

CIS 5560

Cryptography Lecture 6

Course website:

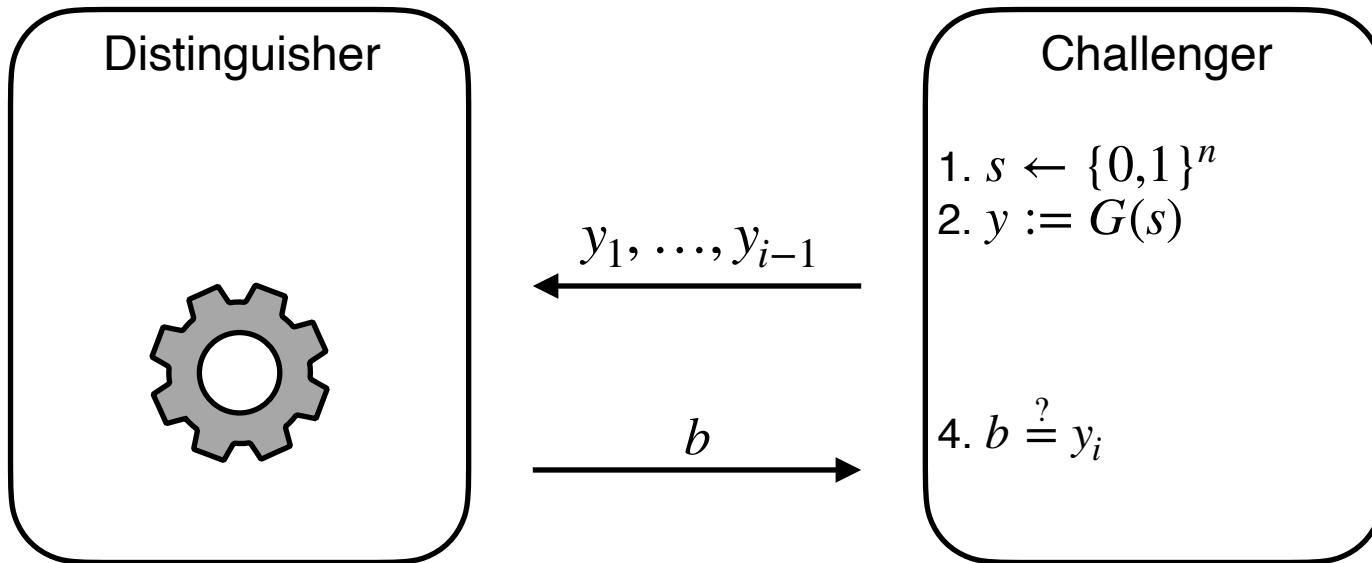
pratyushmishra.com/classes/cis-5560-s25/

Announcements

- **HW 2 out tomorrow**
 - Due **Friday**, Feb 14 at 5PM on Gradescope
 - Covers PRGs, OWFs, and PRFs
- HW1 due this Friday (Feb 7)
- HW Party tomorrow 4:30-6PM AGH 105A

Recap of last lecture

PRG Next-Bit Unpredictability



$$\Pr \left[A(y_1, \dots, y_{i-1}) = y_i \middle| \begin{array}{l} s \leftarrow \{0,1\}^n \\ y \leftarrow G(s) \end{array} \right] = 1/2 + \varepsilon(n)$$

Hardcore Bits

HARDCORE PREDICATE

For any $F: \{0,1\}^n \rightarrow \{0,1\}^m$, $B: \{0,1\}^n \rightarrow \{0,1\}$ is a **hardcore predicate** if for every efficient A , there is a negligible function μ s.t.

$$\Pr \left[b = B(x) \middle| \begin{array}{l} x \leftarrow \{0,1\}^n \\ b \leftarrow A(F(x)) \end{array} \right] = 1/2 + \mu(n)$$

OWP \Rightarrow PRG

Theorem

Let F be a one-way permutation, and let B be a hardcore predicate for F .

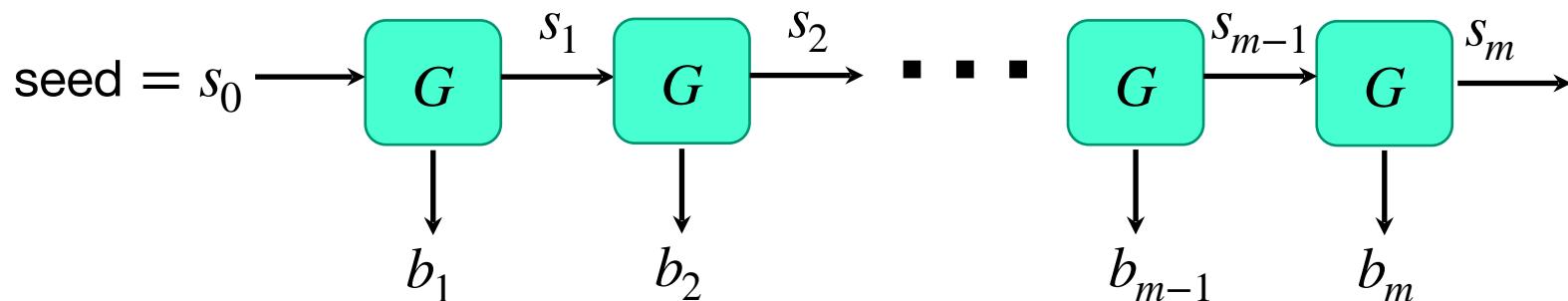
Then, $G(x) := F(x) \parallel B(x)$ is a PRG.

Length extension: One bit to Many bits

PRG length extension.

Theorem: If there is a PRG G that stretches by one bit, there is one that stretches by many bits

Construction of $G'(s_0)$



Today's Lecture

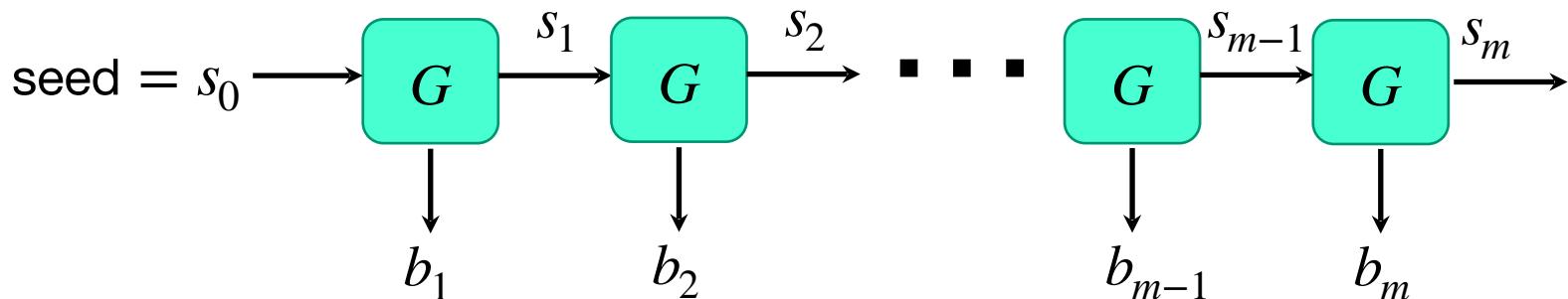
- Proving length extension for PRGs
- Motivation for even more extension: encryption for many messages
 - Definition
 - Attempted construction from PRGs
- PRFs
- PRPs
- Block ciphers

Length extension: One bit to Many bits

PRG length extension.

Theorem: If there is a PRG G that stretches by one bit, there is one that stretches by many bits

Construction of $G'(s_0)$



Indistinguishable distributions

Definition: Two distributions X and Y are *computationally indistinguishable* if for every efficient distinguisher

$$\left| \Pr[D(x) = 1 \mid x \leftarrow X] - \Pr[D(y) = 1 \mid y \leftarrow Y] \right| = \text{negl}(n)$$

Denoted by $X \approx Y$

Eg: PRG security says that $X := \{G(x) \mid x \leftarrow \{0,1\}^n\} \approx Y := \{y \mid y \leftarrow \{0,1\}^m\}$

Hybrid argument

The key steps in a hybrid argument are:

1. Construct a sequence of poly many distributions b/w the two target distributions.
2. Argue that each pair of neighboring distributions are indistinguishable.
3. Conclude that the target distributions are indistinguishable via contradiction:
 - A. Assume the target distributions are distinguishable
 - B. Must be the case that an intermediate pair of distributions is distinguishable**
 - C. This contradicts 2 above.

Hybrid argument

B. Must be the case that an intermediate pair of distributions is distinguishable

Lemma: Let $p_0, p_1, p_2, \dots, p_m$ be advantage of distinguishing $(H_0, H_1), (H_1, H_2), \dots, (H_{n-1}, H_n)$

If $p_0 - p_m \geq \epsilon$ there is an index i such that $p_i - p_{i+1} \geq \epsilon/m$.

Proof:

$$p_m - p_0 = (p_m - p_{m-1}) + (p_{m-1} - p_{m-2}) + \dots + (p_1 - p_0) \geq \epsilon$$

At least one of the m terms has to be at least ϵ/m (averaging).

Proof by hybrid argument

PRG Indistinguishability of G says that the following distributions are indistinguishable:

$$\{G(x) \mid x \leftarrow \{0,1\}^n\} \text{ and } \{y \mid y \leftarrow \{0,1\}^m\}$$

Our goal: show that $\{G'(x) \mid x \leftarrow \{0,1\}^n\}$ and $\{y \mid y \leftarrow \{0,1\}^{m'}\}$ are indistinguishable

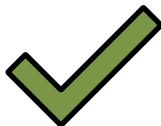
How to do this? Let's create more (supposedly) indistinguishable distributions:

$$H_0 = \{G'(x) \mid x \leftarrow \{0,1\}^n\}$$

$$= \{\text{running } G \text{ } n \text{ times}\}$$

$$H_i = ?$$

$$H_n = \{y \mid y \leftarrow \{0,1\}^{m'}\}$$



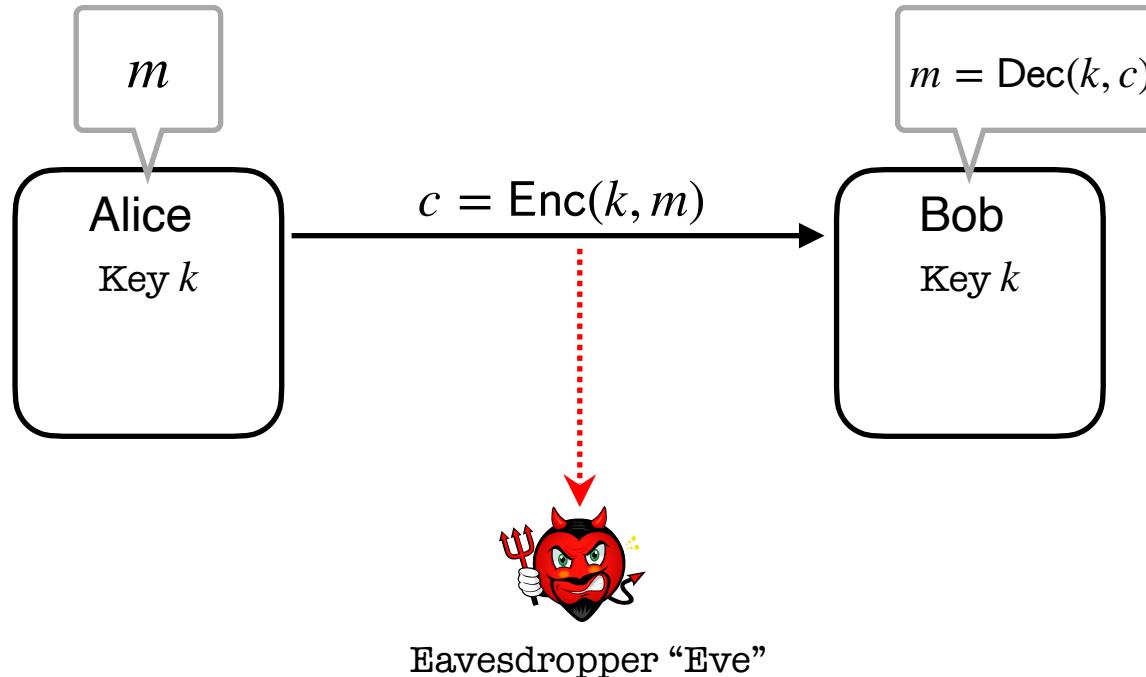
Q1: Do PRGs exist?

Q2: How do we encrypt longer messages or many messages with a fixed key?

(**Length extension**: If there is a PRG that stretches by one bit, there is one that stretches by polynomially many bits)

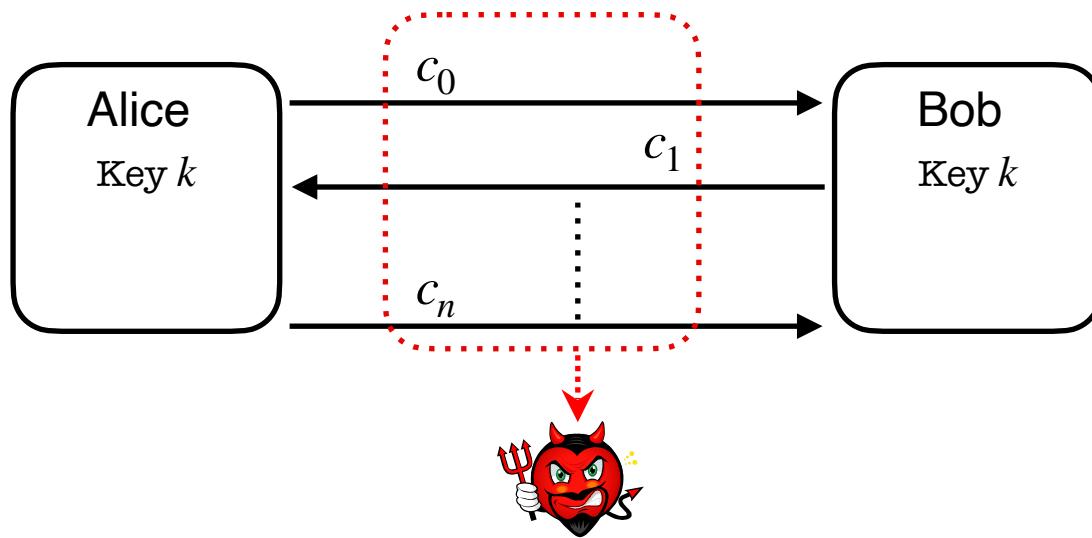
(**Pseudorandom functions**: PRGs with exponentially large stretch and “random access” to the output.)

So far: Secure Communication for 1 Message



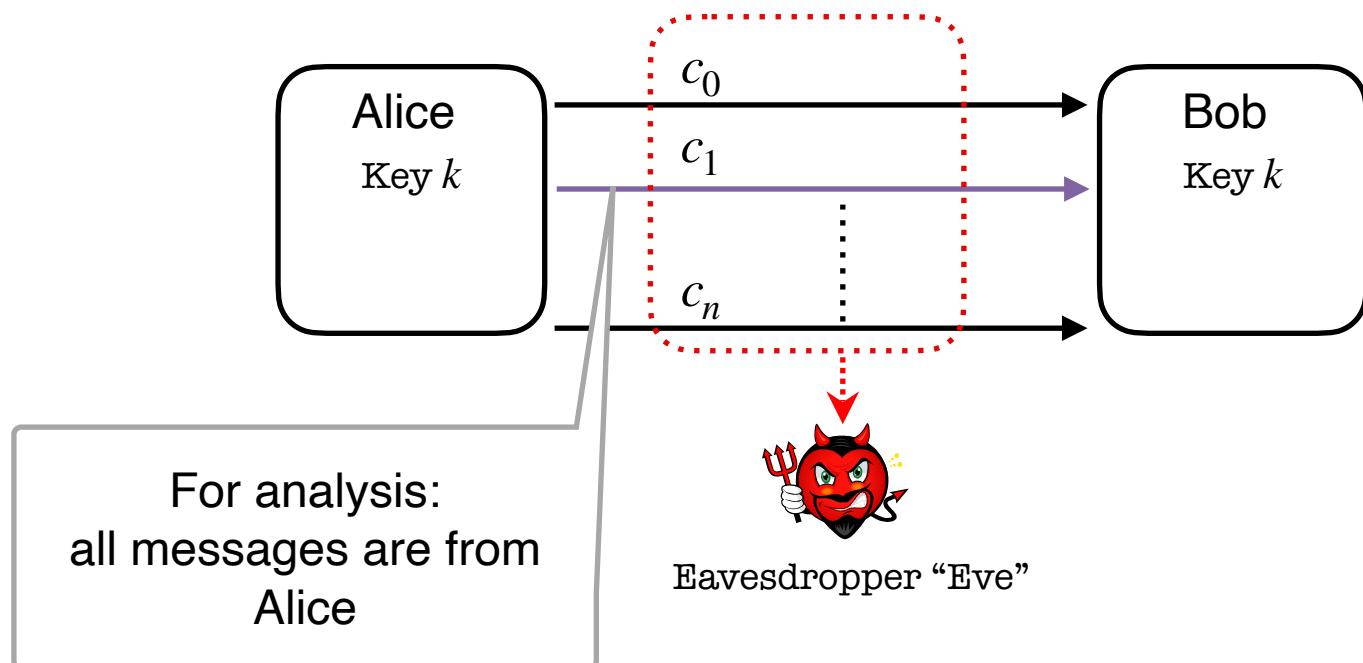
Alice wants to send a message m to Bob without revealing it to Eve.

What about a secure *conversation*?

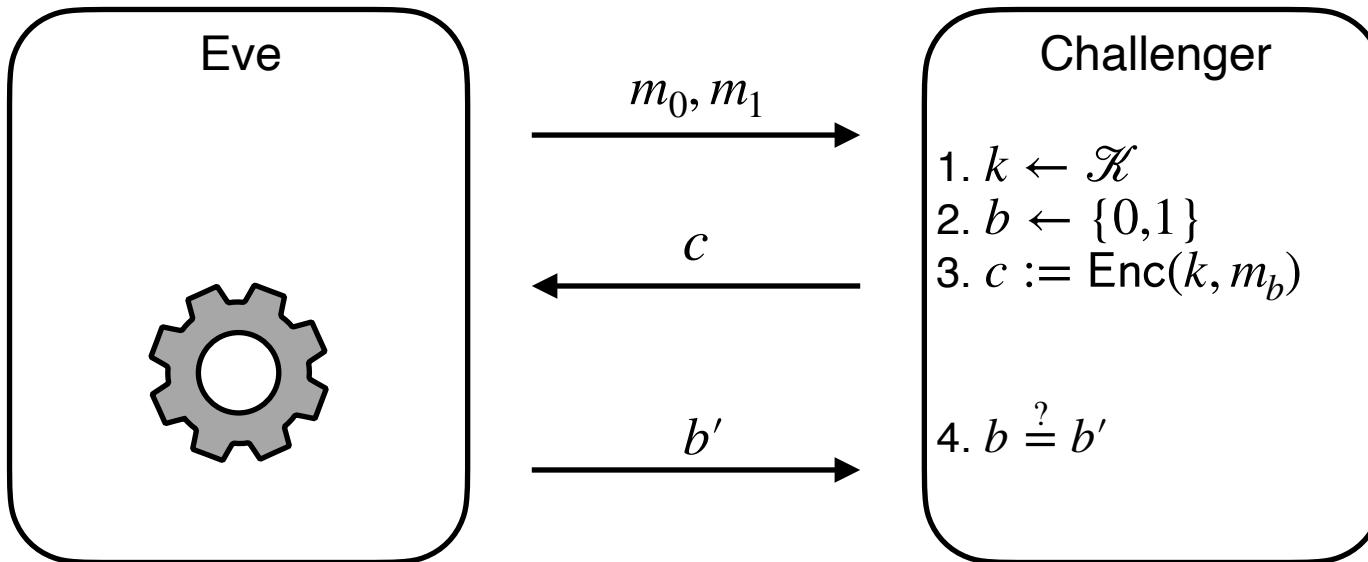


**Alice and Bob want to send *many* messages to each other,
without revealing *any* of them to Eve.**
Requirement: Must use the same key!

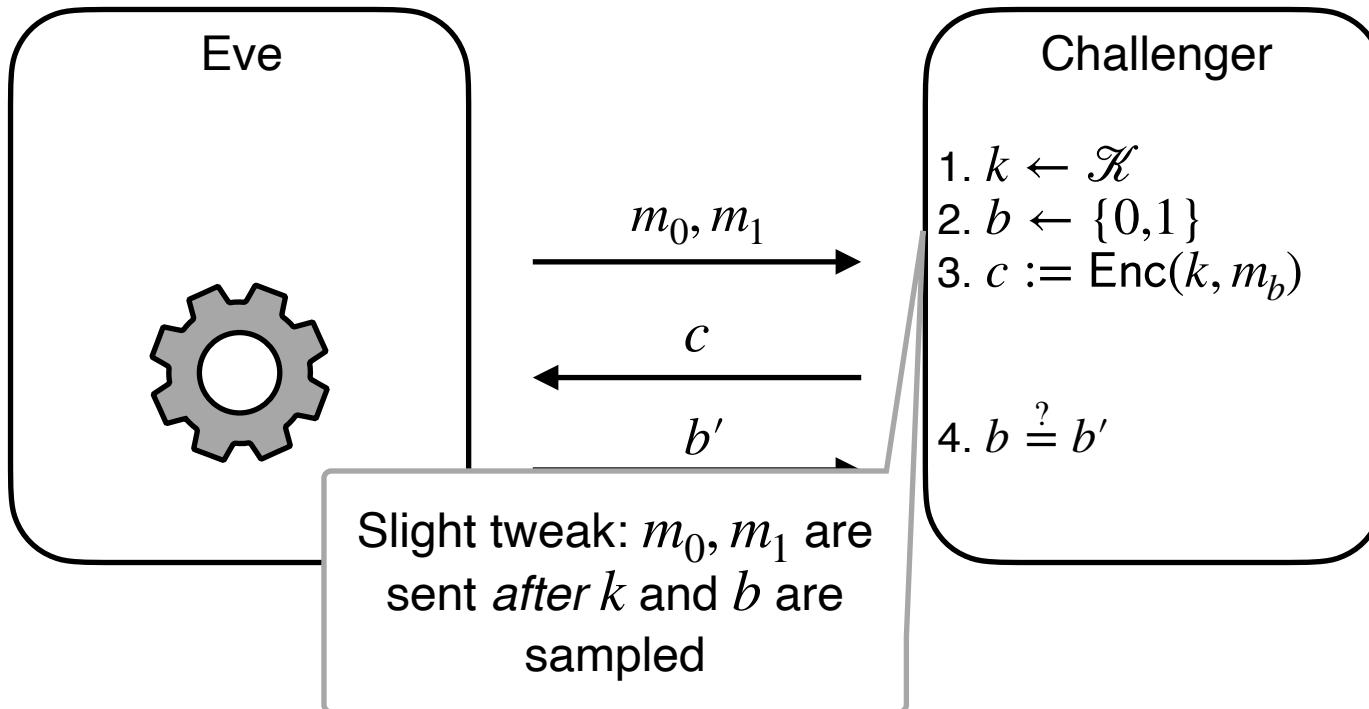
Simplification from Adversarial perspective



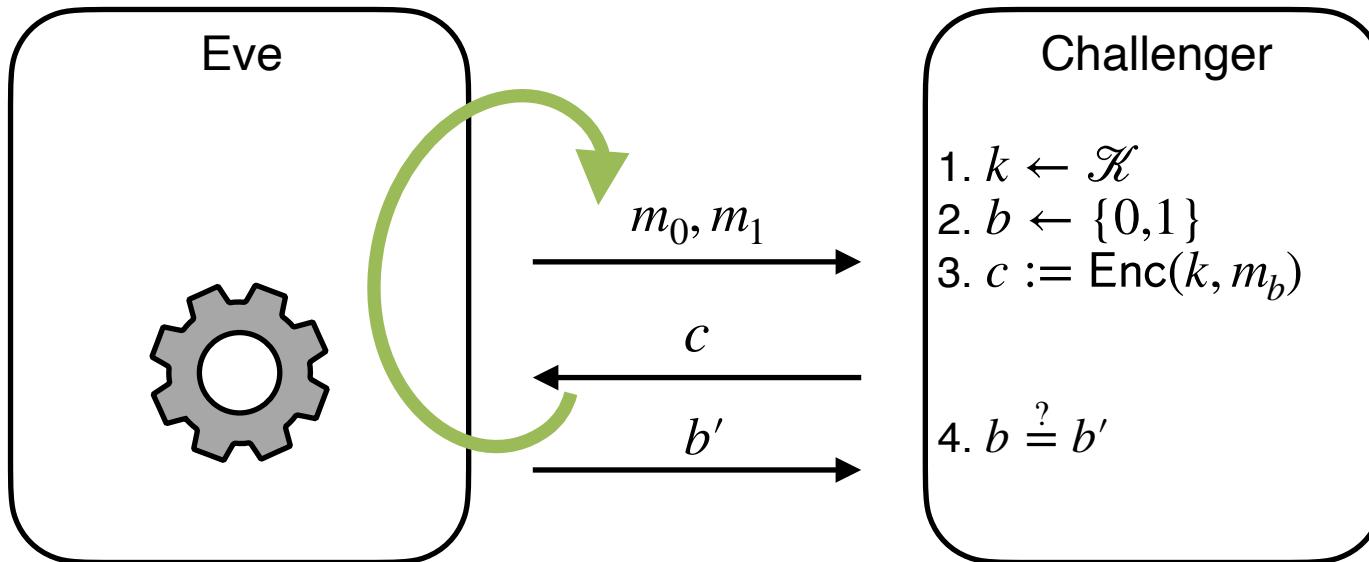
Semantic Security for 1 msg



Semantic Security for 1 msg

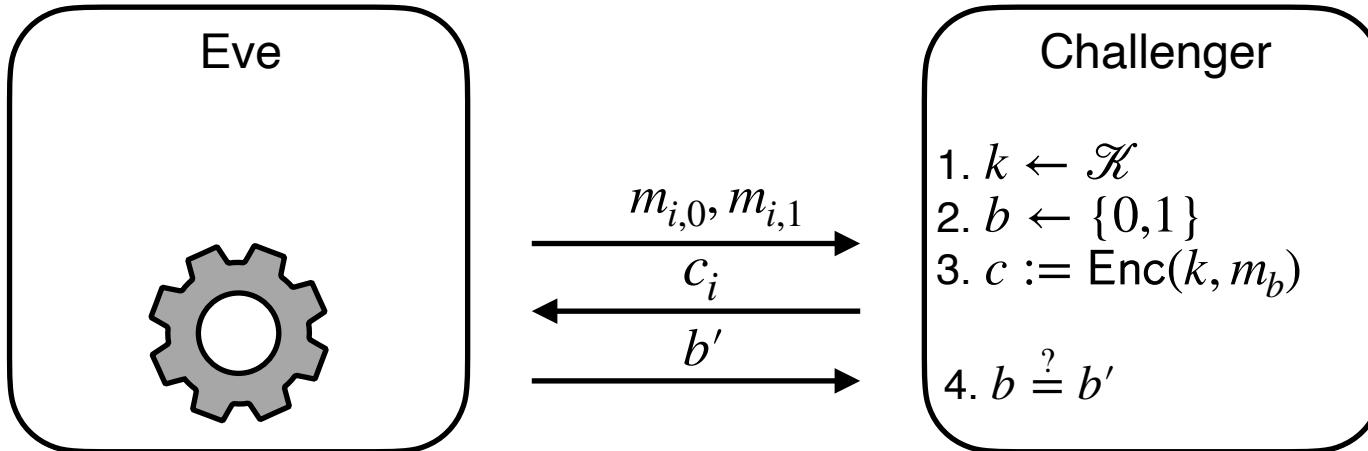


Semantic Security for many msgs?



Repeat experiment many times!

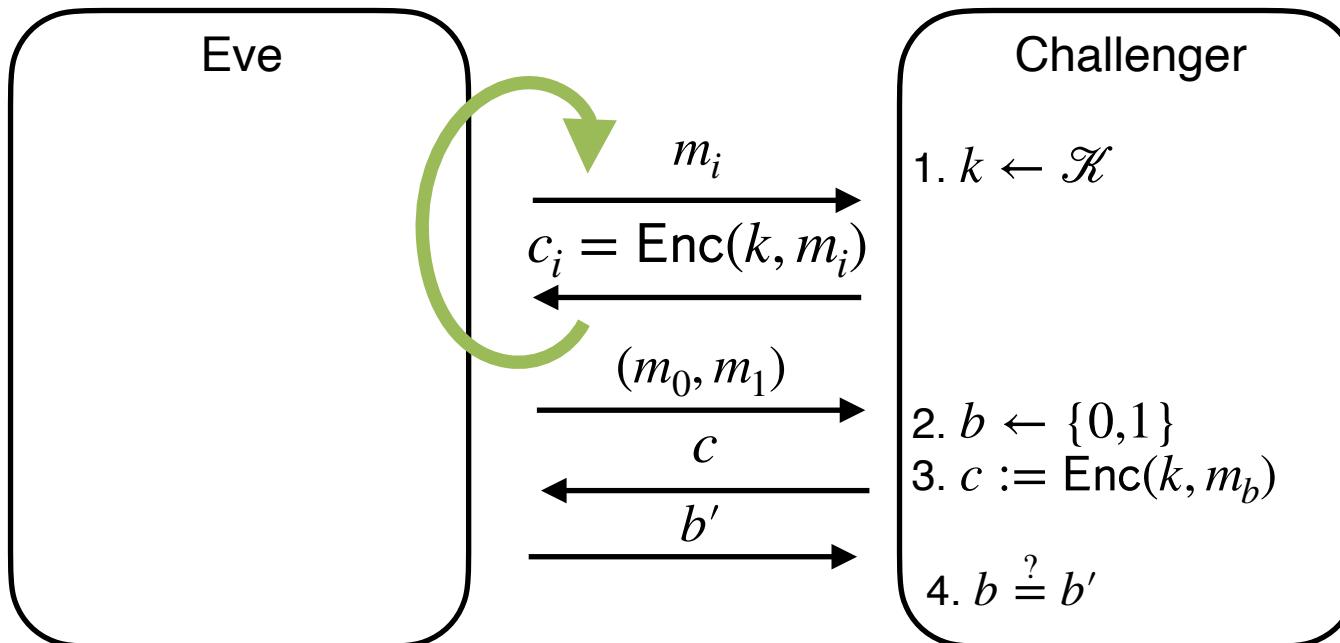
Semantic Security for Many Msgs



For every **PPT** Eve, there exists a negligible fn ε ,

$$\Pr \left[\text{Eve}(c_q) = b \left| \begin{array}{l} k \leftarrow \mathcal{K} \\ b \leftarrow \{0,1\} \\ \text{For } i \text{ in } 1, \dots, q : \\ (m_{i,0}, m_{i,1}) \leftarrow \text{Eve}(c_{i-1}) \\ c_i = \text{Enc}(k, m_{i,b}) \end{array} \right. \right] < \frac{1}{2} + \varepsilon(n)$$

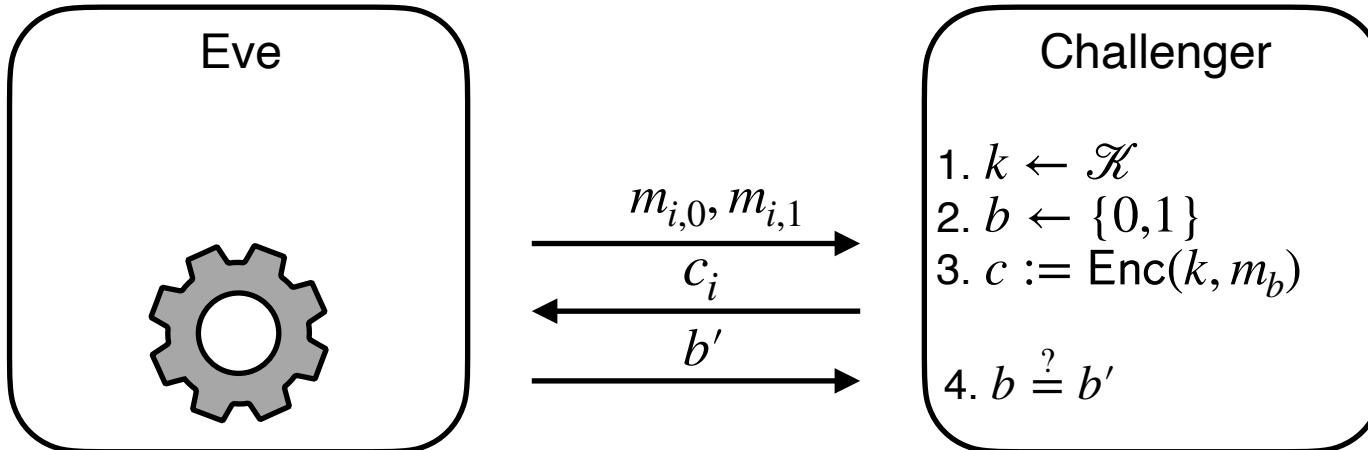
Alternate (Stronger?) definition



Also called “IND-CPA”: Indistinguishability under Chosen-Plaintext Attacks

Equivalent to previous definition: just set $m_{i,0} = m_{i,1} = m_i$

Semantic Security for Many Msgs



For every PPT Eve and q , there exists a negligible fn ϵ , such that

$$\Pr \left[\text{Eve}(c_q) = b \left| \begin{array}{l} k \leftarrow \mathcal{K} \\ b \leftarrow \{0,1\} \\ \text{For } i \text{ in } 1, \dots, q : \\ (m_{i,0}, m_{i,1}) \leftarrow \text{Eve}(c_{i-1}) \\ c_i = \text{Enc}(k, m_{i,b}) \end{array} \right. \right] < \frac{1}{2} + \epsilon(n)$$

Construction Attempt #1: Stream Ciphers

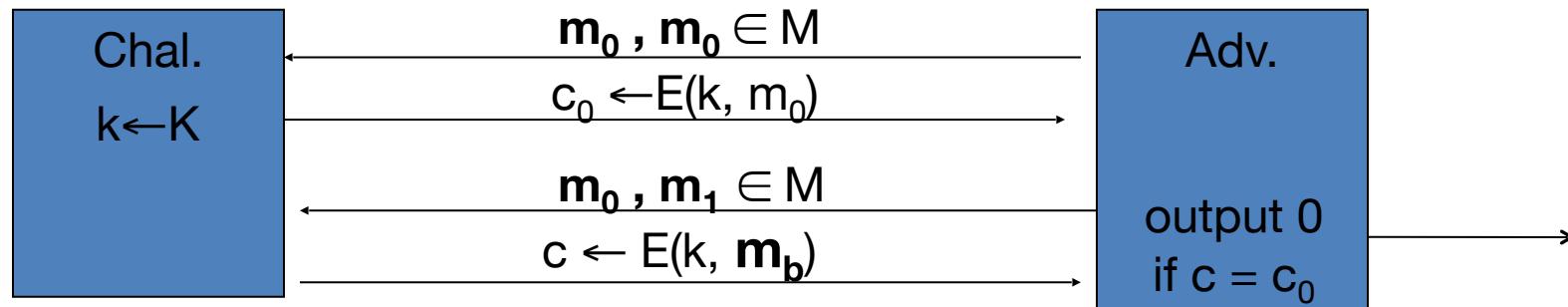
- $\text{Gen}(1^k) \rightarrow k$:
 - Sample an n -bit string at random.
- $\text{Enc}(k, m) \rightarrow c$:
 - Expand k to an $m(n)$ -bit string using PRG: $s = G(k)$
 - Output $c = s \oplus m$
- $\text{Dec}(k, c) \rightarrow m$:
 - Expand k to an $m(n)$ -bit string using PRG: $s = G(k)$
 - Output $m = s \oplus c$

Is this secure?

Stream Ciphers insecure under CPA

Problem: $E(k, m)$ outputs same ciphertext for msg m .

Then:



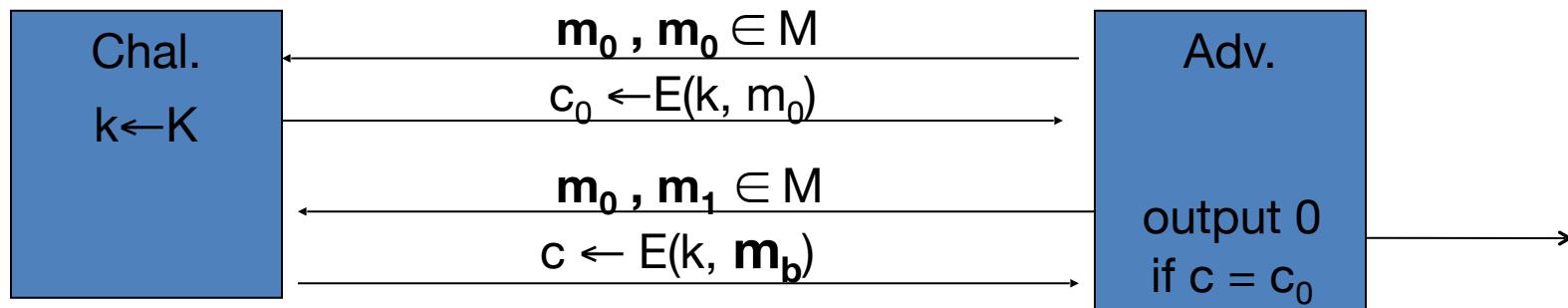
So what? an attacker can learn that two encrypted files are the same, two encrypted packets are the same, etc.

- Leads to significant attacks when message space M is small

Stream Ciphers insecure under CPA

Problem: $E(k, m)$ always outputs same ciphertext for msg m .

Then:



If secret key is to be used multiple times \Rightarrow

**given the same plaintext message twice,
encryption must produce different outputs.**

Ideas for multi-message encryption

- State? (e.g. counter of num msgs)
- Randomness?

Approach 1: Stateful encryption

- $\text{Gen}(1^n) \rightarrow k$:
 - Sample an n -bit string at random.
- $\text{Enc}(k, m, \text{st}) \rightarrow c$:
 1. Interpret st as number ℓ of messages encrypted so far.
 2. Run PRG: $s = G(k)$
 3. Discard first ℓ bits of s to get s'
 4. Set $\ell := \ell + 1$
 5. Output $c = s' \oplus m$
- $\text{Dec}(k, c, \text{st}) \rightarrow m$:
 - Repeat steps 1 through 4 of Enc
 - Output $m = s' \oplus c$

Does this work?

Ans: Yes!

Exercise: reduce to PRG security

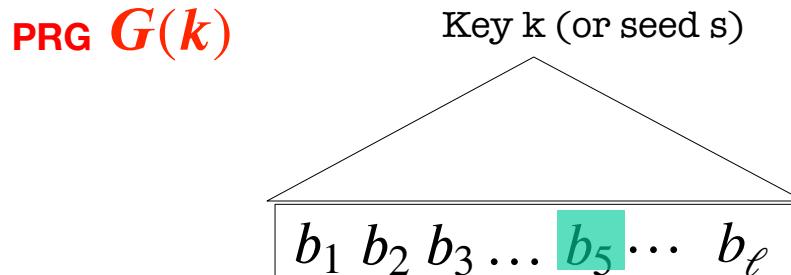
Pros:

- Relies on existing tools
- Generally fast

Cons:

- Must maintain counter of encrypted messages
- Must rerun PRG from start every time
- Sequential encryption/decryption

Problem: PRGs are sequential



- ♦ With a PRG, accessing the ℓ -th bit takes time ℓ .
- ♦ How to get efficient *random access* into output?
- ♦ That is, we want some function such that $F(\ell) = \ell$ -th bit

New tool:
Pseudorandom
Function

Pseudorandom Functions

Collection of functions $\mathcal{F}_\ell = \{F_k : \{0,1\}^\ell \rightarrow \{0,1\}^m\}_{k \in \{0,1\}^n}$

- indexed by a key k
- n : key length, ℓ : input length, m : output length.
- Independent parameters, all $\text{poly}(\text{sec-param}) = \text{poly}(n)$
- #functions in $\mathcal{F}_\ell \leq 2^n$ (singly exponential in n)

Gen(1^n): Generate a random n -bit key k .

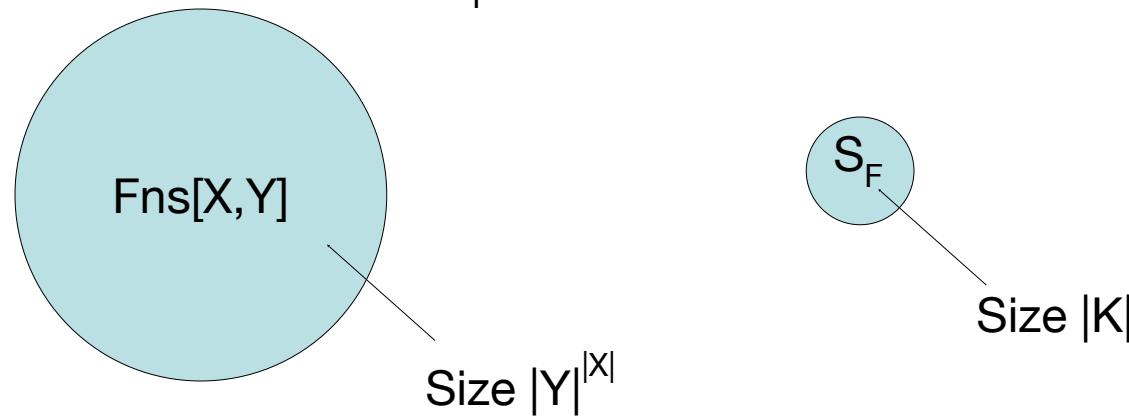
Eval(k, x) is a poly-time algorithm that outputs $F_k(x)$

Secure PRFs

- Let $F: K \times X \rightarrow Y$ be a PRF

$$\begin{cases} \text{Fns}[X, Y]: \text{ the set of \underline{all} functions from } X \text{ to } Y \\ S_F = \{ F(k, \cdot) \text{ s.t. } k \in K \} \subseteq \text{Fns}[X, Y] \end{cases}$$

- Intuition: a PRF is **secure** if
a random function in $\text{Fns}[X, Y]$ is indistinguishable from
a random function in S_F

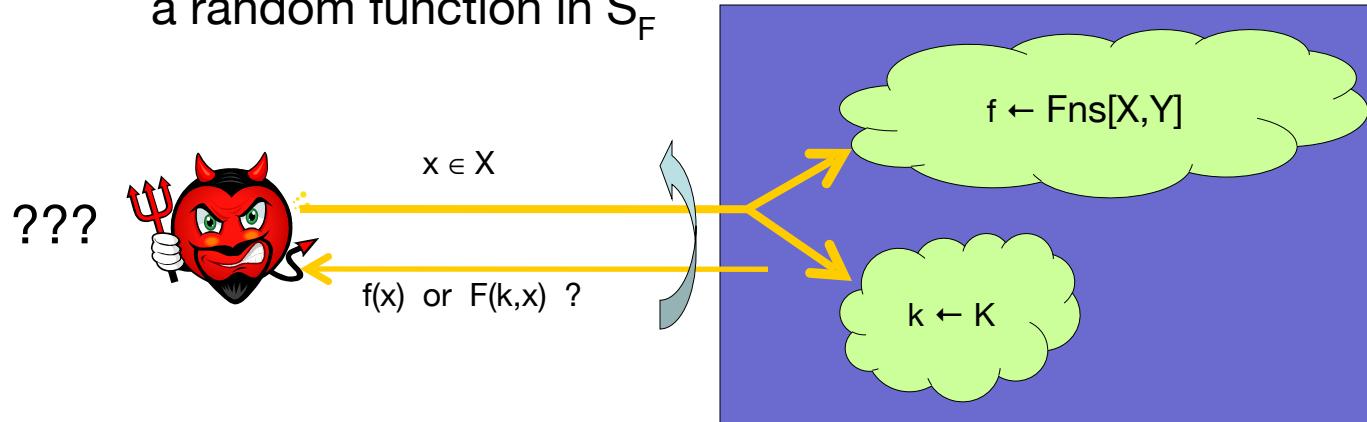


Secure PRFs

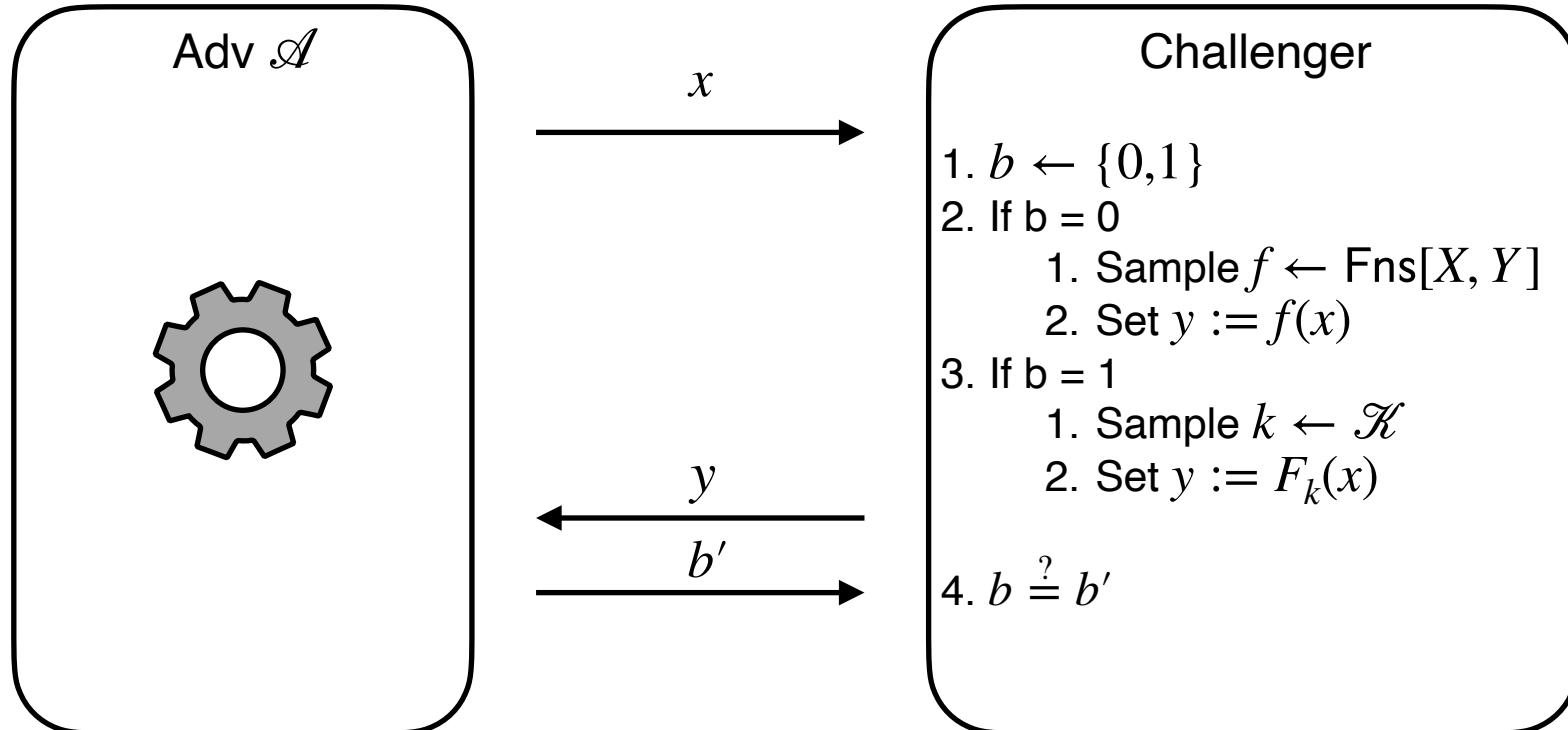
- Let $F: K \times X \rightarrow Y$ be a PRF

$\left\{ \begin{array}{l} \text{Fns}[X, Y]: \text{ the set of \underline{all} functions from } X \text{ to } Y \\ S_F = \{ F(k, \cdot) \text{ s.t. } k \in K \} \subseteq \text{Funs}[X, Y] \end{array} \right.$

- Intuition: a PRF is **secure** if a random function in $\text{Fns}[X, Y]$ is indistinguishable from a random function in S_F

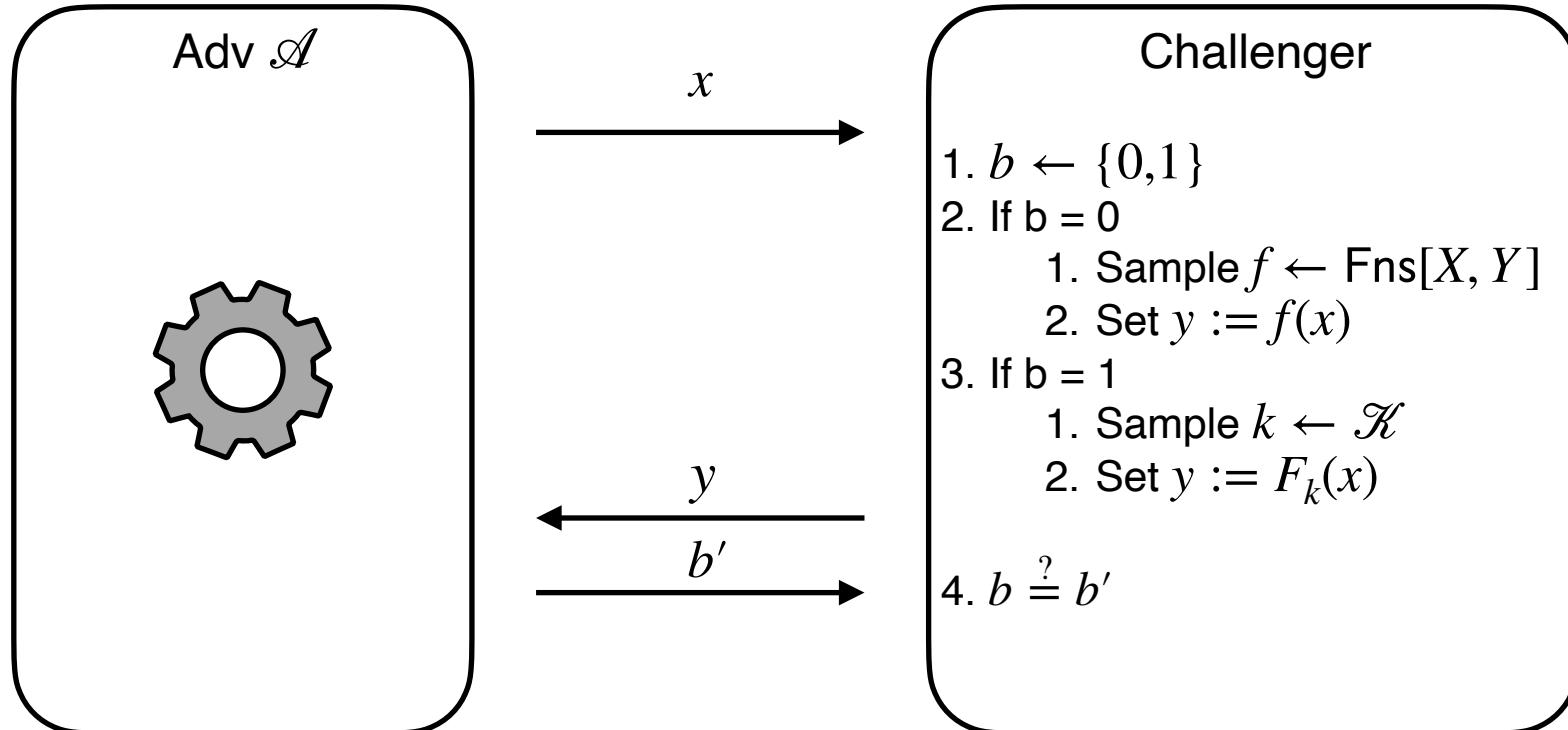


PRF Security



$$\Pr[b = b'] = 1/2 + \text{negl}(n)$$

PRF Security (Advantage defn)



$$\left| \Pr[b' = 1 \mid b = 0] - \Pr[b' = 1 \mid b = 1] \right| = \text{negl}(n)$$

An example

Let $K = X = \{0,1\}^n$.

Consider the PRF: $F(k, x) = k \oplus x$ defined over (K, X, X)

Let's show that F is insecure:

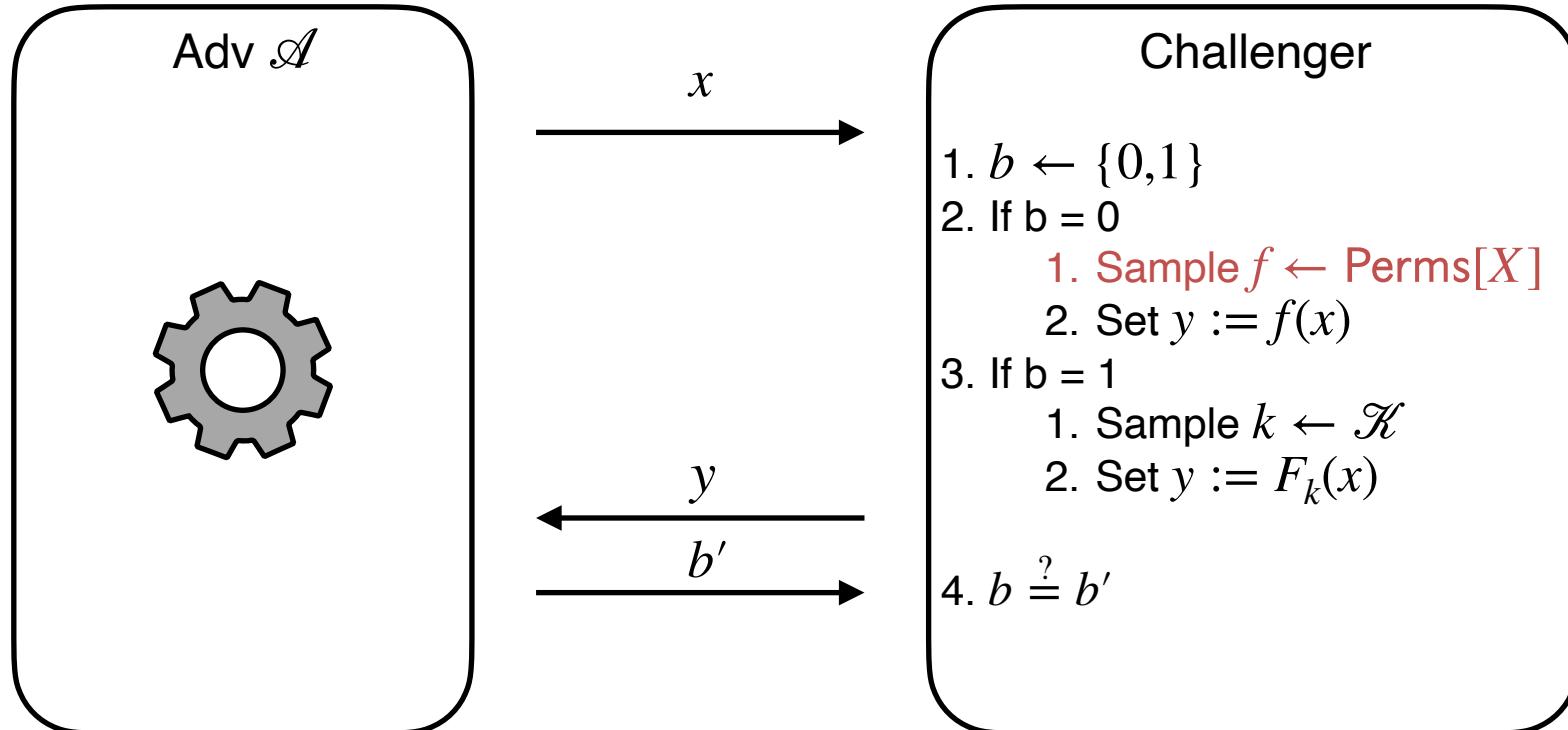
- Adversary \mathcal{A} :
- (1) choose arbitrary $x_0 \neq x_1 \in X$
 - (2) query for $y_0 = f(x_0)$ and $y_1 = f(x_1)$
 - (3) output '0' if $y_0 \oplus y_1 = x_0 \oplus x_1$, else '1'

$$\Pr[\text{EXP}(0) = 0] = 1$$

$$\Pr[\text{EXP}(1) = 0] = 1/2^n$$

$$\Rightarrow \text{Adv}_{\text{PRF}}[\mathcal{A}, F] = 1 - (1/2^n) \quad (\text{not negligible})$$

PRP Security



$$\Pr[b = b'] = 1/2 + \text{negl}(n)$$

PRFs → multi-message encryption

Ideas for multi-message encryption

- State? (e.g. counter of num msgs)
- Randomness?