
￼1

CIS 5560

Lecture 7
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s25

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Announcements
• HW 2 will be released today

• Due Friday, Feb 14 at 5PM on Gradescope

• Covers PRGs, OWFs, PRFs, multi-message security

2

Recap of last lecture

3

Semantic Security for Many Msgs

4

Challenger

1.
2.
3.

4.

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

ci
b′￼

mi,0, mi,1

For every PPT Eve, there exists a negligible fn ,

ε

Pr 𝖤𝗏𝖾(cq) = b

k ← 𝒦
b ← {0,1}

For i in 1,…, q :
(mi,0, mi,1) ← 𝖤𝗏𝖾(ci−1)

ci = 𝖤𝗇𝖼(k, mi,b)

<
1
2

+ε(n)

Alternate (Stronger?) definition

5

Challenger

1.

2.
3.

4.

k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

ci = 𝖤𝗇𝖼(k, mi)

b′￼

mi

(m0, m1)
c

Also called “IND-CPA”: Indistinguishability under Chosen-Plaintext Attacks

Equivalent to previous definition: just set mi,0 = mi,1 = mi

Stream Ciphers insecure under CPA
Problem: E(k,m) outputs same ciphertext for msg m.

 Then:

So what?	 an attacker can learn that two encrypted files are  
	 	 the same, two encrypted packets are the same, etc.

• Leads to significant attacks when message space M is small

Chal. Adv.
k←K

m0 , m1 ∈ M
c ← E(k, mb)

m0 , m0 ∈ M
c0 ←E(k, m0)

output 0

if c = c0

6

Problem: E(k,m) always outputs same ciphertext for msg m.

 Then:

If secret key is to be used multiple times ⇒
	 	 given the same plaintext message twice,  

encryption must produce different outputs.

Chal. Adv.
k←K

m0 , m1 ∈ M
c ← E(k, mb)

m0 , m0 ∈ M
c0 ←E(k, m0)

output 0

if c = c0

Stream Ciphers insecure under CPA

7

Today’s Lecture
• Deeper look at PRFs

• PRFs → multi-message encryption

• Hybrid argument

• PRGs → PRFs

8

Pseudorandom Functions

 Generate a random -bit key . 𝐆𝐞𝐧(1𝑛): 𝑛 𝑘

 is a poly-time algorithm that outputs 𝐄𝐯𝐚𝐥(𝑘, 𝑥) Fk(x)

Collection of functions ℱℓ = {Fk : {0,1}ℓ → {0,1}m}k∈{0,1}n

• indexed by a key 𝑘
• : key length, : input length, output length.𝑛 ℓ 𝑚:

• Independent parameters, all poly(sec-param) = poly() 𝑛

• #functions in (singly exponential in)ℱℓ ≤ 2𝑛 𝑛

9

How to define security?

Let’s try to build it up like the PRG security definition

10

PRG Security

11

Challenger

1.
2. If b = 0

1. Sample
3. If b = 1

1. Sample
2. Set

4.

b ← {0,1}

y ← {0,1}m

s ← {0,1}n

y := G(s)

b ?= b′￼

Adv 𝒜

y
b′￼

Pr[b = b′￼] = 1/2 + 𝗇𝖾𝗀𝗅(n)

PRG vs PRF
• So, for PRG security, we give the adversary either a

random string or a pseudorandom string, and ask it to
figure out which one it is

• Can the same strategy work for PRFs?

12

PRF Security - Attempt 1

13

Challenger

1.
2. If b = 0

1. Sample
3. If b = 1

1. Sample
2. Set

4.

b ← {0,1}

f ← 𝖥𝗇𝗌[X, Y]

k ← 𝒦
f (⋅) = F(k, ⋅)

b ?= b′￼

Adv 𝒜

f
b′￼

Pr[b = b′￼] = 1/2 + 𝗇𝖾𝗀𝗅(n)

PRF Security - Attempt 1
• What’s the problem with this?

• Hint: What does a random function look like?

• Is it efficiently evaluatable?

• Does it have a short description?

• It maps inputs to random values (example on board)

• Ans: we can’t easily send a random function!
• So: how about we give the challenger “oracle” access

14

15

Challenger

1.
2. If b = 0

1. Sample
3. If b = 1

1. Sample
2. Set

4. Set

5.

b ← {0,1}

f ← 𝖥𝗇𝗌[X, Y]

k ← 𝒦
f (⋅) := Fk(⋅)

y := f (x)

b ?= b′￼

Adv 𝒜

y

b′￼

x

Pr[b = b′￼] = 1/2 + 𝗇𝖾𝗀𝗅(n)

PRF Security - Attempt 2

PRF Security - Attempt 2
• Q: How many questions should the adversary be allowed

to ask?

• 1

• 2

• poly(n)

• exp(n)

• Why is 1 insufficient?

• Why is exp(n) too many? 16

Can’t tell any information from 1 query

Adv will run in exponential time!

17

Challenger

1.
2. If b = 0

1. Sample
3. If b = 1

1. Sample
2. Set

4. Set

5.

b ← {0,1}

f ← 𝖥𝗇𝗌[X, Y]

k ← 𝒦
f (⋅) := Fk(⋅)

y := f (x)

b ?= b′￼

Adv 𝒜

y

b′￼

x

Pr[b = b′￼] = 1/2 + 𝗇𝖾𝗀𝗅(n)

PRF Security - Attempt 2

Poly(n) queries

PRFs → multi-message encryption

18

• State? (e.g. counter of num msgs)

• Randomness?

Ideas for multi-message encryption

19

Stateful encryption w/ PRFs

20

o :

o Sample an -bit string at random.

𝖦𝖾𝗇(1n) → k
n

o :

1. Interpret as number of messages encrypted so far.

2. Output

𝖤𝗇𝖼(k, m, st) → c
st ℓ

c = Fk(ℓ) ⊕ m

o :

1. Interpret as number of messages encrypted so far.

o Output

𝖣𝖾𝖼(k, c, st) → m
st ℓ

m = Fk(ℓ) ⊕ c

Does this work?
Ans: Yes!

Pros:
• Relies on existing tools
• Generally fast
• No need to run PRF from start!
Cons:
• Must maintain counter of encrypted messages

• (Just like PRG solution)

21

• State? (e.g. counter of num msgs)

• Randomness?

Ideas for multi-message encryption

22

: Generate a random -bit key that defines 𝖦𝖾𝗇(1n) 𝑛 k

: 𝖤𝗇𝖼(k, m) Pick a random and  
let the ciphertext be the pair

𝑥
𝑐 (x, y = Fk(x) ⊕ m)

:𝖣𝖾𝖼(k, c = (x, y))

Fk : {0,1}ℓ → {0,1}m

23

Output Fk(x) ⊕ c

Randomized encryption w/ PRFs

Does this work?
Ans: Yes!
Proof: next
Pros:
• Relies on existing tools
• Generally fast
• No need to run PRF from start!
Cons:
• Need good randomness during encryption

24

: 𝖤𝗇𝖼(k, m) Pick a random and output 𝑥 (x, y = Fk(x) ⊕ m)
:𝖣𝖾𝖼(k, c = (x, y))

25

Output Fk(x) ⊕ c

Security of Randomized Encryption

• Proof strategy: Focusing on 1msg security first

• We will introduce two new tools:

• Indistinguishability of distributions

• The hybrid lemma/argument

Single msg security says that the following dists are indistinguishable.

 and

How to do this? Let’s create more (supposedly) indistinguishable distributions:

{c ← 𝖤𝗇𝖼(k, m0) | k ← 𝒦} {c ← 𝖤𝗇𝖼(k, m1) | k ← 𝒦}

H0 = {c := (r, m0 ⊕ Fk(r) | r ← {0,1}n; k ← 𝒦}

H5 = {c := (r, m1 ⊕ Fk(r) | r ← {0,1}n; k ← 𝒦} 26

Proof by hybrid argument
: 𝖤𝗇𝖼(k, m) Pick a random and output 𝑥 (x, y = Fk(x) ⊕ m)
:𝖣𝖾𝖼(k, c = (x, y)) Output Fk(x) ⊕ c

H1 = {c := (r, m0 ⊕ R(r) | r ← {0,1}n; R ← 𝖥𝗇𝗌}
H2 = {c := (r, m0 ⊕ r′￼| r ← {0,1}n; r′￼← {0,1}n}
H3 = {c := (r, m1 ⊕ r′￼| r ← {0,1}n; r′￼← {0,1}n}
H4 = {c := (r, m1 ⊕ R(r) | r ← {0,1}n; R ← 𝖥𝗇𝗌}

 by PRF security≈

 defn of random fn≈

 one time pad≈

 defn of random fn≈

 by PRF security≈

: 𝖤𝗇𝖼(k, m) Pick a random and output 𝑥 (x, y = Fk(x) ⊕ m)
:𝖣𝖾𝖼(k, c = (x, y))

27

Output Fk(x) ⊕ c

Security of Randomized Encryption

• Proof strategy:

• 1msg security done.

• What about multi-msg security?

28

Multi-msg security proof
Can be written as

How to prove?
Hybrid argument!

{(𝖤𝗇𝖼(k, m0), 𝖤𝗇𝖼(k, m1), …, 𝖤𝗇𝖼(k, mn)) | k ← 𝒦}
≈ {(𝖤𝗇𝖼(k, m′￼0), 𝖤𝗇𝖼(k, m′￼1), …, 𝖤𝗇𝖼(k, m′￼n)) | k ← 𝒦}

H0 = {(𝖤𝗇𝖼(k, m0), 𝖤𝗇𝖼(k, m1), …, 𝖤𝗇𝖼(k, mn)) | k ← 𝒦}

Hn = {(𝖤𝗇𝖼(k, m′￼0), 𝖤𝗇𝖼(k, m′￼1), …, 𝖤𝗇𝖼(k, m′￼n)) | k ← 𝒦}

 …

H1 = {(𝖤𝗇𝖼(k, m′￼0), 𝖤𝗇𝖼(k, m1), …, 𝖤𝗇𝖼(k, mn)) | k ← 𝒦}
H2 = {(𝖤𝗇𝖼(k, m′￼0), 𝖤𝗇𝖼(k, m′￼1), …, 𝖤𝗇𝖼(k, mn)) | k ← 𝒦}

Hn−1 = {(𝖤𝗇𝖼(k, m′￼0), 𝖤𝗇𝖼(k, m1), …, 𝖤𝗇𝖼(k, mn)) | k ← 𝒦}

 single msg security≈

 single msg security≈

 single msg security≈
 single msg security≈

 single msg security≈

So far
Multi-msg security via randomized encryption
Pros:
• Relies on existing tools
• Generally fast
• No need to run PRF from start!
Cons:
• Ciphertext is ~2x larger:

• Can only encrypt fixed-size bit msg at a time
• Thus, sending a message of, say, bits, requires

-sized ciphertext

(r, m ⊕ Fk(r))
n

10n
20n

29

Multi-msg security for long msgs
New concept: modes of operation

Ideas?

Recall:
• Counter-based encryption
• Randomized encryption

Can we combine them?

30

31

Construction 2: rand ctr-mode

m[0] m[1] …

Fk(r | |0) Fk(r | |1) …

m[L]

Fk(r | |L)

⊕

c[0] c[1] … c[L]

r

r

 - chosen at random for every message

note: parallelizable

r

msg

ciphertext

F: PRF defined over where and (K, X, Y) X = {0,1}2n Y = {0,1}n

(counter counts mod)2𝑛

(e.g., n=128)

Randomized counter mode: random IV.

Counter-mode Theorem: For any L>0, 
	 If F is a secure PRF over (K,X,Y) then  
	 ECTR is IND-CPA-secure.

	 	 In particular, for a q-query adversary attacking ECTR 

	 there exists a PRF adversary s.t.:

	 	 AdvCPA[, ECTR] ≤ 2⋅AdvPRF[, F] + 2 q2 L / |X|

Note: ctr-mode only secure as long as q2⋅L |X|

A

B

A B

≪
32

rand ctr-mode: CPA analysis

Multi-msg security via randomized encryption

Pros:
• Pretty fast

• Ciphertext is ~ (1 + 1/L) larger → small for large L

• Parallelizable!

Cons:
• PRFs somewhat difficult to find, kind of slow

Good for us: Pseudorandom Permutations are
easier to find! 33

34

PRPs and PRFs
• Pseudo Random Function (PRF) defined over (K,X,Y):

	 	 	 F: K × X → Y

	 such that exists “efficient” algorithm to evaluate F(k,x)

• Pseudo Random Permutation (PRP) defined over (K,X):

	 	 	 E: K × X → X

	 such that: 

	 1. Exists “efficient” algorithm to evaluate E(k,x)

	 	 2. The function E(k, ⋅) is one-to-one

	 	 3. Exists “efficient” inversion algorithm D(k,x)

Also called a Block Cipher
A block cipher is a pair of efficient algs. (E, D):

35

E, D CT Block
n bits

PT Block
n bits

Key k bits

Canonical examples:

1. AES: n=128 bits, k = 128, 192, 256 bits

2. 3DES: n= 64 bits, k = 168 bits (historical)

36

Running example

• Example PRPs: 3DES, AES, …

 AES128: K × X → X where K = X = {0,1}128

	 DES: K × X → X where X = {0,1}64 , K = {0,1}56

	 3DES: K × X → X where X = {0,1}64 , K = {0,1}168

• Functionally, any PRP where K and X are large is also a PRF.

– A PRP is a PRF where X=Y and is efficiently invertible

37

Incorrect use of a PRP

Electronic Code Book (ECB):

Problem:

– if m1=m2 then c1=c2

PT:

CT:

m1 m2

c1 c2

Apply Ek(⋅)

38

In pictures

(courtesy B. Preneel)

39

ECB is not Semantically Secure even for 1 msg

ECB is not semantically secure for messages that contain  
two or more blocks.

Two blocks
Chal.

b∈{0,1}

Adv. 𝒜
k←K

(c1,c2) ← E(k, mb)

m0 = “Hello World”
m1 = “Hello Hello”

If c1=c2 output 1, else output 0

Then AdvSS[, ECB] = 1 𝒜

40

Secure Construction 1: CBC with random nonce

Cipher block chaining with a random IV (IV = nonce)

E(k,⋅) E(k,⋅) E(k,⋅)

m[0] m[1] m[2] m[3]IV

⊕ ⊕⊕

E(k,⋅)

⊕

c[0] c[1] c[2] c[3]IV

ciphertext

note: CBC where attacker can predict the IV is not CPA-secure. HW.

41

CBC: CPA Analysis
CBC Theorem: For any L>0, 
	 If E is a secure PRP over (K,X) then  
	 ECBC is a sem. sec. under CPA over (K, XL, XL+1).

	 	 In particular, for a q-query adversary A attacking ECBC 

	 there exists a PRP adversary B s.t.:

	 	 AdvCPA[A, ECBC] ≤ 2⋅AdvPRP[B, E] + 2 q2 L2 / |X|

Note: CBC is only secure as long as q2⋅L2 |X|≪
messages enc. with key max msg length

Next
HW
• Construct PRF from PRG!

Next Class:
• What happens if adversary can tamper with messages?

42

