

CIS 5560

Cryptography Lecture 4

Course website:

pratyushmishra.com/classes/cis-5560-s25

Announcements

- **HW 0 is out**; due Friday, Jan 31 at 5PM on Gradescope
- **HW 1** will be released tomorrow
 - OTPs, perfect security/indistinguishability
 - PRGs, computational indistinguishability, negl. fns
- Homework party tomorrow AGH 105A 4:30-6PM
 - Work on HW0 and HW1 with classmates
 - Ask questions to TAs!
- Cryptography related CIS Colloquium today after class
 - See what high level cryptography research looks like!

Recap of last lecture

Computational Indistinguishability

World 0:

$$k \leftarrow \mathcal{K}$$

$$c = \text{Enc}(k, m_0)$$

World 1:

$$k \leftarrow \mathcal{K}$$

$$c = \text{Enc}(k, m_1)$$

Eve is arbitrary **PPT distinguisher**.

She needs to decide whether c came from World 0 or World 1.

For every **PPT** Eve, there exists a negligible fn ε , st for all m_0, m_1 ,

$$\left| \Pr \left[\text{Eve}(c) = 0 \mid c = \text{Enc}(k, m_0) \right] - \Pr \left[\text{Eve}(c) = 1 \mid c = \text{Enc}(k, m_1) \right] \right| = \varepsilon(n)$$

Negligible Functions

Functions that grow slower than $1/p(n)$ for any polynomial p .

Definition: A function $\varepsilon : \mathbb{N} \rightarrow \mathbb{R}$ is **negligible** if
for every polynomial function p ,
there exists an n_0 s.t.
for all $n > n_0$:

$$\varepsilon(n) < \frac{1}{p(n)}$$

Question: Let $\varepsilon(n) = 1/n^{\log n}$. Is ε negligible?

Pseudorandom Generators

Informally: **Deterministic** Programs that stretch a “truly random” seed into a (much) longer sequence of **“seemingly random”** bits.

Q1: How to define “seemingly random”?

Q2: Can such a G exist?

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A **deterministic** polynomial-time computable function

$G : \{0,1\}^n \rightarrow \{0,1\}^m$ is a **PRG** if:

- (a) It is **expanding**: $m > n$ and
- (b) for every PPT algorithm D (called a **distinguisher**) if there is a negligible function ε such that:

$$\left| \Pr[D(G(U_n)) = 1] - \Pr[D(U_m) = 1] \right| = \varepsilon(n)$$

Notation: U_n (resp. U_m) denotes the random distribution on n -bit (resp. m -bit) strings; m is shorthand for $m(n)$.

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A **deterministic** polynomial-time computable function

$G : \{0,1\}^n \rightarrow \{0,1\}^m$ is a **PRG** if:

- (a) It is **expanding**: $m > n$ and
- (b) for every PPT algorithm D (called a distinguisher) if there is a negligible function ε such that:

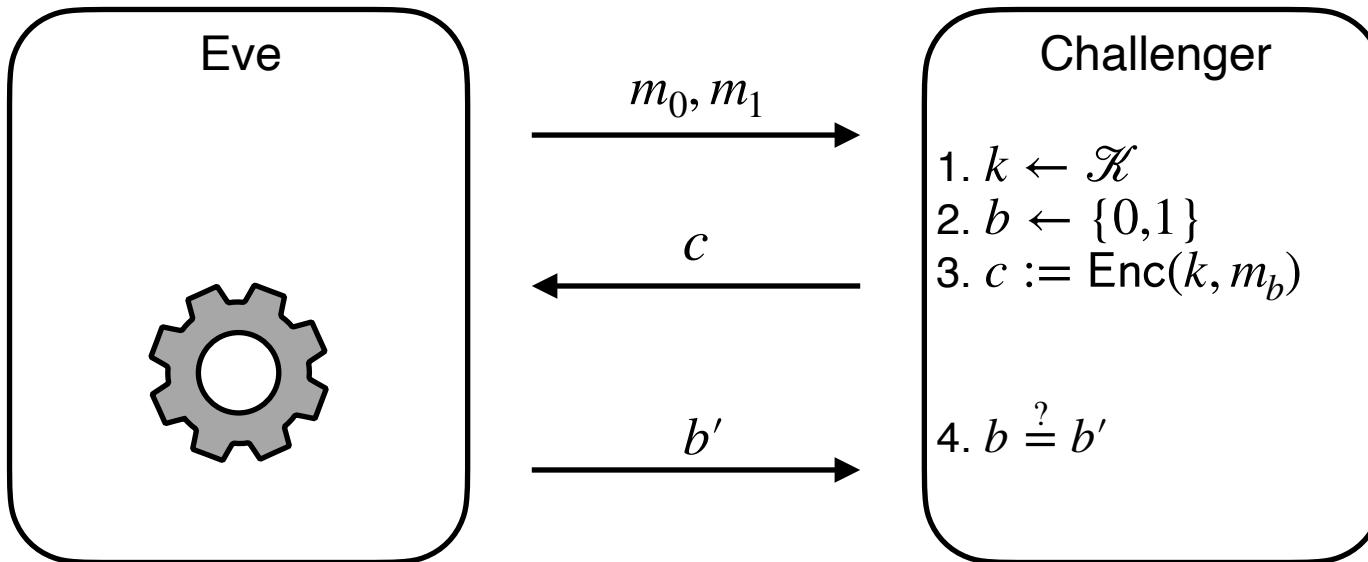
$$\Pr \left[D(y_b) = b \middle| \begin{array}{l} b \leftarrow \{0,1\} \\ x \leftarrow \{0,1\}^n \\ y_0 = G(x) \\ y_1 \leftarrow \{0,1\}^{n+1} \end{array} \right] \leq 1/2 + \varepsilon(n)$$

Semantic Security

For every **PPT** Eve, there exists a negligible fn ε , st for all m_0, m_1 ,

$$\Pr \left[\begin{array}{c} \text{Eve}(c) = b \\ c := \text{Enc}(k, m_b) \end{array} \middle| \begin{array}{c} k \leftarrow \mathcal{K} \\ b \leftarrow \{0,1\} \end{array} \right] < \frac{1}{2} + \varepsilon(n)$$

Semantic Security



Semantic Security

For every **PPT** Eve, there exists a negligible fn ε such that

$$\Pr \left[\text{Eve}(c) = b \left| \begin{array}{l} (m_0, m_1) \leftarrow \text{Eve} \\ k \leftarrow \mathcal{K} \\ b \leftarrow \{0,1\} \\ c := \text{Enc}(k, m_b) \end{array} \right. \right] < \frac{1}{2} + \varepsilon(n)$$

PRGs → Semantically Secure Encryption

PRG \implies Semantically Secure Encryption

(or, How to Encrypt $n+1$ bits using an n -bit key)

- $\text{Gen}(1^k) \rightarrow k$:
 - Sample an n -bit string at random.
- $\text{Enc}(k, m) \rightarrow c$:
 - Expand k to an $n + 1$ -bit string using PRG: $s = G(k)$
 - Output $c = s \oplus m$
- $\text{Dec}(k, c) \rightarrow m$:
 - Expand k to an $n + 1$ -bit string using PRG: $s = G(k)$
 - Output $m = s \oplus c$

Correctness:

$$\text{Dec}(k, c) \text{ outputs } G(k) \oplus c = G(k) \oplus G(k) \oplus m = m$$

Today's Lecture

- PRG Indistinguishability \rightarrow Semantic Security
- One way functions and permutations
- OWPs \rightarrow PRGs

PRG \implies Semantically Secure Encryption

Security: your first reduction!

Suppose for contradiction that there exists an Eve that breaks our scheme.

That is, assume that there is a p.p.t. Eve, and polynomial function p s.t.

$$\Pr \left[\text{Eve}(c) = b \left| \begin{array}{l} (m_0, m_1) \leftarrow \text{Eve} \\ k \leftarrow \mathcal{K} \\ b \leftarrow \{0,1\} \\ c := \text{Enc}(k, m_b) \end{array} \right. \right] > \frac{1}{2} + \frac{1}{p(n)}$$

PRG \implies Semantically Secure Encryption

Security: your first reduction!

Assume that there is a p.p.t. Eve, a polynomial function p and m_0, m_1 s.t.

$$\Pr \left[\begin{array}{l} \text{Eve}(c) = b \\ \left(m_0, m_1 \right) \leftarrow \text{Eve} \\ k \leftarrow \{0,1\}^n \\ b \leftarrow \{0,1\} \\ c := G(k) \oplus m_b \end{array} \right] > \frac{1}{2} + \frac{1}{p(n)}$$

Let's call this ρ

Compare with $\Pr \left[\begin{array}{l} \text{Eve}(c) = b \\ \left(m_0, m_1 \right) \leftarrow \text{Eve} \\ k' \leftarrow \{0,1\}^{n+1} \\ b \leftarrow \{0,1\} \\ c := k' \oplus m_b \end{array} \right] = \frac{1}{2}$

Let's call this ρ'

Clearly, Eve can break security in
PRG case, but not in OTP world!

Eve can distinguish pseudorandom from random!

Idea: Use Eve to break PRG indistinguishability!

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A **deterministic** polynomial-time computable function

$G : \{0,1\}^n \rightarrow \{0,1\}^m$ is a **PRG** if:

- (a) It is **expanding**: $m > n$ and
- (b) for every PPT algorithm D (called a distinguisher) if there is a negligible function ε such that:

$$\Pr \left[D(y_b) = b \middle| \begin{array}{l} b \leftarrow \{0,1\} \\ x \leftarrow \{0,1\}^n \\ y_0 = G(x) \\ y_1 \leftarrow \{0,1\}^{n+1} \end{array} \right] \leq 1/2 + \varepsilon(n)$$

Setting: we have 3 parties:

- Eve
- Challenger for PRG game
- Distinguisher D (that we will construct)

Idea: we will “emulate” semantic security game for Eve

Distinguisher $D(y)$:

1. Get two messages m_0, m_1 , from Eve and sample a bit b
2. Compute $b' \leftarrow \text{Eve}(y \oplus m_b)$
3. Output $b' = b$, output "0"
4. Otherwise, output "1"

World 0

$$\begin{aligned}\Pr[D \text{ outputs "0" } | b = 0 \text{ (y is pseudorandom)}] \\ = \Pr[\text{Eve outputs } b' = b | b = 0] \\ = \rho \geq 1/2 + 1/p(n)\end{aligned}$$

World 1

$$\begin{aligned}\Pr[D \text{ outputs "1" } | b = 1 \text{ (y is random)}] \\ = \Pr[\text{Eve outputs } b' = b | b = 1] \\ = \rho' = 1/2\end{aligned}$$

Therefore,

$$\left| \Pr[D \text{ outputs "PRG" } | y \text{ is pseudorandom}] - \Pr[D \text{ outputs "PRG" } | y \text{ is random}] \right| \\ \geq 1/p(n)$$

PRG \implies Semantically Secure Encryption

(or, How to Encrypt $n+1$ bits using an n -bit key)

Q1: Do PRGs exist?

(Exercise: If $P=NP$, PRGs do not exist.)

Q2: How do we encrypt longer messages or many messages with a fixed key?

(**Length extension**: If there is a PRG that stretches by one bit, there is one that stretches by polynomially many bits)

(**Pseudorandom functions**: PRGs with exponentially large stretch and “random access” to the output.)

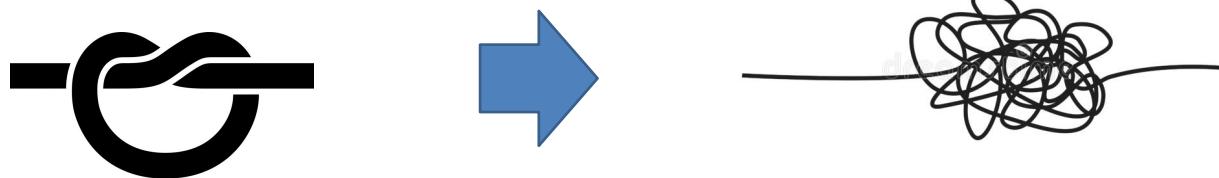
Q1: Do PRGs exist?

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework

(e.g. “appropriately chosen functions composed appropriately many times look random”)



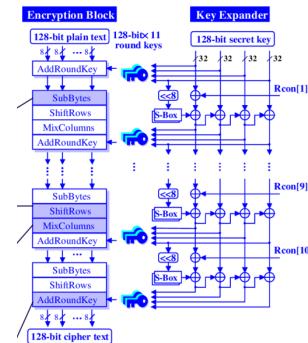
Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework

(e.g. “appropriately chosen functions composed appropriately many times look random”)

2. Come up with a candidate construction

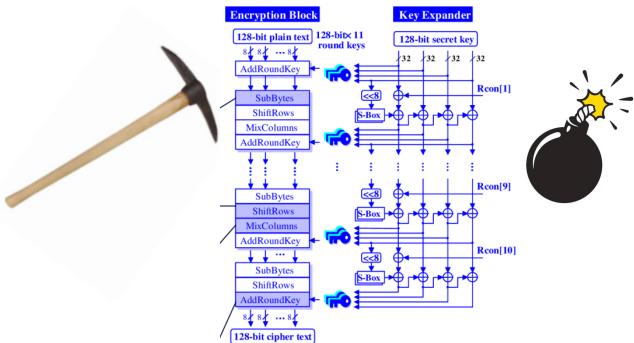


Rijndael
(now the Advanced
Encryption Standard)

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. “appropriately chosen functions composed appropriately many times look random”)
2. Come up with a candidate construction
3. Do extensive cryptanalysis.



Examples

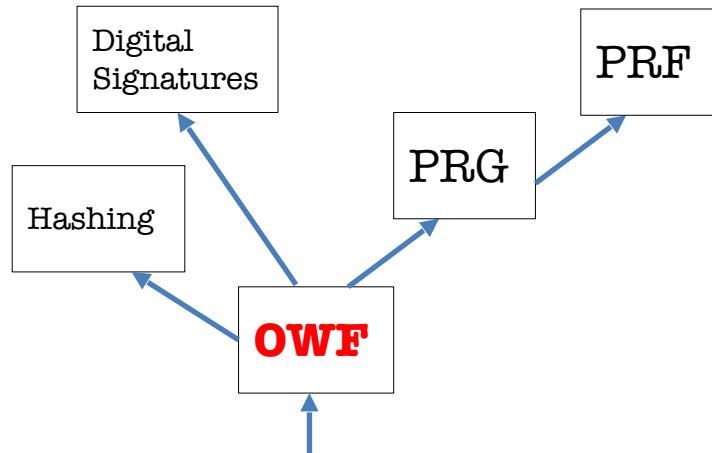
- **RC4: old PRG from 1987**
 - Proposed by Ron Rivest (of RSA fame)
 - **Fast and simple**
 - Used in TLS till 2013
 - However lots of biases
 - e.g. 2nd byte of output has 2/256 chance of being 0.
 - In 2013, attack which made key recovery feasible with just 2^{20} ciphertexts!
 - Finally deprecated in 2015, 28 years after creation!

Constructing PRGs: Two Methodologies

The Foundational Methodology (much of this course)

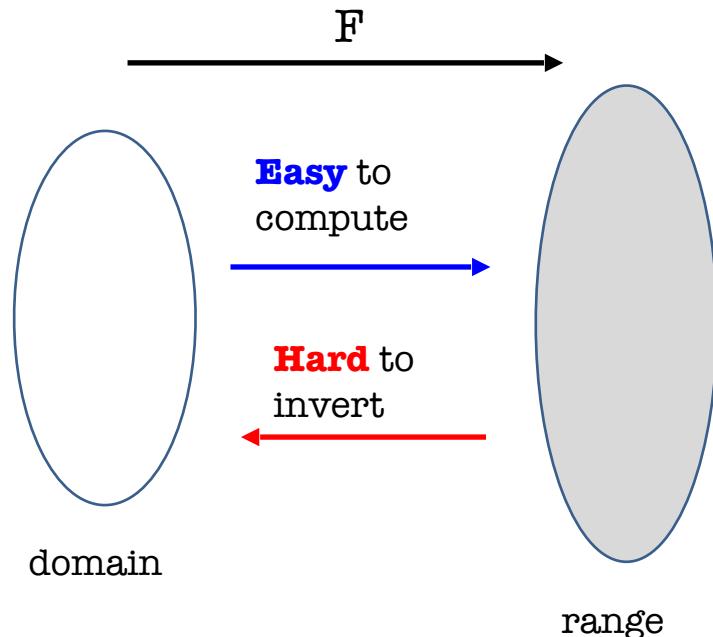
Reduce to simpler primitives.

“Science wins either way” –Silvio Micali



well-studied, average-case hard, problems

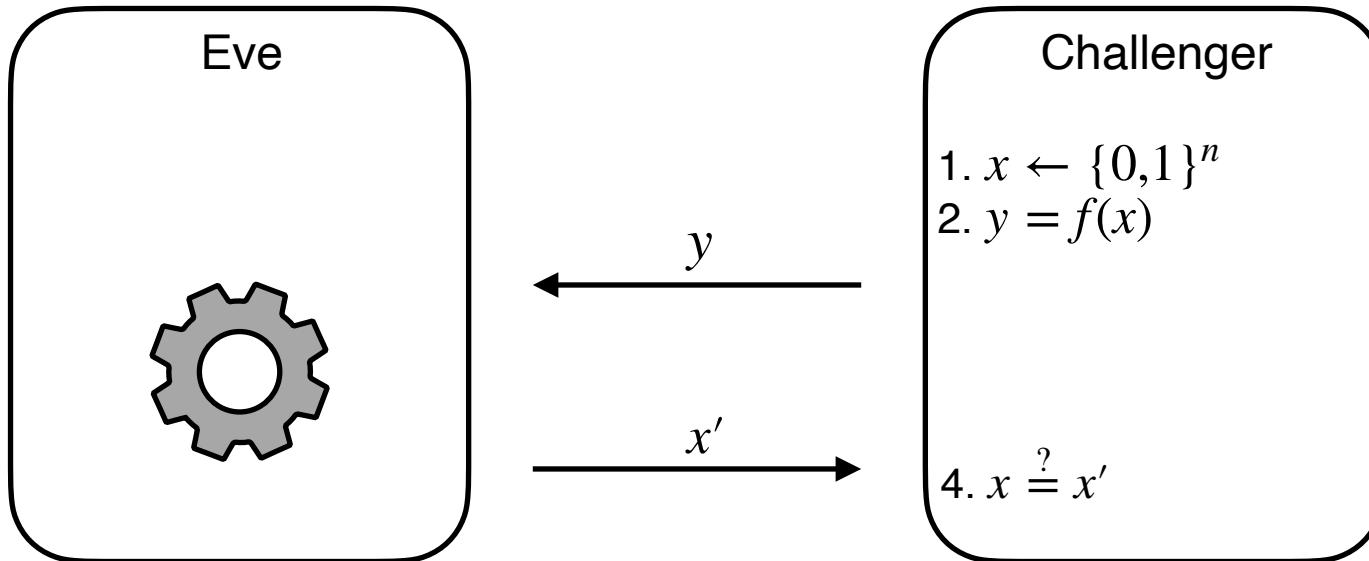
One-way Functions (Informally)



Source of all hard problems in cryptography!

What is a good definition?

OWF Security Attempt #1



One-way Functions (Take 1)

A function (family) $\{F_n\}_{n \in \mathbb{N}}$ where $F(\cdot) : \{0,1\}^n \rightarrow \{0,1\}^{m(n)}$ is **one-way** if for every p.p.t. adversary A , the following holds:

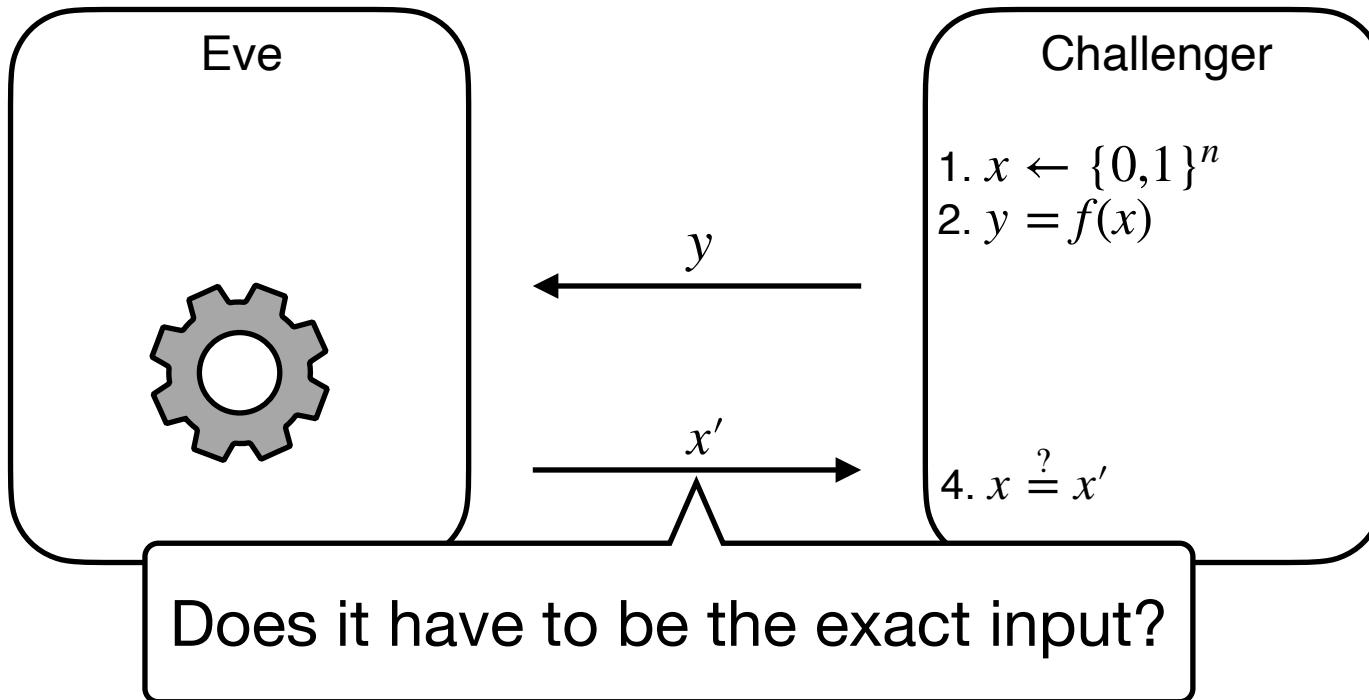
$$\Pr \left[A(1^n, y) = x \middle| \begin{array}{l} x \leftarrow \{0,1\}^n \\ y := F_n(x) \end{array} \right] = \text{negl}(n)$$

Consider $F_n(x) = \mathbf{0}$ for all x .

This is one-way according to the above definition.
In fact, impossible to find *the* inverse even if A has unbounded time.

Conclusion: not a useful/meaningful definition.

OWF Security Attempt #2



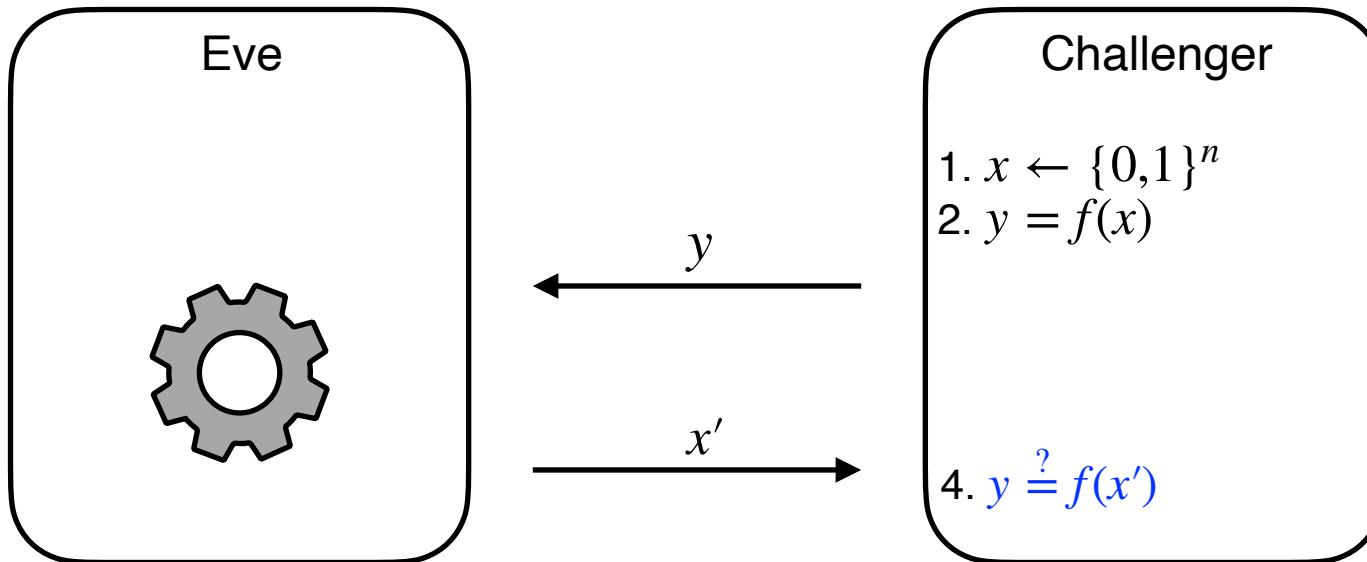
One-way Functions (Take 1)

A function (family) $\{F_n\}_{n \in \mathbb{N}}$ where $F(\cdot) : \{0,1\}^n \rightarrow \{0,1\}^{m(n)}$ is **one-way** if for every p.p.t. adversary A , the following holds:

$$\Pr \left[A(1^n, y) = x \middle| \begin{array}{l} x \leftarrow \{0,1\}^n \\ y := F_n(x) \end{array} \right] = \text{negl}(n)$$

The Right Definition: Impossible to find *an* inverse efficiently.

OWF Security Attempt #2



One-way Functions: The Definition

A function (family) $\{F_n\}_{n \in \mathbb{N}}$ where $F(\cdot) : \{0,1\}^n \rightarrow \{0,1\}^{m(n)}$ is **one-way** if for every p.p.t. adversary A , the following holds:

$$\Pr \left[F_n(x') = y \middle| \begin{array}{l} x \leftarrow \{0,1\}^n \\ y := F_n(x) \\ x' \leftarrow A(1^n, y) \end{array} \right] = \text{negl}(n)$$

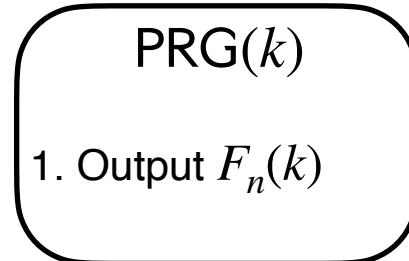
- Can always find *an* inverse with unbounded time
- ... but should be hard with probabilistic polynomial time

One-way Permutations:

One-to-one one-way functions with $m(n) = n$.

How to get PRG from OWF?

OWF \rightarrow PRG, Attempt #1



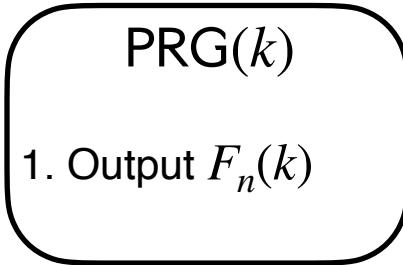
(Assume $m(n) > n$)

Does this work?

OWF \rightarrow PRG, Attempt #1

Consider $F_n(x)$ constructed from another OWF F'_n :

1. Compute $y := F'_n(x)$
2. Output $y' := (y_0, 1, y_1, 1, \dots, y_n, 1)$



Is F one-way?

Yes!

Is PRG unpredictable?

No!

Our problem:

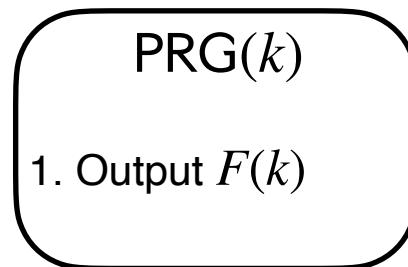
OWFs don't tell us anything about how their outputs are distributed.

They are only hard to invert!

OWP \rightarrow PRG, Attempt #1

Let $F : \{0,1\}^n \rightarrow \{0,1\}^n$ be a one-way permutation

Consider the following PRG candidate



Does this work?

No, it's not expanding!

But how are outputs distributed?

Claim: Output of F is uniformly distributed

Claim: Output of OWP is uniformly distributed

Proof: Assume for contradiction that this is not the case.

This means that there exists some y such that

$$\Pr[F(x) = y \mid x \leftarrow \{0,1\}^n] > 1/2^n$$

This means that $\frac{|\{x \mid F(x) = y\}|}{2^n} > \frac{1}{2^n}$,

which in turn means that F is not a permutation!

Our problem:

OWFs don't tell us anything about how their outputs are distributed.

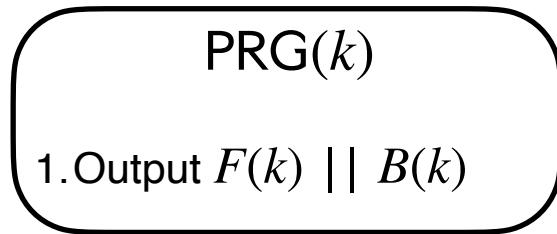
Solution: use OWP

Problem: no expansion

OWP \rightarrow PRG, Attempt #2

Let $F : \{0,1\}^n \rightarrow \{0,1\}^n$ be a one-way permutation

Imagine there existed $B : \{0,1\}^n \rightarrow \{0,1\}$ such that
the following was a PRG



What properties do we need of B ?

1. One-way: can't find k from $B(k)$
2. Pseudorandom: $B(k)$ looks like a random bit
3. Unpredictable: $B(k)$ is unpredictable given $F(k)$

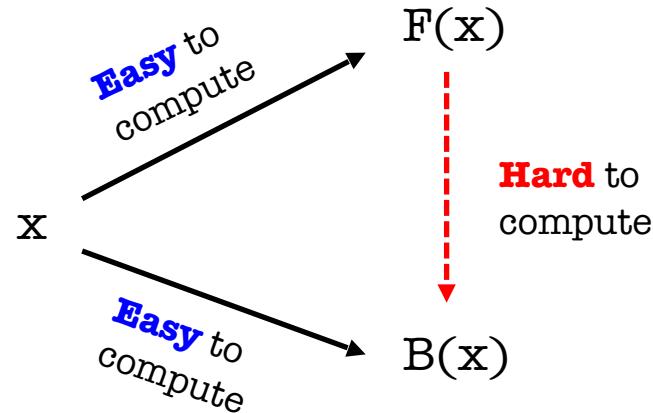
Hardcore Bits

HARDCORE PREDICATE

For any $F: \{0,1\}^n \rightarrow \{0,1\}^m$, $B: \{0,1\}^n \rightarrow \{0,1\}$ is a **hardcore predicate** if for every efficient A , there is a negligible function μ s.t.

$$\Pr \left[b = B(x) \middle| \begin{array}{l} x \leftarrow \{0,1\}^n \\ b \leftarrow A(F(x)) \end{array} \right] = 1/2 + \mu(n)$$

Hardcore Predicate (in pictures)



Existence of hardcore predicates

Goldreich-Levin Theorem

Let $F : \{0,1\}^n \rightarrow \{0,1\}^n$ be a one-way function.

Define $H(x \parallel r) := F(x) \parallel r$.

Then $B(x \parallel r) := \langle x, r \rangle$ is a hardcore predicate for H

Existence of hardcore predicates

Hardcore predicate for RSA

Define $F_{N,e}(x) := x^e \pmod{N}$ to be the **RSA** OWF.

Then $\text{lsb}(x)$ is a hardcore predicate for F

OWP → PRG

OWP \Rightarrow PRG

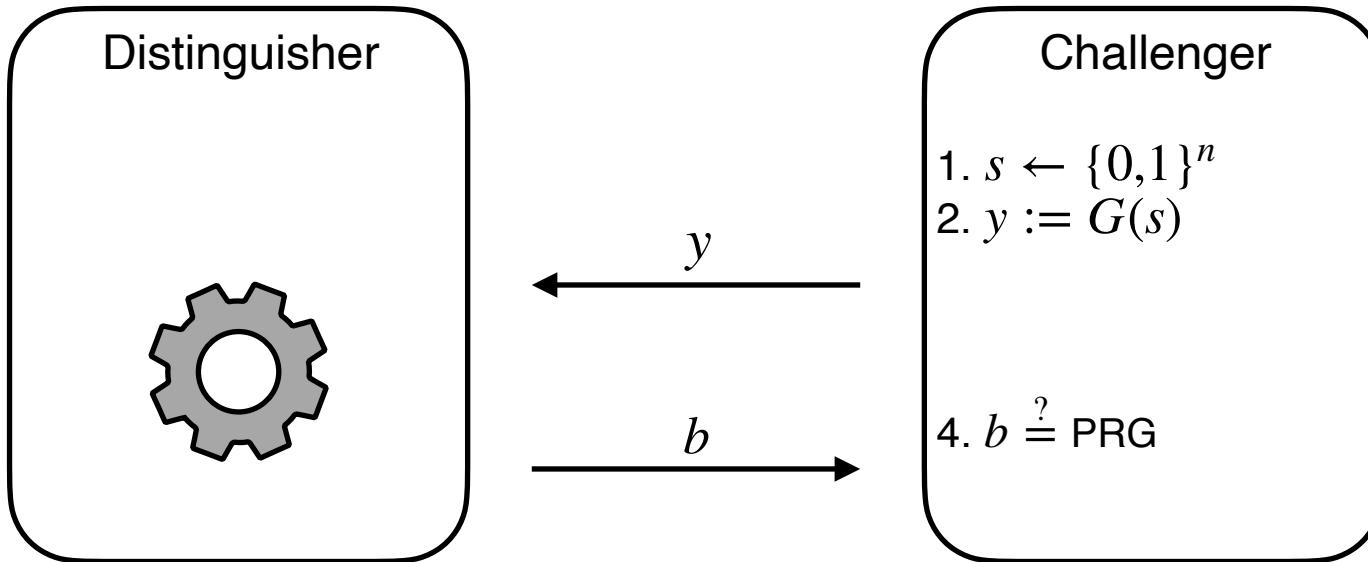
Theorem

Let F be a one-way permutation, and let B be a hardcore predicate for F .

Then, $G(x) := F(x) \parallel B(x)$ is a PRG.

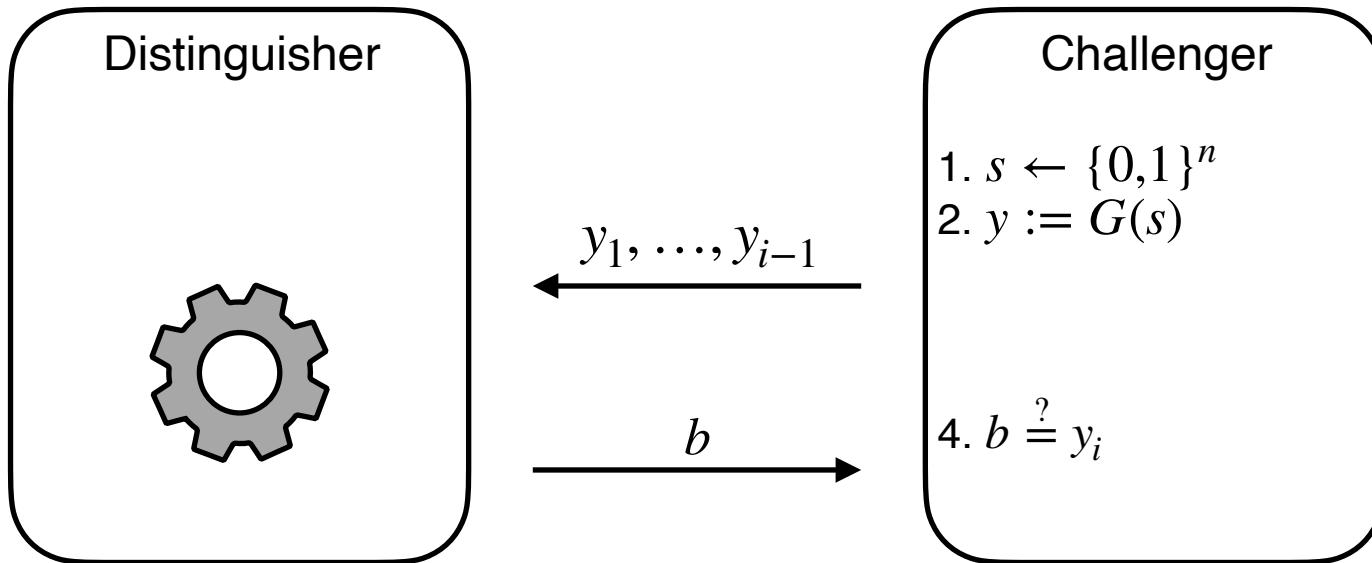
Proof (next slide): Use next-bit unpredictability.

PRG Indistinguishability



$$\left| \Pr[D(\mathbf{G}(\mathbf{U}_n)) = 1] - \Pr[D(\mathbf{U}_m) = 1] \right| = \varepsilon(n)$$

PRG Next-Bit Unpredictability



$$\Pr \left[A(y_1, \dots, y_{i-1}) = y_i \middle| \begin{array}{l} s \leftarrow \{0,1\}^n \\ y \leftarrow G(s) \end{array} \right] = 1/2 + \varepsilon(n)$$

PRG Def 2: Next-bit Unpredictability

Definition [Next-bit Unpredictability]:

A **deterministic** polynomial-time computable function $G: \{0,1\}^n \rightarrow \{0,1\}^m$ is next-bit unpredictable if:

for every PPT algorithm P (called a next-bit predictor) and every $i \in \{1, \dots, m\}$, if there is a negligible function μ such that:

$$\Pr \left[y \leftarrow G(U_n) : P(y_1 y_2 \dots y_{i-1}) = y_i \right] = \frac{1}{2} + \mu(n)$$

Notation: y_1, y_2, \dots, y_m are the bits of the m -bit string y .

Def 1 and Def 2 are Equivalent

Theorem:

A PRG G is indistinguishable if and only if it is next-bit unpredictable.

Def 1 and Def 2 are Equivalent

Theorem:

A PRG G passes all PPT distinguishers if and only if it passes PPT *next-bit* distinguishers.

NBU and Indistinguishability

- ◆ Next-bit Unpredictability (NBU): Seemingly much weaker requirement. Only says that next bit predictors, a particular type of distinguishers, cannot succeed.
- ◆ Yet, surprisingly, Next-bit Unpredictability (NBU) = Indistinguishability.
- ◆ NBU often much easier to use.

OWP \Rightarrow PRG

Theorem: G is a PRG assuming F is a one-way permutation.

Proof: Assume for contradiction that G is not a PRG.

Therefore, there is a next-bit predictor P , and index i , and a polynomial p such that

$$\Pr \left[P(y_1, \dots, y_{i-1}) = y_i \middle| \begin{array}{l} x \leftarrow \{0,1\}^n \\ y \leftarrow G(x) \end{array} \right. \right] = 1/2 + 1/p(n)$$

Observation: The index i has to be $n + 1$. Do you see why?

Hint: $G(x) := F(x) \parallel B(x)$ and we
know $F(x)$ is uniformly distributed

OWP \Rightarrow PRG

Theorem: G is a PRG assuming F is a one-way permutation.

Proof: Assume for contradiction that G is not a PRG.

Therefore, there is a next-bit predictor P , and polynomial p such that

$$\Pr \left[P(y_1, \dots, y_{\textcolor{blue}{n}}) = y_{\textcolor{blue}{n+1}} \middle| \begin{array}{l} x \leftarrow \{0,1\}^n \\ y \leftarrow G(x) \end{array} \right] = 1/2 + 1/p(n)$$

OWP \Rightarrow PRG

Theorem: G is a PRG assuming F is a one-way permutation.

Proof: Assume for contradiction that G is not a PRG.

Therefore, there is a next-bit predictor P , and polynomial p such that

$$\Pr \left[P(F(x)) = B(x) \middle| \begin{array}{l} x \leftarrow \{0,1\}^n \\ y \leftarrow G(x) \end{array} \right] = 1/2 + 1/p(n)$$

So, P can figure out $B(x)$ and break hardcore property!
QED.

Next class

- Indistinguishability \Leftrightarrow Unpredictability
- How to extend the length of PRGs
- How to get PRGs with “exponentially-large” output