

CIS 5560

Cryptography Lecture 7

Course website:

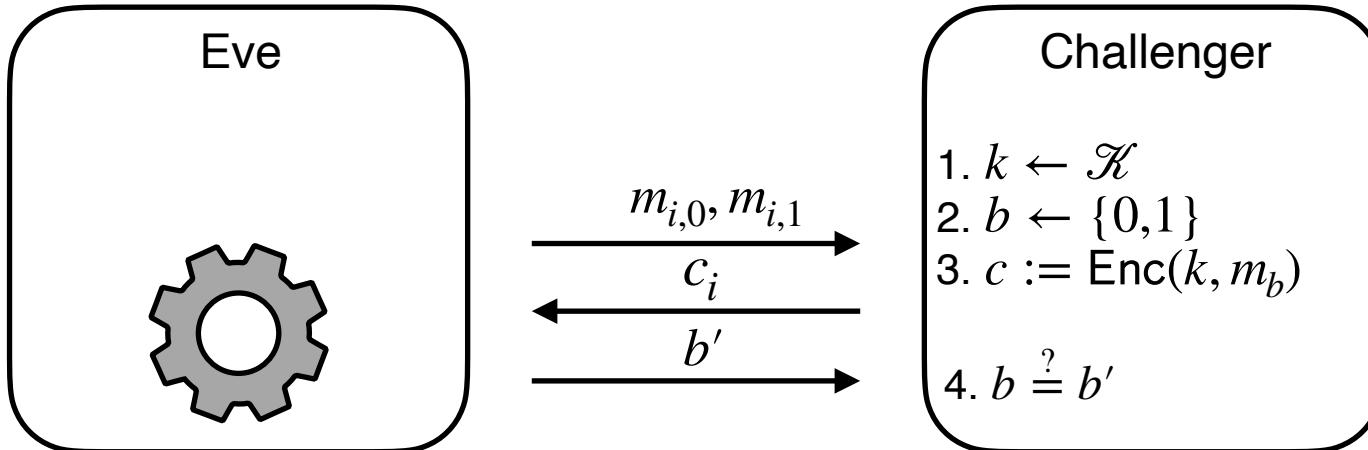
pratyushmishra.com/classes/cis-5560-s25

Announcements

- **HW 2 will be released today**
 - Due **Friday**, Feb 14 at 5PM on Gradescope
 - Covers PRGs, OWFs, PRFs, multi-message security

Recap of last lecture

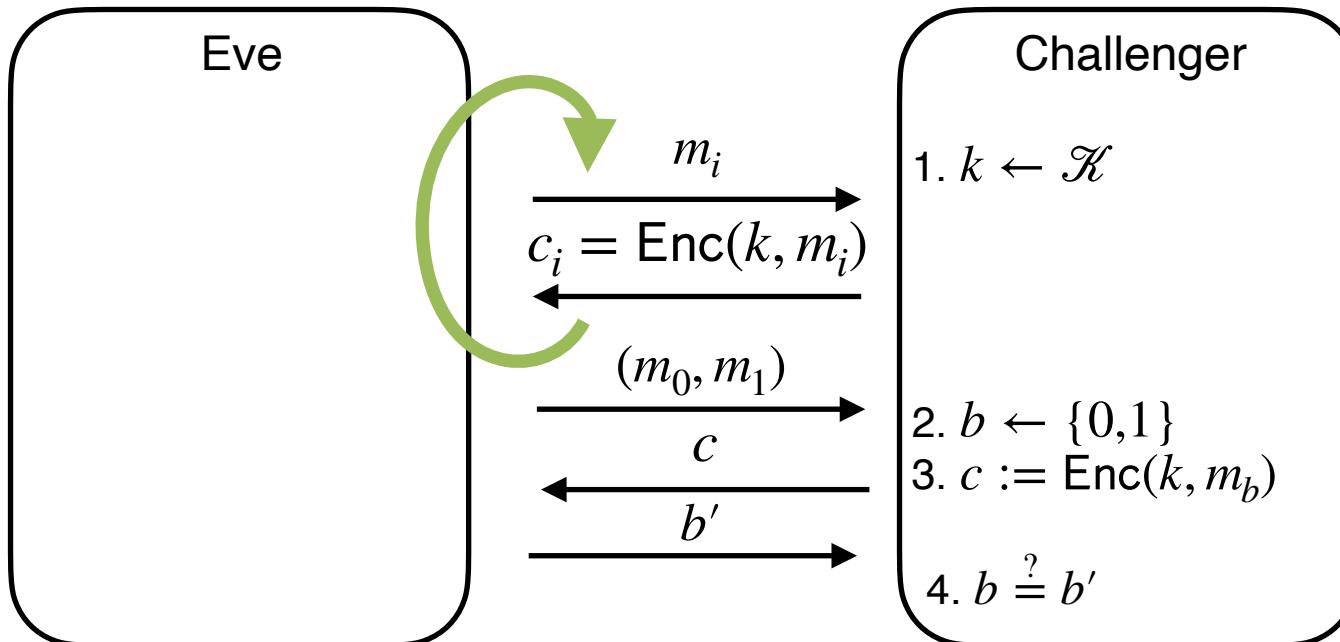
Semantic Security for Many Msgs



For every **PPT** Eve, there exists a negligible fn ε ,

$$\Pr \left[\text{Eve}(c_q) = b \left| \begin{array}{l} k \leftarrow \mathcal{K} \\ b \leftarrow \{0,1\} \\ \text{For } i \text{ in } 1, \dots, q : \\ (m_{i,0}, m_{i,1}) \leftarrow \text{Eve}(c_{i-1}) \\ c_i = \text{Enc}(k, m_{i,b}) \end{array} \right. \right] < \frac{1}{2} + \varepsilon(n)$$

Alternate (Stronger?) definition



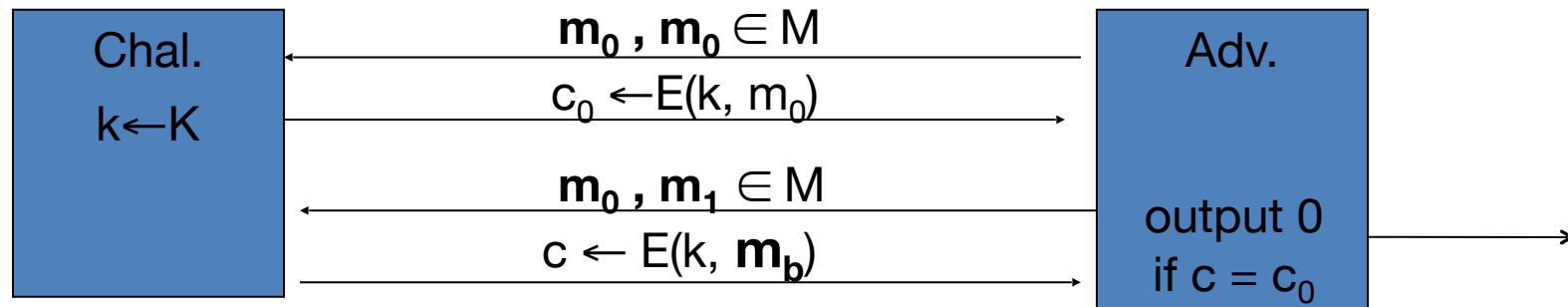
Also called “IND-CPA”: Indistinguishability under Chosen-Plaintext Attacks

Equivalent to previous definition: just set $m_{i,0} = m_{i,1} = m_i$

Stream Ciphers insecure under CPA

Problem: $E(k, m)$ outputs same ciphertext for msg m .

Then:



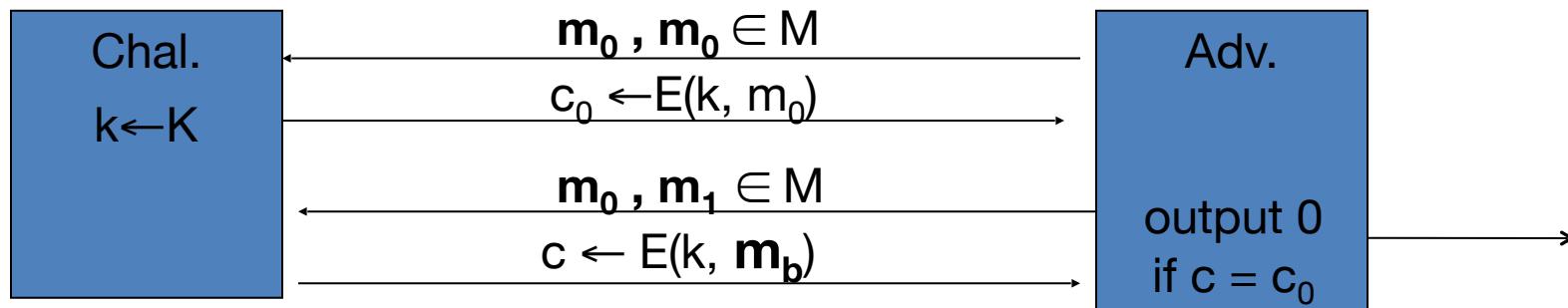
So what? an attacker can learn that two encrypted files are the same, two encrypted packets are the same, etc.

- Leads to significant attacks when message space M is small

Stream Ciphers insecure under CPA

Problem: $E(k, m)$ always outputs same ciphertext for msg m .

Then:



If secret key is to be used multiple times \Rightarrow

**given the same plaintext message twice,
encryption must produce different outputs.**

Today's Lecture

- Deeper look at PRFs
- PRFs → multi-message encryption
- Hybrid argument
- PRGs → PRFs

Pseudorandom Functions

Collection of functions $\mathcal{F}_\ell = \{F_k : \{0,1\}^\ell \rightarrow \{0,1\}^m\}_{k \in \{0,1\}^n}$

- indexed by a key k
- n : key length, ℓ : input length, m : output length.
- Independent parameters, all $\text{poly}(\text{sec-param}) = \text{poly}(n)$
- #functions in $\mathcal{F}_\ell \leq 2^n$ (singly exponential in n)

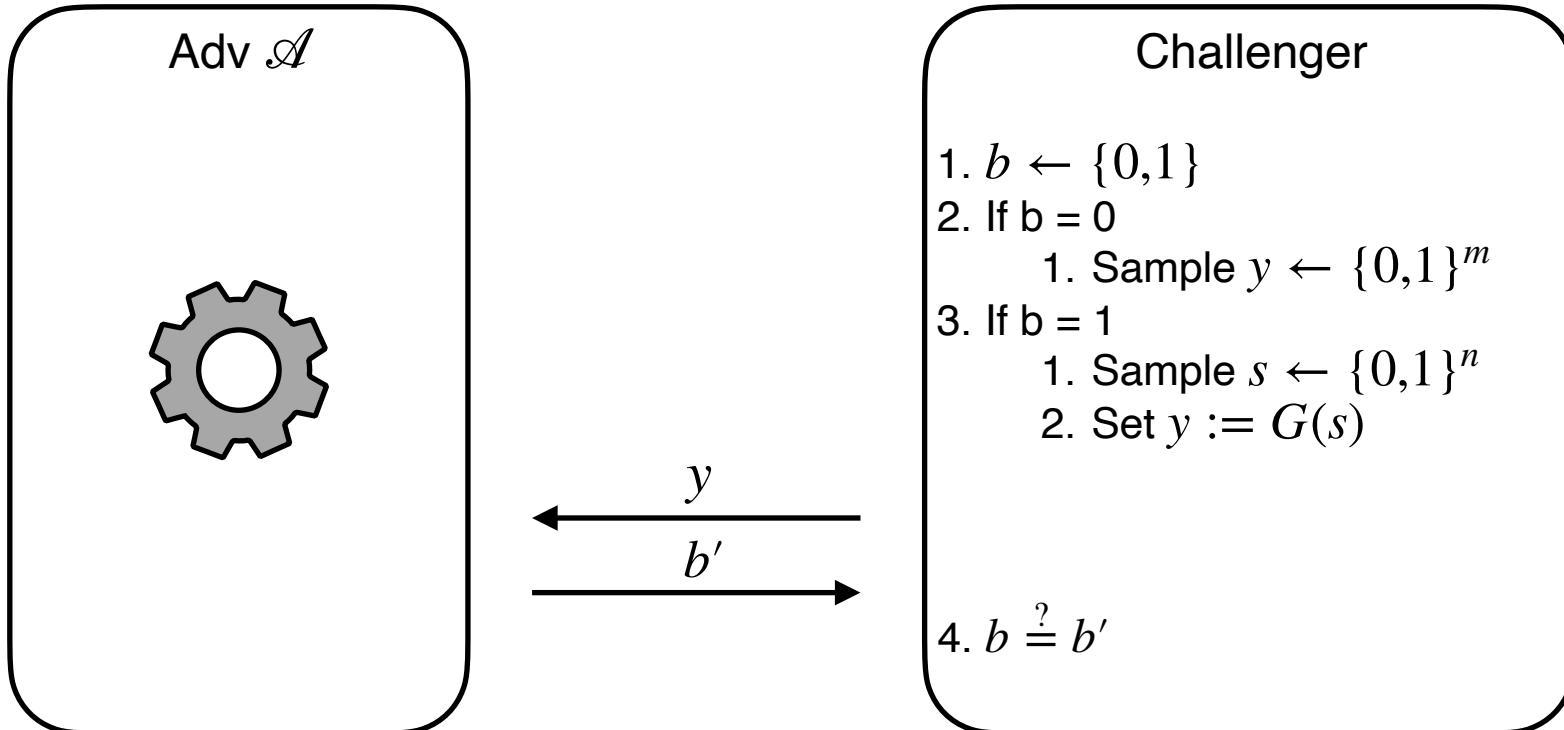
Gen(1^n): Generate a random n -bit key k .

Eval(k, x) is a poly-time algorithm that outputs $F_k(x)$

How to define security?

Let's try to build it up like the PRG security definition

PRG Security

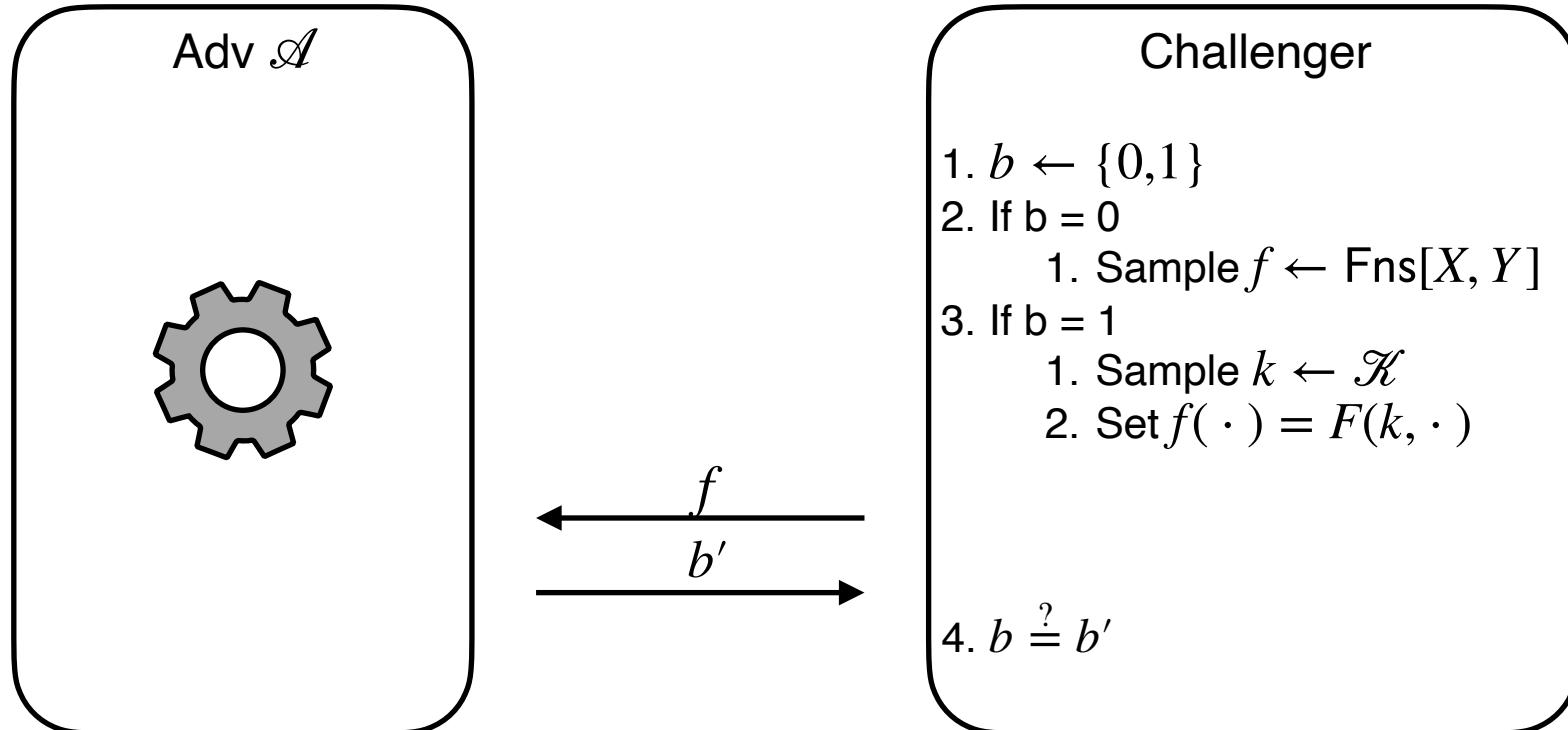


$$\Pr[b = b'] = 1/2 + \text{negl}(n)$$

PRG vs PRF

- So, for PRG security, we give the adversary either a random string or a pseudorandom string, and ask it to figure out which one it is
- Can the same strategy work for PRFs?

PRF Security - Attempt 1

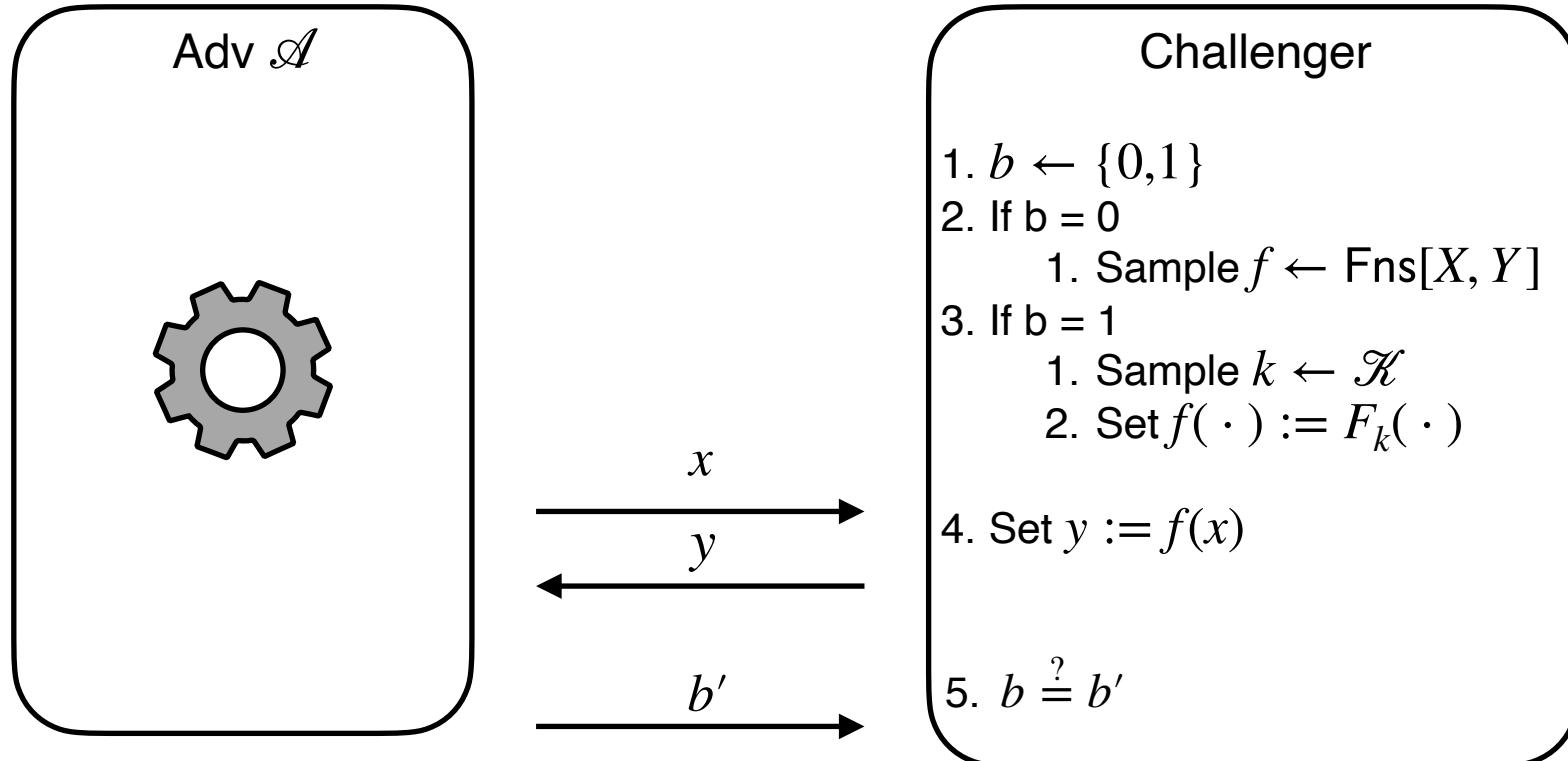


$$\Pr[b = b'] = 1/2 + \text{negl}(n)$$

PRF Security - Attempt 1

- What's the problem with this?
- Hint: What does a random function look like?
 - Is it efficiently evaluable?
 - Does it have a short description?
 - It maps inputs to random values (example on board)
- **Ans: we can't easily send a random function!**
- **So: how about we give the challenger “oracle” access**

PRF Security - Attempt 2

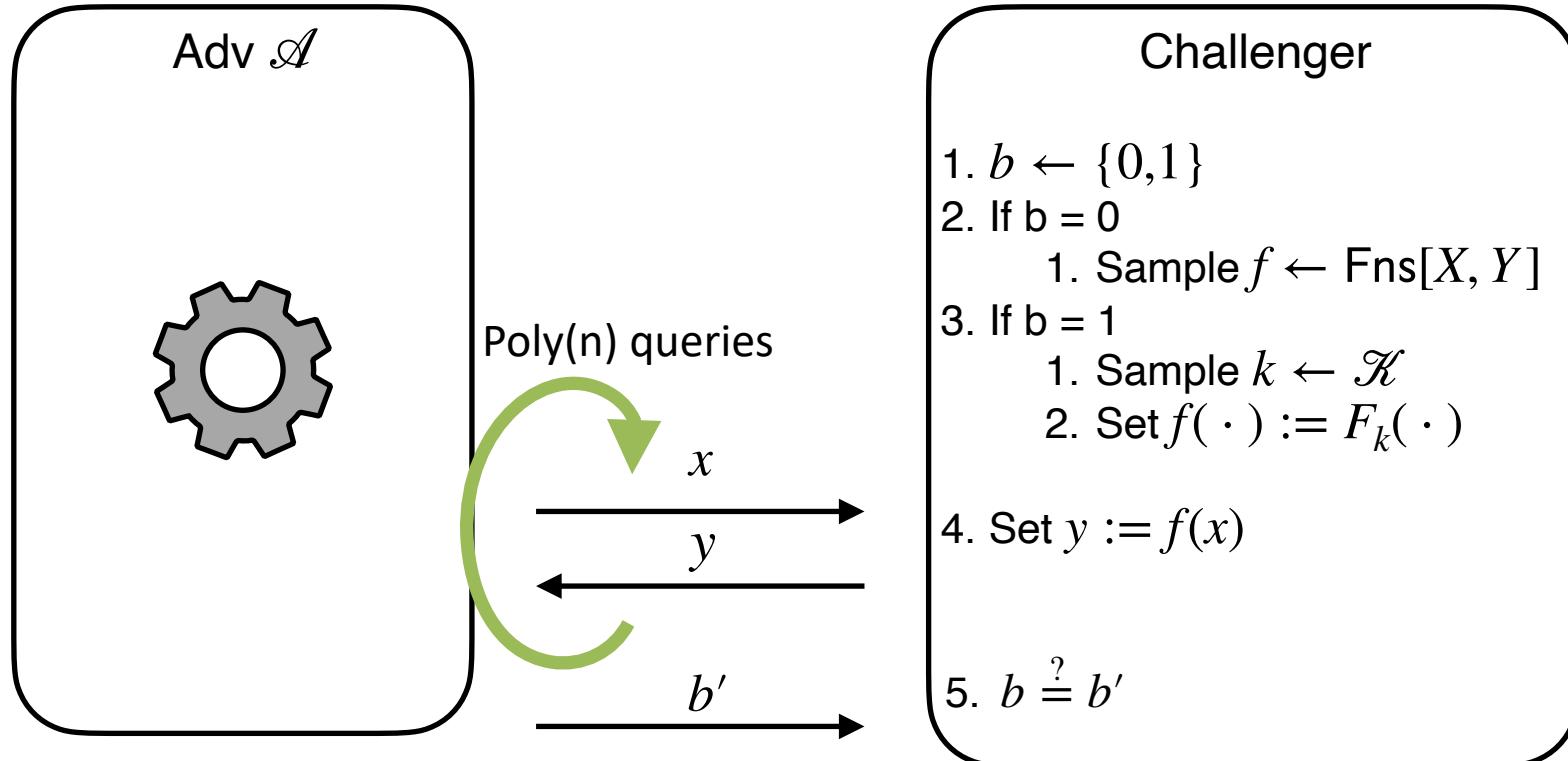


$$\Pr[b = b'] = 1/2 + \text{negl}(n)$$

PRF Security - Attempt 2

- Q: How many questions should the adversary be allowed to ask?
 - 1
 - 2
 - $\text{poly}(n)$
 - $\text{exp}(n)$
- Why is 1 insufficient? Can't tell any information from 1 query
- Why is $\text{exp}(n)$ too many? Adv will run in exponential time!

PRF Security - Attempt 2



$$\Pr[b = b'] = 1/2 + \text{negl}(n)$$

PRFs → multi-message encryption

Ideas for multi-message encryption

- State? (e.g. counter of num msgs)
- Randomness?

Stateful encryption w/ PRFs

- $\text{Gen}(1^n) \rightarrow k$:
 - Sample an n -bit string at random.
- $\text{Enc}(k, m, \text{st}) \rightarrow c$:
 1. Interpret st as number ℓ of messages encrypted so far.
 2. Output $c = F_k(\ell) \oplus m$
- $\text{Dec}(k, c, \text{st}) \rightarrow m$:
 1. Interpret st as number ℓ of messages encrypted so far.
 - Output $m = F_k(\ell) \oplus c$

Does this work?

Ans: Yes!

Pros:

- Relies on existing tools
- Generally fast
- No need to run PRF from start!

Cons:

- Must maintain counter of encrypted messages
 - (Just like PRG solution)

Ideas for multi-message encryption

- State? (e.g. counter of num msgs)
- Randomness?

Randomized encryption w/ PRFs

Gen(1^n): Generate a random n -bit key k that defines

$$F_k : \{0,1\}^\ell \rightarrow \{0,1\}^m$$

Enc(k, m): Pick a random x and
let the ciphertext c be the pair $(x, y = F_k(x) \oplus m)$

Dec($k, c = (x, y)$):

Output $F_k(x) \oplus c$

Does this work?

Ans: Yes!

Proof: next

Pros:

- Relies on existing tools
- Generally fast
- No need to run PRF from start!

Cons:

- Need good randomness during encryption

Security of Randomized Encryption

$\text{Enc}(k, m)$: Pick a random x and output $(x, y = F_k(x) \oplus m)$

$\text{Dec}(k, c = (x, y))$: Output $F_k(x) \oplus c$

- **Proof strategy:** Focusing on 1msg security first
- **We will introduce two new tools:**
 - Indistinguishability of distributions
 - The hybrid lemma/argument

Proof by hybrid argument

$\text{Enc}(k, m)$: Pick a random x and output $(x, y = F_k(x) \oplus m)$

$\text{Dec}(k, c = (x, y))$: Output $F_k(x) \oplus c$

Single msg security says that the following dists are indistinguishable.

$$\{c \leftarrow \text{Enc}(k, m_0) \mid k \leftarrow \mathcal{K}\} \text{ and } \{c \leftarrow \text{Enc}(k, m_1) \mid k \leftarrow \mathcal{K}\}$$

How to do this? Let's create more (supposedly) indistinguishable distributions:

$$H_0 = \{c := (r, m_0 \oplus F_k(r)) \mid r \leftarrow \{0,1\}^n; k \leftarrow \mathcal{K}\} \quad \approx \text{by PRF security}$$

$$H_1 = \{c := (r, m_0 \oplus R(r)) \mid r \leftarrow \{0,1\}^n; R \leftarrow \text{Fns}\} \quad \approx \text{defn of random fn}$$

$$H_2 = \{c := (r, m_0 \oplus r') \mid r \leftarrow \{0,1\}^n; r' \leftarrow \{0,1\}^n\} \quad \approx \text{one time pad}$$

$$H_3 = \{c := (r, m_1 \oplus r') \mid r \leftarrow \{0,1\}^n; r' \leftarrow \{0,1\}^n\} \quad \approx \text{defn of random fn}$$

$$H_4 = \{c := (r, m_1 \oplus R(r)) \mid r \leftarrow \{0,1\}^n; R \leftarrow \text{Fns}\} \quad \approx \text{by PRF security}$$

$$H_5 = \{c := (r, m_1 \oplus F_k(r)) \mid r \leftarrow \{0,1\}^n; k \leftarrow \mathcal{K}\}$$

Security of Randomized Encryption

$\text{Enc}(k, m)$: Pick a random x and output $(x, y = F_k(x) \oplus m)$

$\text{Dec}(k, c = (x, y))$: Output $F_k(x) \oplus c$

- **Proof strategy:**
 - 1msg security done.
 - What about multi-msg security?

Multi-msg security proof

Can be written as

$$\begin{aligned} & \{(\text{Enc}(k, m_0), \text{Enc}(k, m_1), \dots, \text{Enc}(k, m_n)) \mid k \leftarrow \mathcal{K} \} \\ & \approx \{(\text{Enc}(k, m'_0), \text{Enc}(k, m'_1), \dots, \text{Enc}(k, m'_n)) \mid k \leftarrow \mathcal{K} \} \end{aligned}$$

How to prove?

Hybrid argument!

$$H_0 = \{ (\text{Enc}(k, m_0), \text{Enc}(k, m_1), \dots, \text{Enc}(k, m_n)) \mid k \leftarrow \mathcal{K} \}$$

\approx single msg security

$$H_1 = \{ (\text{Enc}(k, m'_0), \text{Enc}(k, m_1), \dots, \text{Enc}(k, m_n)) \mid k \leftarrow \mathcal{K} \}$$

\approx single msg security

$$H_2 = \{ (\text{Enc}(k, m'_0), \text{Enc}(k, m'_1), \dots, \text{Enc}(k, m_n)) \mid k \leftarrow \mathcal{K} \}$$

\approx single msg security

...

$$H_{n-1} = \{ (\text{Enc}(k, m'_0), \text{Enc}(k, m_1), \dots, \text{Enc}(k, m_n)) \mid k \leftarrow \mathcal{K} \}$$

\approx single msg security

$$H_n = \{ (\text{Enc}(k, m'_0), \text{Enc}(k, m'_1), \dots, \text{Enc}(k, m'_n)) \mid k \leftarrow \mathcal{K} \}$$

\approx single msg security

So far

Multi-msg security via randomized encryption

Pros:

- Relies on existing tools
- Generally fast
- No need to run PRF from start!

Cons:

- Ciphertext is $\sim 2x$ larger: $(r, m \oplus F_k(r))$
- Can only encrypt fixed-size n bit msg at a time
- Thus, sending a message of, say, $10n$ bits, requires $20n$ -sized ciphertext

Multi-msg security for long msgs

New concept: modes of operation

Ideas?

Recall:

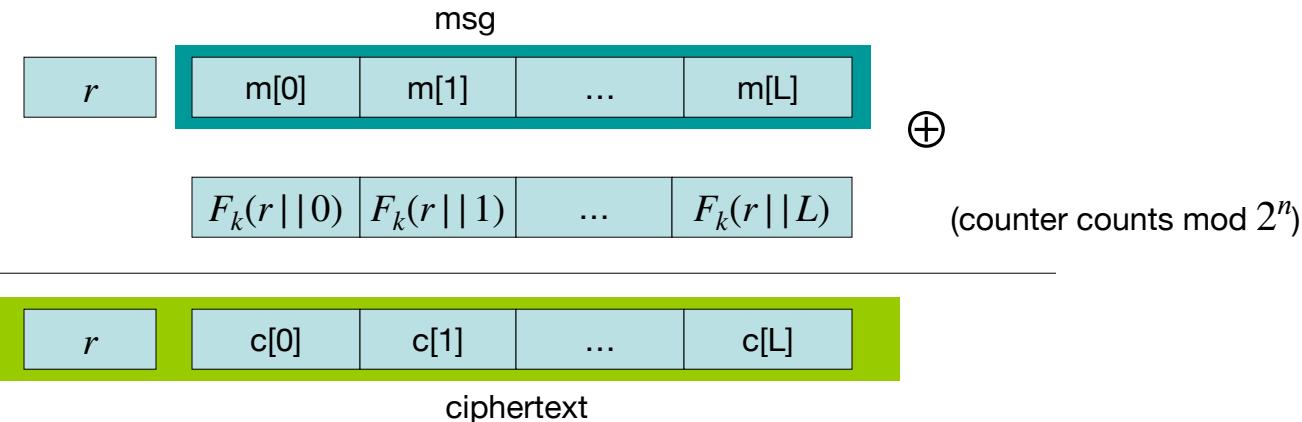
- Counter-based encryption
- Randomized encryption

Can we combine them?

Construction 2: rand ctr-mode

F : PRF defined over (K, X, Y) where $X = \{0,1\}^{2n}$ and $Y = \{0,1\}^n$

(e.g., $n=128$)



r - chosen at random for every message

note: parallelizable

rand ctr-mode: CPA analysis

Randomized counter mode: random IV.

Counter-mode Theorem: For any $L > 0$,

If F is a secure PRF over (K, X, Y) then

E_{CTR} is IND-CPA-secure.

In particular, for a q -query adversary A attacking E_{CTR}

there exists a PRF adversary B s.t.:

$$\text{Adv}_{\text{CPA}}[A, E_{CTR}] \leq 2 \cdot \text{Adv}_{\text{PRF}}[B, F] + 2 q^2 L / |X|$$

Note: ctr-mode only secure as long as $q^2 \cdot L \leq |X|$

Multi-msg security via randomized encryption

Pros:

- Pretty fast
- Ciphertext is $\sim (1 + 1/L)$ larger \rightarrow small for large L
- Parallelizable!

Cons:

- PRFs somewhat difficult to find, kind of slow

Good for us: Pseudorandom *Permutations* are easier to find!

PRPs and PRFs

- Pseudo Random Function **(PRF)** defined over (K, X, Y) :

$$F: K \times X \rightarrow Y$$

such that exists “efficient” algorithm to evaluate $F(k, x)$

- Pseudo Random Permutation **(PRP)** defined over (K, X) :

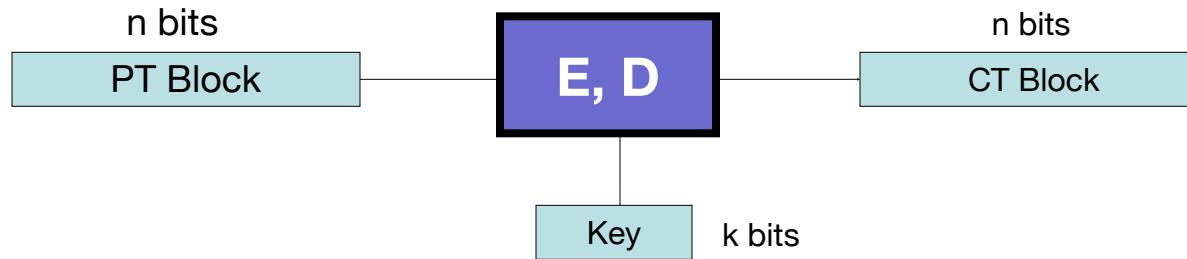
$$E: K \times X \rightarrow X$$

such that:

1. Exists “efficient” algorithm to evaluate $E(k, x)$
2. The function $E(k, \cdot)$ is one-to-one
3. Exists “efficient” inversion algorithm $D(k, x)$

Also called a Block Cipher

A **block cipher** is a pair of efficient algs. (E, D):



Canonical examples:

1. **AES:** n=128 bits, k = 128, 192, 256 bits
2. **3DES:** n= 64 bits, k = 168 bits (historical)

Running example

- Example PRPs: 3DES, AES, ...

AES128: $K \times X \rightarrow X$ where $K = X = \{0,1\}^{128}$

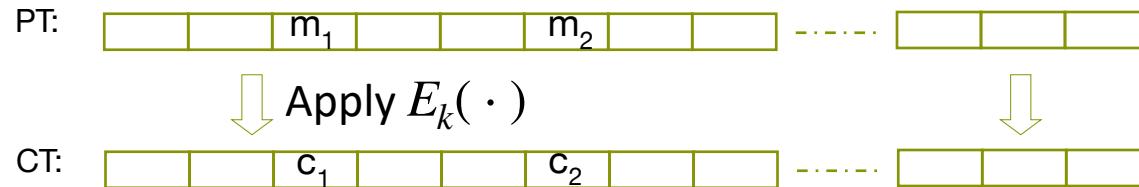
DES: $K \times X \rightarrow X$ where $X = \{0,1\}^{64}$, $K = \{0,1\}^{56}$

3DES: $K \times X \rightarrow X$ where $X = \{0,1\}^{64}$, $K = \{0,1\}^{168}$

- Functionally, any PRP where K and X are large is also a PRF.
 - A PRP is a PRF where $X=Y$ and is efficiently invertible

Incorrect use of a PRP

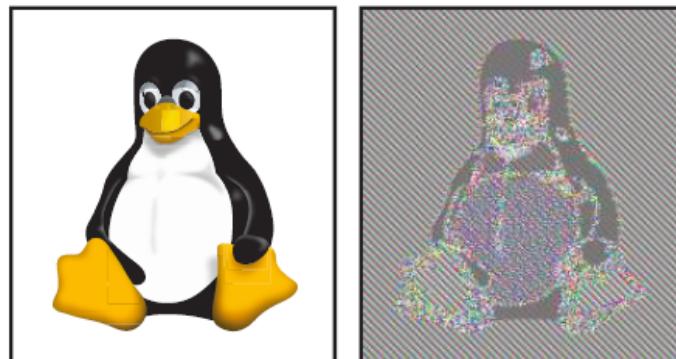
Electronic Code Book (ECB):



Problem:

- if $m_1 = m_2$ then $c_1 = c_2$

In pictures



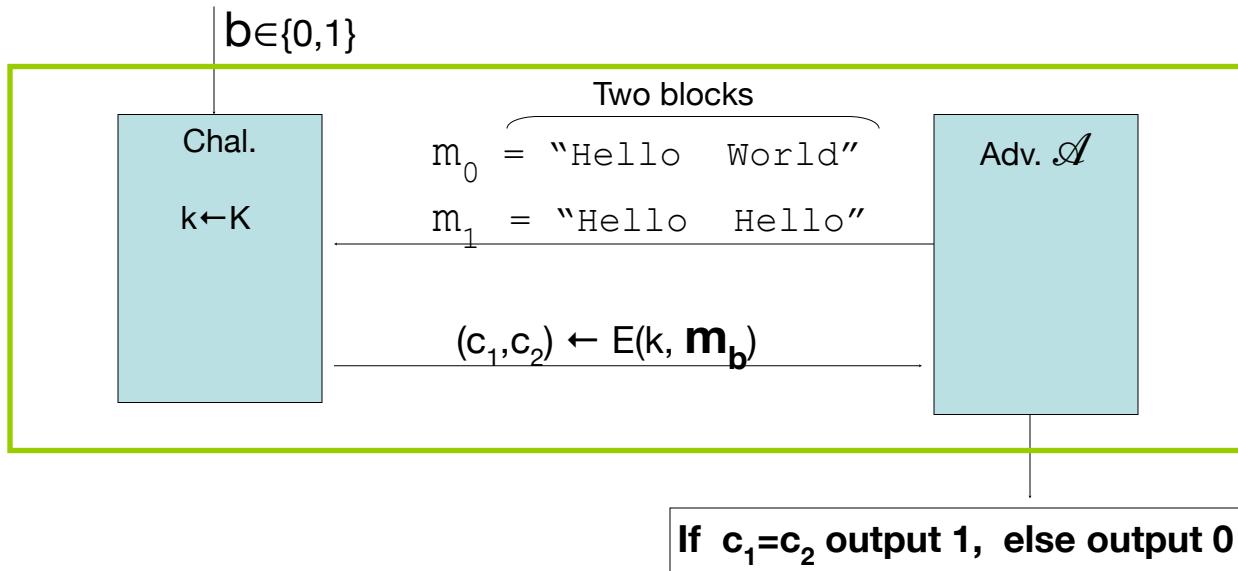
Original penguin

ECB encrypted penguin

(courtesy B. Preneel)

ECB is not Semantically Secure even for 1 msg

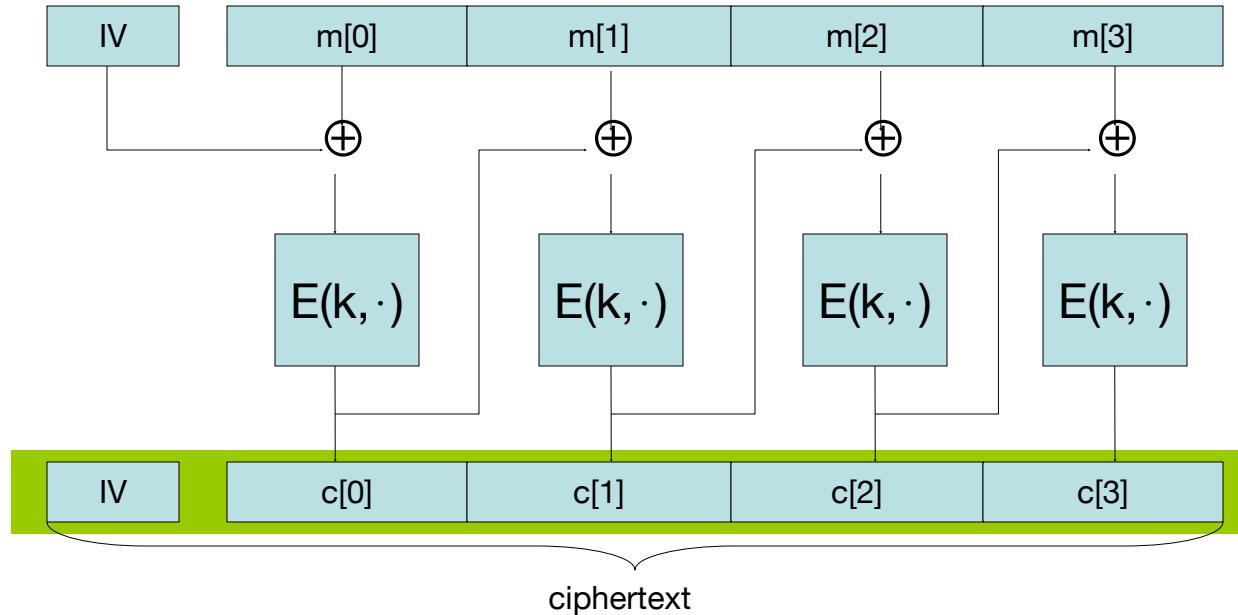
ECB is not semantically secure for messages that contain two or more blocks.



Then $\text{Adv}_{\text{SS}}[\mathcal{A}, \text{ECB}] = 1$

Secure Construction 1: CBC with random nonce

Cipher block chaining with a random IV (IV = nonce)



note: CBC where attacker can predict the IV is not CPA-secure. HW.

CBC: CPA Analysis

CBC Theorem: For any $L > 0$,

If E is a secure PRP over (K, X) then

E_{CBC} is a sem. sec. under CPA over (K, X^L, X^{L+1}) .

In particular, for a q -query adversary A attacking E_{CBC}
there exists a PRP adversary B s.t.:

$$\text{Adv}_{\text{CPA}}[A, E_{\text{CBC}}] \leq 2 \cdot \text{Adv}_{\text{PRP}}[B, E] + 2 \cdot q^2 \cdot L^2 / |X|$$

Note: CBC is only secure as long as $q^2 \cdot L^2 \ll |X|$

messages enc. with key

max msg length

Next

HW

- Construct PRF from PRG!

Next Class:

- What happens if adversary can tamper with messages?