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CIS 5560

Lecture 5
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s25/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/


Announcements
• HW 1 is out; due Friday, Feb 7 at 5PM on Gradescope


• Covers PRGs, OTPs, and semantic security

• Get started today and make use of office hours, HW 

party!
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Recap of last lecture
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PRG  Semantically Secure Encryption⟹
(or, How to Encrypt n+1 bits using an n-bit key)

 outputs 𝐷𝑒𝑐(𝑘, 𝑐) G(k) ⊕ c = G(k) ⊕ G(k) ⊕ m = m

o :

o Sample an -bit string at random.

𝖦𝖾𝗇(1k) → k
n

o :

o Expand  to an -bit string using PRG: 

o Output 

𝖤𝗇𝖼(k, m) → c
k n + 1 s = G(k)

c = s ⊕ m
o :


o Expand  to an -bit string using PRG: 

o Output 

𝖣𝖾𝖼(k, c) → m
k n + 1 s = G(k)

m = s ⊕ c

Correctness:
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World 0 





Pr[D outputs "0" | b = 0 (y is pseudorandom)]
= Pr[𝖤𝗏𝖾 outputs b′￼= b | b = 0]
= ρ ≥ 1/2 + 1/p(n)

Therefore, 


Pr[D outputs "PRG" | y is pseudorandom] − Pr[D outputs "PRG" | y is random]

≥ 1/𝑝(𝑛)

World 1 
     




Pr[D outputs "1" | b = 1 (y is random)]

= Pr[𝖤𝗏𝖾 outputs b′￼= b | b = 1
= ρ′￼= 1/2

Distinguisher :

1. Get two messages , from Eve and 

sample a bit 

2. Compute  

3. Output , output “0”

4.Otherwise, output “1”

D(y)
m0, m1

b
b′￼← 𝖤𝗏𝖾(y ⊕ mb)

b′￼= b
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𝑸𝟏:  Do PRGs exist?

(or, How to Encrypt n+1 bits using an n-bit key)

𝑸𝟐:  

(Exercise: If P=NP, PRGs do not exist.)

How do we encrypt longer messages or many 
messages with a fixed key?

(Length extension: If there is a PRG  that stretches by one 
bit, there is one that stretches by polynomially many bits) 

(Pseudorandom functions: PRGs with exponentially large 
stretch and “random access” to the output.)

PRG  Semantically Secure Encryption⟹
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Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework  
(e.g. “appropriately chosen functions composed appropriately 
many times look random”)

2. Come up with a candidate construction

MA
TH

Rijndael  
(now the Advanced 
Encryption Standard)
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Constructing PRGs: Two Methodologies
The Foundational Methodology (much of this course)

Reduce to simpler primitives.

OWF

well-studied, average-case hard, problems

“Science wins either way” –Silvio Micali

PRG

PRF

Hashing

Digital 
Signatures

8



One-way Functions: The Definition

One-way Permutations:
One-to-one one-way functions with  𝑚(𝑛) = 𝑛 .

• Can always find an inverse with unbounded time

• … but should be hard with probabilistic 

polynomial time
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A function (family)  where  is 
one-way if for every p.p.t. adversary , the following holds:


{Fn}n∈ℕ F( ⋅ ) : {0,1}n → {0,1}m(n)

A

Pr Fn(x′￼) = y
x ← {0,1}n

y := Fn(x)
x′￼← A(1n, y)

= negl(n)



1.Output 

𝖯𝖱𝖦(k)

F(k) | | B(k)

OWP → PRG, Attempt #2

What properties do we need of ?B

Let  be a one-way permutationF : {0,1}n → {0,1}n

Imagine there existed  such that 
the following was a PRG

B : {0,1}n → {0,1}

1. One-way: can’t find  from 

2. Pseudorandom:  looks like a random bit

3. Unpredictable:  is unpredictable given 

k B(k)
B(k)

B(k) F(k)



Hardcore Bits

HARDCORE PREDICATE

For any   
is a hardcore predicate if for every efficient 

, there is a negligible function  s.t.

𝐹 :{0,1}𝑛 → {0,1}𝑚, 𝐵:{0,1}𝑛 → {0,1}

𝐴 𝜇

Pr [b = B(x)
x ← {0,1}n

b ← A(F(x))] = 1/2 + μ(n)



Today’s Lecture
• OWPs → PRGs

• PRG Indistinguishability → PRG Unpredictability
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OWP → PRG



1.Output 

𝖯𝖱𝖦(k)

F(k) | | B(k)

OWP → PRG, Attempt #2

What properties do we need of ?B

Let  be a one-way permutationF : {0,1}n → {0,1}n

Imagine there existed  such that 
the following was a PRG

B : {0,1}n → {0,1}

1. One-way: can’t find  from 

2. Pseudorandom:  looks like a random bit

3. Unpredictable:  is unpredictable given 

k B(k)
B(k)

B(k) F(k)



OWP  PRG⇒

Let  be a one-way permutation, and let  be 
a hardcore predicate for .

𝐹 𝐵
𝐹

Theorem

Then,  is a PRG.G(x) := F(x) | | B(x)

Proof (next slide): Use next-bit unpredictability.



PRG Next-Bit Unpredictability
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Challenger

1.
2.

4. 

s ← {0,1}n

y := G(s)

b ?= yi

Distinguisher

y1, …, yi−1

b

Pr [A(y1, . . . , yi−1) = yi
s ← {0,1}n

y ← G(s)] = 1/2 + ε(n)



PRG Def 2: Next-bit Unpredictability
Definition [Next-bit Unpredictability]:  
A deterministic polynomial-time computable function G: {0,1}n 

 {0,1}m is next-bit unpredictable if:

for every PPT algorithm P (called a next-bit predictor) and 
every  if there is a negligible function  such 
that:

→

𝑖 ∈ {1,…, 𝑚}, 𝝁
𝐏𝐫[ 𝒚 ← 𝑮(𝑼𝒏):𝑷(𝒚𝟏𝒚𝟐…𝒚𝒊−𝟏) = 𝒚𝒊] =

𝟏
𝟐

+  𝝁(𝒏)

Notation:  are the bits of the m-bit string .𝒚𝟏, 𝒚𝟐, …𝒚𝒎 𝒚



Def 1 and Def 2 are Equivalent

Theorem:  
A PRG G is indistinguishable if and only if it 
is next-bit unpredictable.



NBU and Indistinguishability
⧫ Next-bit Unpredictability (NBU): Seemingly much weaker 

requirement. Only says that next bit predictors, a 
particular type of distinguishers, cannot succeed.

⧫ Yet, surprisingly, Next-bit Unpredictability (NBU) = 
Indistinguishability.

⧫ NBU often much easier to use.



OWP  PRG⇒
Theorem:  is a PRG assuming  is a one-way permutation.𝐺 𝐹

Proof: Assume for contradiction that  is not a PRG. 
Therefore, there is a next-bit predictor , and index , and a 
polynomial  such that

𝐺
P 𝑖

p

Pr [P(y1, . . . , yi−1) = yi
x ← {0,1}n

y ← G(x)] = 1/2 + 1/p(n)

Observation: The index  has to be . Do you see why? 𝑖 𝑛 + 1

Hint:  and we 
know  is uniformly distributed

G(x) := F(x) | |B(x)
F(x)



OWP  PRG⇒
Theorem:  is a PRG assuming  is a one-way permutation.𝐺 𝐹

Proof: Assume for contradiction that  is not a PRG. 
Therefore, there is a next-bit predictor , and polynomial  
such that

𝐺
P p

Pr [P(y1, . . . , yn) = yn+1
x ← {0,1}n

y ← G(x)] = 1/2 + 1/p(n)



OWP  PRG⇒
Theorem:  is a PRG assuming  is a one-way permutation.𝐺 𝐹

Proof: Assume for contradiction that  is not a PRG. 
Therefore, there is a next-bit predictor , and polynomial  
such that

𝐺
P p

Pr [P(F(x)) = B(x)
x ← {0,1}n

y ← G(x)] = 1/2 + 1/p(n)

So,  can figure out  and break hardcore property! 
QED.

P B(x)



Aside: Indistinguishability => Unpredictability
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1. Indistinguishability  NBU⟹

Suppose for contradiction that there is a p.p.t. predictor , a 
polynomial function  and an  s.t. 

𝑃
𝑝 𝑖 ∈ {1,…, 𝑚}

Pr[ 𝑦 ← 𝐺(𝑈𝑛):𝑃(𝑦1𝑦2…𝑦𝑖−1) = 𝑦𝑖] ≥
1
2

+ 1/𝑝(𝑛)

Proof: by contradiction.

Then, I claim that  essentially gives us a distinguisher D!𝑃

Consider  which gets an m-bit string  and does the following: 𝐷 𝑦

1. Run  on the -bit prefix . 𝑃 (𝑖 − 1) 𝑦1𝑦2…𝑦𝑖−1

2. If  returns the -th bit , then output 1 (“PRG”) else output 0 
(“Random”).

𝑃 𝑖 𝑦𝑖

If  is p.p.t. so is . 𝑷 𝑫



1. Indistinguishability  NBU⟹

Consider  which gets an m-bit string  and does the following: 𝐷 𝑦

1. Run  on the -bit prefix . 𝑃 (𝑖 − 1) 𝑦1𝑦2…𝑦𝑖−1

2. If  returns the -th bit , then output 1 (= “PRG”) else 
output 0 (= “Random”).

𝑃 𝑖 𝑦𝑖

We want to show: there is a polynomial  s.t.  𝑝′￼

|  Pr[𝑦 ← 𝐺(𝑈𝑛):  𝐷(𝑦)  = 1 ] 
– Pr[𝑦 ← 𝑈𝑚:  𝐷(𝑦)  = 1 ]  | ≥ 1/𝑝′￼(𝑛)



1. Indistinguishability  NBU⟹
Consider  which gets an m-bit string  and does the following: 𝐷 𝑦

1. Run  on the -bit prefix . 𝑃 (𝑖 − 1) 𝑦1𝑦2…𝑦𝑖−1

=  Pr[𝑦 ← 𝐺(𝑈𝑛):  𝑃(𝑦1𝑦2…𝑦𝑖−1) = 𝑦𝑖] 

≥
1
2

+ 1/𝑝(𝑛)

Pr[𝑦 ← 𝐺(𝑈𝑛):  𝐷(𝑦)  = 1 ] 

(by construction of D)

(by assumption on P)

2. If  returns the -th bit , then output 1 (= “PRG”) else 
output 0 (= “Random”).

𝑃 𝑖 𝑦𝑖



1. Indistinguishability  NBU⟹
Consider  which gets an m-bit string  and does the following: 𝐷 𝑦

1. Run  on the -bit prefix . 𝑃 (𝑖 − 1) 𝑦1𝑦2…𝑦𝑖−1

≥
1
2

+ 1/𝑝(𝑛)Pr[𝑦 ← 𝐺(𝑈𝑛):  𝐷(𝑦)  = 1 ] 

2. If  returns the -th bit , then output 1 (= “PRG”) else 
output 0 (= “Random”).

𝑃 𝑖 𝑦𝑖

Pr[𝑦 ← 𝑈𝑚:  𝐷(𝑦) = 1 ]
=  Pr[𝑦 ← 𝑈𝑚:  𝑃(𝑦1𝑦2…𝑦𝑖−1) = 𝑦𝑖] 

=
1
2

(by construction of D)

(since y is random)



1. Indistinguishability  NBU⟹
Consider  which gets an m-bit string  and does the 
following: 

𝐷 𝑦

1. Run  on the -bit prefix . 𝑃 (𝑖 − 1) 𝑦1𝑦2…𝑦𝑖−1

≥
1
2

+ 1/𝑝(𝑛)Pr[𝑦 ← 𝐺(𝑈𝑛):  𝐷(𝑦)  = 1 ] 

2. If  returns the -th bit , then output 1 (= “PRG”) else 
output 0 (= “Random”).

𝑃 𝑖 𝑦𝑖

Pr[𝑦 ← 𝑈𝑚:  𝐷(𝑦) = 1 ] =
1
2

So,  
      

|  Pr[𝑦 ← 𝐺(𝑈𝑛):  𝐷(𝑦)  = 1 ] 
– Pr[𝑦 ← 𝑈𝑚:  𝐷(𝑦)  = 1 ]  | ≥ 1/𝑝(𝑛)



𝑸𝟏:  Do PRGs exist?

𝑸𝟐:  

A: Yes, assuming OWFs

How do we encrypt longer messages or many 
messages with a fixed key?

(Length extension: If there is a PRG  that stretches by one 
bit, there is one that stretches by polynomially many bits) 

(Pseudorandom functions: PRGs with exponentially large 
stretch and “random access” to the output.)
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• So far: PRG with 1-bit expansion 
• Resulting secret-key encryption:


• Key can be 1 bit shorter than message

• Not much better than OTP!


Can we do better?



PRG length extension. 

Theorem: If there is a PRG  that stretches by one 
bit, there is one that stretches by poly many bits

♦New Proof Technique: Hybrid Arguments.



Before we go there, a puzzle…

Lemma: Let  be real numbers s.t. 𝑝0, 𝑝1, 𝑝2, …, 𝑝𝑚

𝒑𝒎 − 𝒑𝟎 ≥ 𝜺 .
Then, there is an index  such that  .𝑖 𝒑𝒊 − 𝒑𝒊−𝟏 ≥ 𝜺/𝐦

Proof: 

)𝑝𝑚 − 𝑝0 = (𝑝𝑚 − 𝑝𝑚−1) + (𝑝𝑚−1 − 𝑝𝑚−2) + … + (𝑝1 − 𝑝0
≥ 𝜀

At least one of the  terms has to be at least  
(averaging).

𝑚 𝜀/𝑚



Length extension: One bit to Many bits

Let  be a PRGG : {0,1}n → {0,1}n+1

Goal: use  to generate many pseudorandom bits. G



Gseed = s0

y1 = G(s0)

Construction of G′￼(s0)

Length extension: One bit to Many bits

Let  be a PRGG : {0,1}n → {0,1}n+1

Goal: use  to generate many pseudorandom bits. G



Gseed = s0

y1 = b1 | |s1

Construction of G′￼(s0)

Length extension: One bit to Many bits

Let  be a PRGG : {0,1}n → {0,1}n+1

Goal: use  to generate many pseudorandom bits. G



Gseed = s0

s1

b1

G
s2

b2

… G
sm−1

bm−1

G

bm

Construction of G′￼(s0)

Length extension: One bit to Many bits

Let  be a PRGG : {0,1}n → {0,1}n+1

Goal: use  to generate many pseudorandom bits. G



Gseed = s0

s1

b1

G
s2

b2

… G

bm−1

G

bm

sm−1 sm

Construction of G′￼(s0)

Length extension: One bit to Many bits

Proof of Security (next class): 

Use next-bit (or previous-bit?) unpredictability!



Next class
• Why does length-extension work?

• PRFs: How to get PRGs with “exponentially-large” output
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