CIS 5560

Cryptography
Lecture 5

Course website:
pratyushmishra.com/classes/cis-5560-s25/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/

Announcements

- HW 1 is out; due Friday, Feb 7 at 5PM on Gradescope
« Covers PRGs, OTPs, and semantic security

- Get started today and make use of office hours, HW
party!

Recap of last lecture

PRG — Semantically Secure Encryption

(or, How to Encrypt n+1 bits using an n-bit key)

o Gen(1¥) — k:

o Sample an n-bit string at random.

o Enc(k,m) — c:
o Expand k to an n + 1-bit string using PRG: s = G (k)
o Outputc =s @ m

o Dec(k,c) — m:
o Expand k to an n + 1-bit string using PRG: s = G (k)
o Outputm =s @ c
Correctness:

Dec(k,c)outputs G(k) Dc=Gk) D Gk)Dm =m

Distinguisher

1. Get two messages m,,, m,, from Eve and

sample a bit b
2.Compute b’ < Eve(y &

3.Output b’ = b, output “0”
4.0therwise, output “1”

D(y):

my)

World O
Pr[D outputs "0"| b = 0 (y is pseudorandom)]
= Pr[Eve outputs b’ = b| b = 0]
=p>1/2+ 1/p(n)

World 1

Pr[D outputs "1"| b =1 (y is random)]

= Pr[Eveoutputs b’ =b| b =1

=p'=1/2

Therefore,

Pr[D outputs "PRG" | y is pseudorandom] — Pr[D outputs "PRG" | y is random] ‘

> 1/p(n)

. 5

PRG — Semantically Secure Encryption

Ol1:

02:

(or, How to Encrypt n+1 bits using an n-bit key)

Do PRGs exist?
(Exercise: If P=NP, PRGs do not exist.)

How do we encrypt longer messages or many
messages with a fixed key?

(Length extension: If there is a PRG that stretches by one
bit, there is one that stretches by polynomially many bits)

(Pseudorandom functions: PRGs with exponentially large
stretch and “random access” to the output.)

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework

(e.g. “appropriately chosen functions composed appropriately
many times look random?”)

2. Come up with a candidate construction

" ré Rijndael
— (now the Advanced
++ Encryption Standard)

Constructing PRGs: Two Methodologies

The Foundational Methodology (much of this course)

Reduce to simpler primitives.

“Science wins either way” -Silvio Micali

Digital
Signatures PRF

%
:\ PRG /
Hashing N5 AN
/

N OWF

A

well-studied, average-case hard, problems

One-way Functions: The Definition

A function (family) {F,},.cn Where F(-) : {0,1}" — {0,1}"™ is
one-waly if for every p.p.t. adversary A, the following holds:

Pr|F,(x)=y

x < {0,1}"]
y:=F,(x)

x < A(1",y)

= negl(n)

« Can always find an inverse with unbounded time
* ... but should be hard with probabilistic

polynomial time

One-way Permutations:
One-to-one one-way functions with m(n) = n.

OWP — PRG, Attempt #2

Let /' : {0,1}" — {0,1}" be a one-way permutation

Imagine there existed B : {0,1}" — {0,1} such that
the following was a PRG

PRG(k)

1.0utput F(k) || B(k)

What properties do we need of B?

1. One-way: can't find k from B(k)
2. Pseudorandom: B(k) looks like a random bit
3. Unpredictable: B(k) is unpredictable given F(k)

Hardcore Bits

HARDCORE PREDICATE

For any F:{0,1}" - {0,1}", B:{0,1}" — {0,1}
Is a hardcore predicate if for every efficient
A, there is a negligible function u s.t.

x <« {0,1}"

Pr [b = B(x) b ACF)

] = 1/2 + u(n)

Today’s Lecture

« OWPs — PRGs
- PRG Indistinguishability = PRG Unpredictability

OWP — PRG

OWP — PRG, Attempt #2

Let /' : {0,1}" — {0,1}" be a one-way permutation

Imagine there existed B : {0,1}" — {0,1} such that
the following was a PRG

PRG(k)

1.0utput F(k) || B(k)

What properties do we need of B?

1. One-way: can't find k from B(k)
2. Pseudorandom: B(k) looks like a random bit
3. Unpredictable: B(k) is unpredictable given F(k)

OWP = PRG

Theorem

Let F be a one-way permutation, and let B be
a hardcore predicate for F.

Then, G(x) := F(x) || B(x) is a PRG.

Proof (next slide): Use next-bit unpredictability.

PRG Next-Bit Unpredictability

/ Distinguisher \ / Challenger \
1.5 <« {0,1}"
Vi eeos Vit 2.y :=G(s)
<
@ b . 4. b ~ Y;
_ J _ J
Pr |A _y PO
LAY, - Yim) = Y v G| =T &(n)

PRG Def 2: Next-bit Unpredictability

Definition [Next-bit Unpredictability]:
A deterministic polynomial-time computable function G: {0,1}n
— {0,1}m is next-bit unpredictable if:

for every PPT algorithm P (called a next-bit predictor) and
everyi € {1,...,m}, if there is a negligible function | such

that: 1
a Pr[y < G(U,):P(y1y,...:1) = y,-] =5+ KM

Notation: y,.y,....y, are the bits of the m-bit string y.

Def 1 and Def 2 are Equivalent

Theorem:
A PRG G is indistinguishable if and only if it
IS next-bit unpredictable.

NBU and Indistinguishability

¢ Next-bit Unpredictability (NBU): Seemingly much weaker
requirement. Only says that next bit predictors, a
particular type of distinguishers, cannot succeed.

¢ Yet, surprisingly, Next-bit Unpredictability (NBU) =
Indistinguishability.

¢ NBU often much easier to use.

OWP = PRG

Theorem: G is a PRG assuming F is a one-way permutation.

Proof: Assume for contradiction that G is not a PRG.
Therefore, there is a next-bit predictor P, and index i, and a
polynomial p such that

x <« {0,1}"

Pr [P(yy,....5i) =,
C1EOL-) =0 G

] =1/2+ 1/p(n)

Observation: The index i has to be n + 1. Do you see why?

Hint: G(x) := F(x)| | B(x) and we
know F'(x) is uniformly distributed

OWP = PRG

Theorem: G is a PRG assuming F is a one-way permutation.

Proof: Assume for contradiction that G is not a PRG.

Therefore, there is a next-bit predictor P, and polynomial p
such that

x <« {0,1}"

Pr|P(y,...,y)=
I (yl yn) yn+1 y — G(X)

] = 1/2 + 1/p(n)

OWP = PRG

Theorem: G is a PRG assuming F is a one-way permutation.

Proof: Assume for contradiction that G is not a PRG.

Therefore, there is a next-bit predictor P, and polynomial p
such that

x <« {0,1}"

P =
r [P(F(X)) B(x) v < G(x)

] = 1/2 + 1/p(n)

So, P can figure out B(x) and break hardcore property!
QED.

Aside: Indistinguishability => Unpredictability

1. Indistinguishability = NBU

Proof: by contradiction.

Suppose for contradiction that there is a p.p.t. predictor P, a
polynomial function pand ani € {1,...,m} s.t.

1
Prl y < G(Un):P(ylyz...yi_l) = y,.] > > + 1/p(n)

Then, | claim that P essentially gives us a distinguisher D!

Consider D which gets an m-bit string y and does the following:
1. Run Pon the (i — 1)-bit prefix y,y,...y,_;-

2. If Preturns the i-th bit y,, then output 1 (“PRG”) else output O
(“Random?”).

If Pis p.p.t. sois D.

1. Indistinguishability = NBU

Consider D which gets an m-bit string y and does the following:
1. Run Pon the (i — 1)-bit prefix y,y,...y,_;.

2. If Preturns the i-th bit y,, then output 1 (= “PRG”) else
output 0 (= “Random”).

We want to show: there is a polynomial p’ s.t.

| Prly <« G(U,): D(y) =1]
—Prly « Um: D(y) =1] | = 1/p'(n)

1. Indistinguishability —> NBU

Consider D which gets an m-bit string y and does the following:
1. Run Pon the (i — 1)-bit prefix y,y,...y,_;.

2. If Preturns the i-th bit y,, then output 1 (= “PRG”) else
output 0 (= “Random”).

Prly <« G(U,): D(y) =11
= Pr[y « G(Un): P(ylyz...yi_l) = y;] (by construction of D)

> % + 1/p(n) (by assumption on P)

1. Indistinguishability —> NBU

Consider D which gets an m-bit string y and does the following:
1. Run Pon the (i — 1)-bit prefix y,y,...y,_;.

2. If Preturns the i-th bit y,, then output 1 (= “PRG”) else
output 0 (= “Random”).

1
Priy <« G(U,): D(y) =11 27+ 1/p(n)

Pr[y «<U,: D(y) =1]
= Prly «< U,: P(ylyz...yl-_l) = y] (by construction of D)
1

= — (since y is random)

2

1. Indistinguishability —> NBU

Consider D which gets an m-bit string y and does the
following:
1. Run Ponthe (i — 1)-bit prefix y;¥,...y;_q
2. If Preturns the i-th bit y;, then output 1 (= “PRG”) else
output O (= “Random?”).

Prly <« G(U,): D(y) =11 2=+ 1/p(n)

Pr[y <U,: D(y) =1] -

[\.)|>—t[\) p—

So, | Prly <« G(U,): D(y) =1]
—Prly <« Um: D(y) =1] | = 1/p(n)

Ol1:

02:

Do PRGs exist?
A: Yes, assuming OWFs

How do we encrypt longer messages or many
messages with a fixed key?

(Length extension: If there is a PRG that stretches by one
bit, there is one that stretches by polynomially many bits)

(Pseudorandom functions: PRGs with exponentially large
stretch and “random access” to the output.)

29

- So far: PRG with 1-bit expansion

* Resulting secret-key encryption:

» Key can be 1 bit shorter than message
* Not much better than OTP!

Can we do better?

PRG length extension.

Theorem: If there is a PRG that stretches by one
bit, there is one that stretches by poly many bits

¢ New Proof Technique: Hybrid Arguments. X

Before we go there, a puzzle...

Lemma: Let p,y. py. Ds. ..., p., be real numbers s.t.
Pm — Dy > E.

Then, there is an index i such that p, — p,_; > €/m.

Proof:

< — Pm— 1) (pm—l _pm—Z) +...+ (pl _pO)
&

\Y ||

At least one of the m terms has to be at least e/m
(averaging).
B

Length extension: One bit to Many bits

Let G : {0,1}" — {0,1}"*! be a PRG

Goal: use G to generate many pseudorandom bits.

Length extension: One bit to Many bits

Let G : {0,1}" — {0,1}"*! be a PRG

Goal: use G to generate many pseudorandom bits.

Construction of G'(sy)

y1 = G(sp)
seed = §, —@ >

Length extension: One bit to Many bits

Let G : {0,1}" — {0,1}"*! be a PRG

Goal: use G to generate many pseudorandom bits.

Construction of G'(sy)

y1=Dbylls
seedzso—@ >

Length extension: One bit to Many bits

Let G : {0,1}" — {0,1}"*! be a PRG

Goal: use G to generate many pseudorandom bits.

Construction of G'(sy)

51) Sm—1
| l 1 |

b, b, b b

m—1 m

Length extension: One bit to Many bits

Proof of Security (next class):

Use next-bit (or previous-bit?) unpredictability!

Construction of G'(sy)

51) Sm—1 Sin
| l 1 |

b, b, b b

m—1 m

Next class

- Why does length-extension work?
* PRFs: How to get PRGs with “exponentially-large” output

