

CIS 5560

Cryptography Lecture 5

Course website:

pratyushmishra.com/classes/cis-5560-s25/

Announcements

- **HW 1 is out;** due Friday, Feb 7 at 5PM on Gradescope
 - Covers PRGs, OTPs, and semantic security
 - Get started today and make use of office hours, HW party!

Recap of last lecture

PRG \implies Semantically Secure Encryption

(or, How to Encrypt $n+1$ bits using an n -bit key)

- $\text{Gen}(1^k) \rightarrow k$:
 - Sample an n -bit string at random.
- $\text{Enc}(k, m) \rightarrow c$:
 - Expand k to an $n + 1$ -bit string using PRG: $s = G(k)$
 - Output $c = s \oplus m$
- $\text{Dec}(k, c) \rightarrow m$:
 - Expand k to an $n + 1$ -bit string using PRG: $s = G(k)$
 - Output $m = s \oplus c$

Correctness:

$$\text{Dec}(k, c) \text{ outputs } G(k) \oplus c = G(k) \oplus G(k) \oplus m = m$$

Distinguisher $D(y)$:

1. Get two messages m_0, m_1 , from Eve and sample a bit b
2. Compute $b' \leftarrow \text{Eve}(y \oplus m_b)$
3. Output $b' = b$, output "0"
4. Otherwise, output "1"

World 0

$$\begin{aligned}\Pr[D \text{ outputs "0" } | b = 0 \text{ (y is pseudorandom)}] &= \Pr[\text{Eve outputs } b' = b | b = 0] \\ &= \rho \geq 1/2 + 1/p(n)\end{aligned}$$

World 1

$$\begin{aligned}\Pr[D \text{ outputs "1" } | b = 1 \text{ (y is random)}] &= \Pr[\text{Eve outputs } b' = b | b = 1] \\ &= \rho' = 1/2\end{aligned}$$

Therefore,

$$\left| \Pr[D \text{ outputs "PRG" } | y \text{ is pseudorandom}] - \Pr[D \text{ outputs "PRG" } | y \text{ is random}] \right| \geq 1/p(n)$$

PRG \implies Semantically Secure Encryption

(or, How to Encrypt $n+1$ bits using an n -bit key)

Q1: Do PRGs exist?

(Exercise: If $P=NP$, PRGs do not exist.)

Q2: How do we encrypt longer messages or many messages with a fixed key?

(**Length extension**: If there is a PRG that stretches by one bit, there is one that stretches by polynomially many bits)

(**Pseudorandom functions**: PRGs with exponentially large stretch and “random access” to the output.)

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework

(e.g. “appropriately chosen functions composed appropriately many times look random”)

2. Come up with a candidate construction



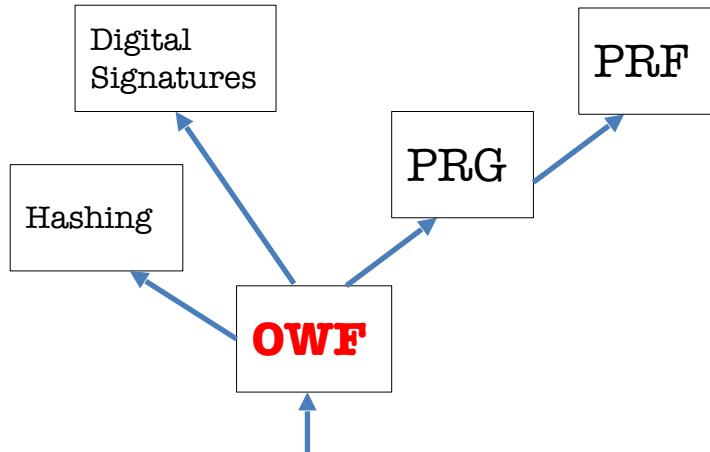
Rijndael
(now the Advanced
Encryption Standard)

Constructing PRGs: Two Methodologies

The Foundational Methodology (much of this course)

Reduce to simpler primitives.

“Science wins either way” –Silvio Micali



well-studied, average-case hard, problems

One-way Functions: The Definition

A function (family) $\{F_n\}_{n \in \mathbb{N}}$ where $F(\cdot) : \{0,1\}^n \rightarrow \{0,1\}^{m(n)}$ is **one-way** if for every p.p.t. adversary A , the following holds:

$$\Pr \left[F_n(x') = y \middle| \begin{array}{l} x \leftarrow \{0,1\}^n \\ y := F_n(x) \\ x' \leftarrow A(1^n, y) \end{array} \right] = \text{negl}(n)$$

- Can always find *an* inverse with unbounded time
- ... but should be hard with probabilistic polynomial time

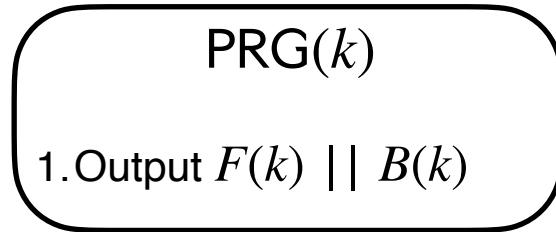
One-way Permutations:

One-to-one one-way functions with $m(n) = n$.

OWP \rightarrow PRG, Attempt #2

Let $F : \{0,1\}^n \rightarrow \{0,1\}^n$ be a one-way permutation

Imagine there existed $B : \{0,1\}^n \rightarrow \{0,1\}$ such that
the following was a PRG



What properties do we need of B ?

1. One-way: can't find k from $B(k)$
2. Pseudorandom: $B(k)$ looks like a random bit
3. Unpredictable: $B(k)$ is unpredictable given $F(k)$

Hardcore Bits

HARDCORE PREDICATE

For any $F: \{0,1\}^n \rightarrow \{0,1\}^m$, $B: \{0,1\}^n \rightarrow \{0,1\}$ is a **hardcore predicate** if for every efficient A , there is a negligible function μ s.t.

$$\Pr \left[b = B(x) \middle| \begin{array}{l} x \leftarrow \{0,1\}^n \\ b \leftarrow A(F(x)) \end{array} \right] = 1/2 + \mu(n)$$

Today's Lecture

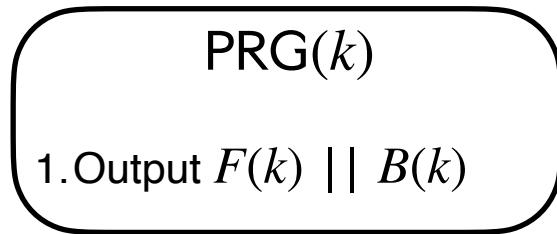
- OWPs \rightarrow PRGs
- PRG Indistinguishability \rightarrow PRG Unpredictability

OWP → PRG

OWP \rightarrow PRG, Attempt #2

Let $F : \{0,1\}^n \rightarrow \{0,1\}^n$ be a one-way permutation

Imagine there existed $B : \{0,1\}^n \rightarrow \{0,1\}$ such that
the following was a PRG



What properties do we need of B ?

1. One-way: can't find k from $B(k)$
2. Pseudorandom: $B(k)$ looks like a random bit
3. Unpredictable: $B(k)$ is unpredictable given $F(k)$

OWP \Rightarrow PRG

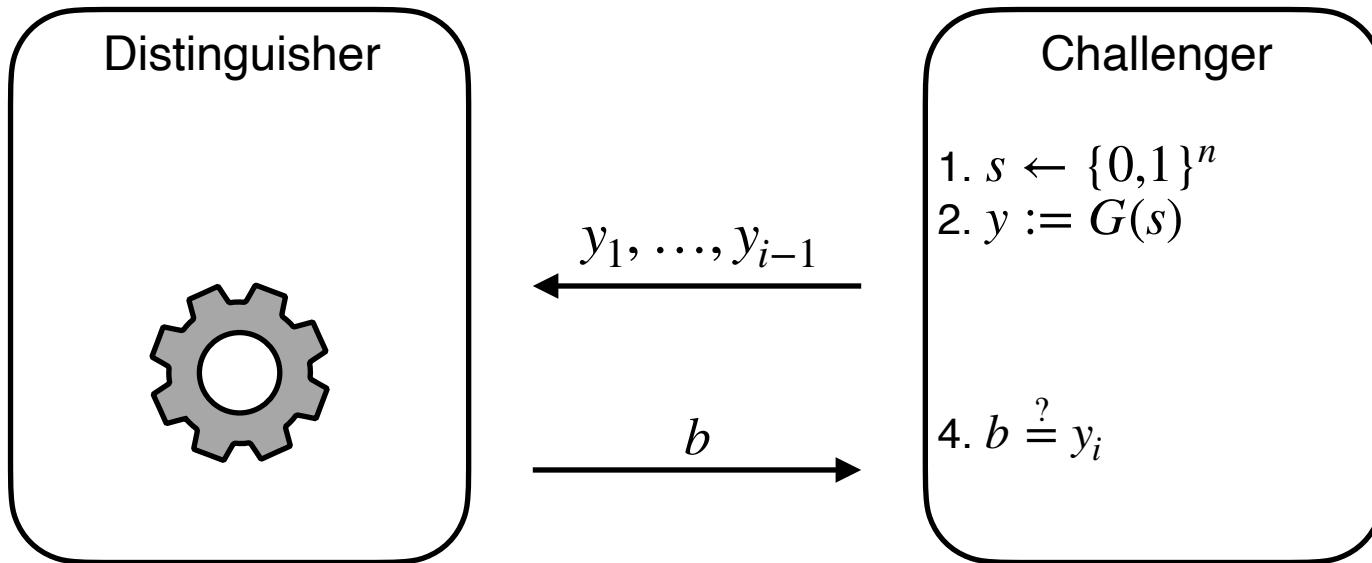
Theorem

Let F be a one-way permutation, and let B be a hardcore predicate for F .

Then, $G(x) := F(x) \parallel B(x)$ is a PRG.

Proof (next slide): Use next-bit unpredictability.

PRG Next-Bit Unpredictability



$$\Pr \left[A(y_1, \dots, y_{i-1}) = y_i \middle| \begin{array}{l} s \leftarrow \{0,1\}^n \\ y \leftarrow G(s) \end{array} \right] = 1/2 + \varepsilon(n)$$

PRG Def 2: Next-bit Unpredictability

Definition [Next-bit Unpredictability]:

A **deterministic** polynomial-time computable function $G: \{0,1\}^n \rightarrow \{0,1\}^m$ is next-bit unpredictable if:

for every PPT algorithm P (called a next-bit predictor) and every $i \in \{1, \dots, m\}$, if there is a negligible function μ such that:

$$\Pr \left[y \leftarrow G(U_n) : P(y_1 y_2 \dots y_{i-1}) = y_i \right] = \frac{1}{2} + \mu(n)$$

Notation: y_1, y_2, \dots, y_m are the bits of the m -bit string y .

Def 1 and Def 2 are Equivalent

Theorem:

A PRG G is indistinguishable if and only if it is next-bit unpredictable.

NBU and Indistinguishability

- ◆ Next-bit Unpredictability (NBU): Seemingly much weaker requirement. Only says that next bit predictors, a particular type of distinguishers, cannot succeed.
- ◆ Yet, surprisingly, Next-bit Unpredictability (NBU) = Indistinguishability.
- ◆ NBU often much easier to use.

OWP \Rightarrow PRG

Theorem: G is a PRG assuming F is a one-way permutation.

Proof: Assume for contradiction that G is not a PRG.

Therefore, there is a next-bit predictor P , and index i , and a polynomial p such that

$$\Pr \left[P(y_1, \dots, y_{i-1}) = y_i \middle| \begin{array}{l} x \leftarrow \{0,1\}^n \\ y \leftarrow G(x) \end{array} \right. \right] = 1/2 + 1/p(n)$$

Observation: The index i has to be $n + 1$. Do you see why?

Hint: $G(x) := F(x) \parallel B(x)$ and we
know $F(x)$ is uniformly distributed

OWP \Rightarrow PRG

Theorem: G is a PRG assuming F is a one-way permutation.

Proof: Assume for contradiction that G is not a PRG.

Therefore, there is a next-bit predictor P , and polynomial p such that

$$\Pr \left[P(y_1, \dots, y_{\textcolor{blue}{n}}) = y_{\textcolor{blue}{n+1}} \mid \begin{array}{l} x \leftarrow \{0,1\}^n \\ y \leftarrow G(x) \end{array} \right] = 1/2 + 1/p(n)$$

OWP \Rightarrow PRG

Theorem: G is a PRG assuming F is a one-way permutation.

Proof: Assume for contradiction that G is not a PRG.

Therefore, there is a next-bit predictor P , and polynomial p such that

$$\Pr \left[P(F(x)) = B(x) \middle| \begin{array}{l} x \leftarrow \{0,1\}^n \\ y \leftarrow G(x) \end{array} \right] = 1/2 + 1/p(n)$$

So, P can figure out $B(x)$ and break hardcore property!
QED.

Aside: Indistinguishability => Unpredictability

1. Indistinguishability \implies NBU

Proof: by contradiction.

Suppose for contradiction that there is a p.p.t. predictor P , a polynomial function p and an $i \in \{1, \dots, m\}$ s.t.

$$\Pr \left[y \leftarrow G(U_n) : P(y_1 y_2 \dots y_{i-1}) = y_i \right] \geq \frac{1}{2} + 1/p(n)$$

Then, I claim that P essentially gives us a distinguisher D !

Consider D which gets an m -bit string y and does the following:

1. Run P on the $(i - 1)$ -bit prefix $y_1 y_2 \dots y_{i-1}$.
2. If P returns the i -th bit y_i , then output 1 (“PRG”) else output 0 (“Random”).

If P is p.p.t. so is D .

1. Indistinguishability \implies NBU

Consider D which gets an m -bit string y and does the following:

1. Run P on the $(i - 1)$ -bit prefix $y_1y_2\dots y_{i-1}$.
2. If P returns the i -th bit y_i , then output 1 (= “PRG”) else output 0 (= “Random”).

We want to show: there is a polynomial p' s.t.

$$|\Pr[y \leftarrow G(U_n) : D(y) = 1] - \Pr[y \leftarrow Um : D(y) = 1]| \geq 1/p'(n)$$

1. Indistinguishability \implies NBU

Consider D which gets an m -bit string y and does the following:

1. Run P on the $(i - 1)$ -bit prefix $y_1y_2\dots y_{i-1}$.
2. If P returns the i -th bit y_i , then output 1 (= “PRG”) else output 0 (= “Random”).

$$\begin{aligned} & \Pr[y \leftarrow G(U_n) : D(y) = 1] \\ &= \Pr[y \leftarrow G(U_n) : P(y_1y_2\dots y_{i-1}) = y_i] \quad (\text{by construction of } D) \\ &\geq \frac{1}{2} + 1/p(n) \quad (\text{by assumption on } P) \end{aligned}$$

1. Indistinguishability \implies NBU

Consider D which gets an m -bit string y and does the following:

1. Run P on the $(i - 1)$ -bit prefix $y_1y_2\dots y_{i-1}$.
2. If P returns the i -th bit y_i , then output 1 (= “PRG”) else output 0 (= “Random”).

$$\Pr[y \leftarrow G(U_n) : D(y) = 1] \geq \frac{1}{2} + 1/p(n)$$

$$\begin{aligned} & \Pr\left[y \leftarrow U_m : D(y) = 1\right] \\ &= \Pr[y \leftarrow U_m : P(y_1y_2\dots y_{i-1}) = y_i] && \text{(by construction of D)} \\ &= \frac{1}{2} && \text{(since } y \text{ is random)} \end{aligned}$$

1. Indistinguishability \implies NBU

Consider D which gets an m -bit string y and does the following:

1. Run P on the $(i - 1)$ -bit prefix $y_1y_2\dots y_{i-1}$.
2. If P returns the i -th bit y_i , then output 1 (= “PRG”) else output 0 (= “Random”).

$$\Pr[y \leftarrow G(U_n) : D(y) = 1] \geq \frac{1}{2} + 1/p(n)$$

$$\Pr[y \leftarrow U_m : D(y) = 1] = \frac{1}{2}$$

So, $|\Pr[y \leftarrow G(U_n) : D(y) = 1] - \Pr[y \leftarrow U_m : D(y) = 1]| \geq 1/p(n)$

Q1: Do PRGs exist?

A: Yes, assuming OWFs

Q2: How do we encrypt longer messages or many messages with a fixed key?

(**Length extension**: If there is a PRG that stretches by one bit, there is one that stretches by polynomially many bits)

(**Pseudorandom functions**: PRGs with exponentially large stretch and “random access” to the output.)

- **So far: PRG with 1-bit expansion**
- Resulting secret-key encryption:
 - Key can be 1 bit shorter than message
 - Not much better than OTP!

Can we do better?

PRG length extension.

Theorem: If there is a PRG that stretches by one bit, there is one that stretches by poly many bits

◆ **New Proof Technique: Hybrid Arguments.**

Before we go there, a puzzle...

Lemma: Let $p_0, p_1, p_2, \dots, p_m$ be real numbers s.t.

$$p_m - p_0 \geq \varepsilon.$$

Then, there is an index i such that $p_i - p_{i-1} \geq \varepsilon/m$.

Proof:

$$\begin{aligned} p_m - p_0 &= (p_m - p_{m-1}) + (p_{m-1} - p_{m-2}) + \dots + (p_1 - p_0) \\ &\geq \varepsilon \end{aligned}$$

At least one of the m terms has to be at least ε/m (averaging). ■

Length extension: One bit to Many bits

Let $G : \{0,1\}^n \rightarrow \{0,1\}^{n+1}$ be a PRG

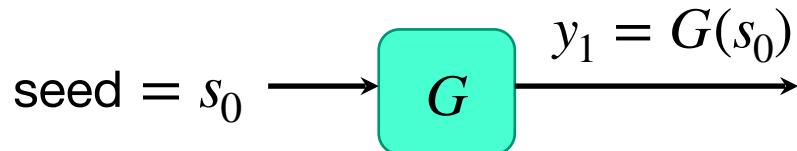
Goal: use G to generate **many** pseudorandom bits.

Length extension: One bit to Many bits

Let $G : \{0,1\}^n \rightarrow \{0,1\}^{n+1}$ be a PRG

Goal: use G to generate **many** pseudorandom bits.

Construction of $G'(s_0)$

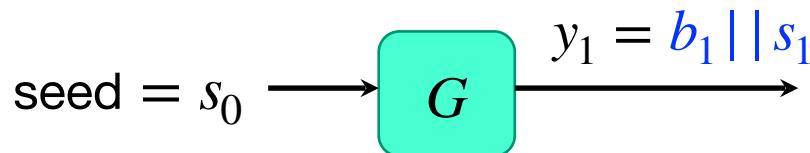


Length extension: One bit to Many bits

Let $G : \{0,1\}^n \rightarrow \{0,1\}^{n+1}$ be a PRG

Goal: use G to generate **many** pseudorandom bits.

Construction of $G'(s_0)$

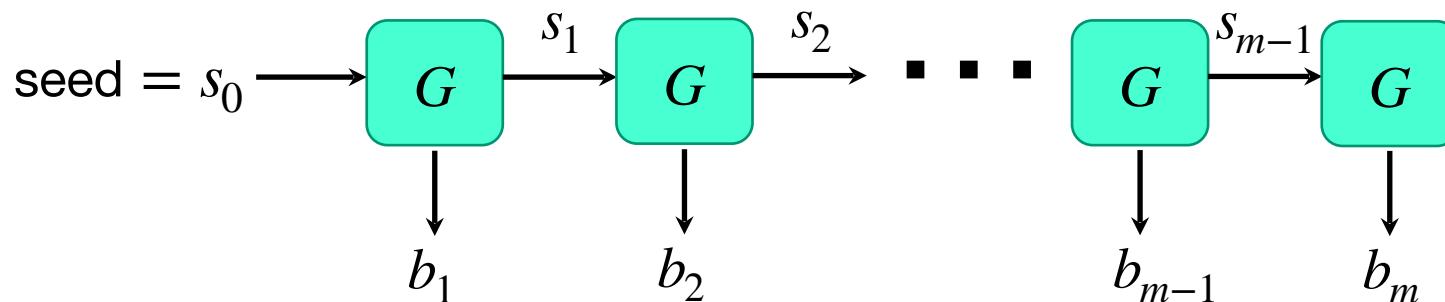


Length extension: One bit to Many bits

Let $G : \{0,1\}^n \rightarrow \{0,1\}^{n+1}$ be a PRG

Goal: use G to generate **many** pseudorandom bits.

Construction of $G'(s_0)$

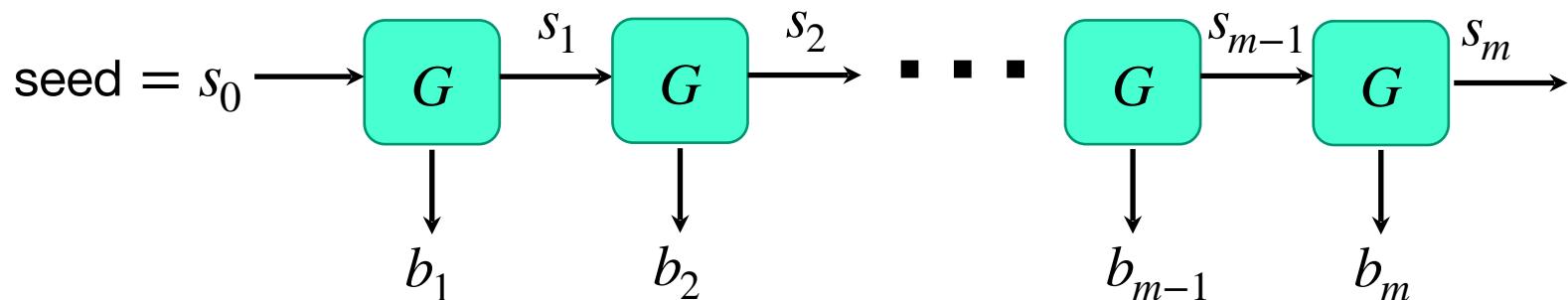


Length extension: One bit to Many bits

Proof of Security (next class):

Use next-bit (or previous-bit?) unpredictability!

Construction of $G'(s_0)$



Next class

- Why does length-extension work?
- PRFs: How to get PRGs with “exponentially-large” output