bit
and is n bits .

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠)
𝐺1(𝑠)

Let’s Look Back at Length Extension…

𝑠 Problem: Accessing the
output bit takes time .

𝑖𝑡h

≈ 𝑖

Goldreich-Goldwasser-Micali PRF
Theorem: Let G be a PRG. Then, for every polynomials = (n),

(n), there exists a PRF family .
ℓ ℓ 𝑚

= 𝑚 ℱℓ = {𝑓𝑠:{0,1}ℓ → {0,1}𝑚}𝑠∈{0,1}𝑛

Note: We will focus on .  
The output length could be made smaller (by truncation) or larger
(by expansion with a PRG).

𝑚 = ℓ

What is the standard way to improve

 𝐺1(𝐺1(𝐺1
(𝑠))) 𝐺0(𝐺1(𝐺1(𝑠)))

 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

𝐺0(𝑠) 𝐺1(𝑠)

Construction: Let G(s) = where is 1 bit
and is n bits .

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠)
𝐺1(𝑠)

Let’s Look Back at Length Extension…

𝑠 Problem: Accessing the
output bit takes time .

𝑖𝑡h

≈ 𝑖

What data structure does
this remind you of?

Ans: a list!
No wonder it’s linear time!

What is the standard technique
to do better?

 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) = where and are
both n bits each.

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠) 𝐺1(𝑠)

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠) 𝐺1(𝑠)

𝑠

 𝐺0(𝐺0(…𝐺0(𝑠)) 𝐺1(𝐺1(…𝐺1(𝑠)) 𝑮𝒙ℓ
(𝑮

𝒙ℓ−𝟏
(…𝑮𝒙𝟏

(𝒔))

D
epth

 ℓ

Each path/leaf labeled by corresponds to 𝑥 ∈ {0,1}ℓ 𝑓𝑠(𝑥) .

Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) = where and are
both n bits each.

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠) 𝐺1(𝑠)

The pseudorandom function family is defined by a collection
of functions where:

ℱℓ
𝑓𝑠

𝑓𝑠(𝑥1𝑥2…𝑥ℓ) = 𝑮𝒙ℓ
(𝑮

𝒙ℓ−𝟏
(…𝑮𝒙𝟏

(𝒔))

-bit inputℓ

⧫ defines pseudorandom bits.𝑓𝑠 2ℓ

⧫ The bit can be computed using evaluations of the
PRG G (as opposed to evaluations as before.)

𝑥𝑡h ℓ
𝑥 ≈ 2ℓ

