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CIS 5560

Lecture 4
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s25 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/


Announcements
• HW 0 is out; due Friday, Jan 31 at 5PM on Gradescope

• HW 1 will be released tomorrow


• OTPs, perfect security/indistinguishability

• PRGs, computational indistinguishability, negl. fns


• Homework party tomorrow AGH 105A 4:30-6PM

• Work on HW0 and HW1 with classmates

• Ask questions to TAs! 

• Cryptography related CIS Colloquium today after class

• See what high level cryptography research looks like!
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Recap of last lecture
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For every PPT Eve, there exists a negligible fn , st for all , 

                             

ε m0, m1

Pr [𝖤𝗏𝖾(c) = 0 k ← 𝒦
c = 𝖤𝗇𝖼(k, m0)] − Pr [𝖤𝗏𝖾(c) = 1 k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)] = ε(n)

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is arbitrary PPT distinguisher.

She needs to decide whether  came from World 0 or World 1.c
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Computational Indistinguishability



Negligible Functions
Functions that grow slower than 1/p(n) for any polynomial p. 

Question:  Let . Is  negligible?   ε(n) = 1/nlog n ε
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Definition: A function  is negligible if  
	 for every polynomial function p, 
	 for all sufficiently large n:

	  
	 


 

ε : ℕ → ℝ

ε(n) <
1

p(n)

there exists an  s.t. 
for all  

𝑛0
𝑛 > 𝑛0:



Pseudorandom Generators

Informally: Deterministic Programs that stretch a 
“truly random” seed into a (much) longer 
sequence of “seemingly random” bits.

b1 b2 b3 ...PRG Gseed

Q2: Can such a G exist? 

Q1: How to define “seemingly random”?



PRG Def 1: Indistinguishability

Notation:  (resp. ) denotes the random distribution 
on -bit (resp. -bit) strings;  is shorthand for .

Un Um
n m m m(n)

Definition [Indistinguishability]:  
A deterministic polynomial-time computable function 

                          is a PRG if:

(a) It is expanding:  and 

(b) for every PPT algorithm  (called a distinguisher) if there is a 

negligible function  such that:

G : {0,1}n → {0,1}m

m > n
D

ε

Pr[D(G(Un)) = 1] − Pr[D(Um) = 1] = ε(n)



PRG Def 1: Indistinguishability
Definition [Indistinguishability]:  
A deterministic polynomial-time computable function 

                          is a PRG if:

(a) It is expanding:  and 

(b) for every PPT algorithm  (called a distinguisher) if there is a 

negligible function  such that:

G : {0,1}n → {0,1}m

m > n
D

ε

Pr D(yb) = b

b ← {0,1}
x ← {0,1}n

y0 = G(x)
y1 ← {0,1}n+1

≤ 1/2 + ε(n)



Semantic Security
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For every PPT Eve, there exists a negligible fn , st for all , 


                             

ε m0, m1

Pr 𝖤𝗏𝖾(c) = b
k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

<
1
2

+ε(n)



Semantic Security
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Challenger

1.
2.
3.

4. 

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

c

b′￼

m0, m1



Semantic Security
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For every PPT Eve, there exists a negligible fn  such that
ε

Pr 𝖤𝗏𝖾(c) = b

(m0, m1) ← 𝖤𝗏𝖾
k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

<
1
2

+ε(n)



PRGs → Semantically Secure Encryption
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PRG  Semantically Secure Encryption⟹
(or, How to Encrypt n+1 bits using an n-bit key)

 outputs 𝐷𝑒𝑐(𝑘, 𝑐) G(k) ⊕ c = G(k) ⊕ G(k) ⊕ m = m

o :

o Sample an -bit string at random.

𝖦𝖾𝗇(1k) → k
n

o :

o Expand  to an -bit string using PRG: 

o Output 

𝖤𝗇𝖼(k, m) → c
k n + 1 s = G(k)

c = s ⊕ m
o :


o Expand  to an -bit string using PRG: 

o Output 

𝖣𝖾𝖼(k, c) → m
k n + 1 s = G(k)

m = s ⊕ c

Correctness:
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Today’s Lecture
• PRG Indistinguishability → Semantic Security

• One way functions and permutations

• OWPs → PRGs
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Suppose for contradiction that there exists an Eve that breaks our scheme. 


That, is assume that there is a p.p.t. Eve, and polynomial function  s.t.


 

	 	 	

p

Pr 𝖤𝗏𝖾(c) = b

|

|

(m0, m1) ← 𝖤𝗏𝖾
k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

>
1
2

+1/p(n)

Security: your first reduction!

PRG  Semantically Secure Encryption⟹
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Assume that there is a p.p.t. Eve, a polynomial function  and  s.t.
p m0, m1

Pr 𝖤𝗏𝖾(c) = b

|

|

(m0, m1) ← 𝖤𝗏𝖾
k ← {0,1}n

b ← {0,1}
c := G(k) ⊕ mb

>
1
2

+1/p(n)

Security: your first reduction!

Compare with Pr 𝖤𝗏𝖾(c) = b

|

|

(m0, m1) ← 𝖤𝗏𝖾
k′￼← {0,1}n+1

b ← {0,1}
c := k′￼⊕ mb

=
1
2

Let’s call this ρ′￼

Let’s call this ρ

PRG  Semantically Secure Encryption⟹
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Clearly, Eve can break security in 
PRG case, but not in OTP world!

↓
Eve can distinguish pseudorandom from random!

Idea: Use Eve to break PRG indistinguishability!
17



PRG Def 1: Indistinguishability
Definition [Indistinguishability]:  
A deterministic polynomial-time computable function 

                          is a PRG if:

(a) It is expanding:  and 

(b) for every PPT algorithm  (called a distinguisher) if there is a 

negligible function  such that:

G : {0,1}n → {0,1}m

m > n
D

ε

Pr D(yb) = b

b ← {0,1}
x ← {0,1}n

y0 = G(x)
y1 ← {0,1}n+1

≤ 1/2 + ε(n)



Setting: we have 3 parties:

- Eve

- Challenger for PRG game

- Distinguisher  (that we will construct)


Idea: we will “emulate” semantic security  
game for Eve

D
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World 0 





Pr[D outputs "0" | b = 0 (y is pseudorandom)]
= Pr[𝖤𝗏𝖾 outputs b′￼= b | b = 0]
= ρ ≥ 1/2 + 1/p(n)

Therefore, 


Pr[D outputs "PRG" | y is pseudorandom] − Pr[D outputs "PRG" | y is random]

≥ 1/𝑝(𝑛)

World 1 
     




Pr[D outputs "1" | b = 1 (y is random)]

= Pr[𝖤𝗏𝖾 outputs b′￼= b | b = 1
= ρ′￼= 1/2

Distinguisher :

1. Get two messages , from Eve and 

sample a bit 

2. Compute  

3. Output , output “0”

4.Otherwise, output “1”

D(y)
m0, m1

b
b′￼← 𝖤𝗏𝖾(y ⊕ mb)

b′￼= b
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𝑸𝟏:  Do PRGs exist?

(or, How to Encrypt n+1 bits using an n-bit key)

𝑸𝟐:  

(Exercise: If P=NP, PRGs do not exist.)

How do we encrypt longer messages or many 
messages with a fixed key?

(Length extension: If there is a PRG  that stretches by one 
bit, there is one that stretches by polynomially many bits) 

(Pseudorandom functions: PRGs with exponentially large 
stretch and “random access” to the output.)

PRG  Semantically Secure Encryption⟹
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𝑸𝟏:  Do PRGs exist?

22



Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework  
(e.g. “appropriately chosen functions composed appropriately 
many times look random”)

23



Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework  
(e.g. “appropriately chosen functions composed appropriately 
many times look random”)

2. Come up with a candidate construction

MA
TH

Rijndael  
(now the Advanced 
Encryption Standard)
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Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework  
(e.g. “appropriately chosen functions composed appropriately 
many times look random”)

2. Come up with a candidate construction

3. Do extensive cryptanalysis. 
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Examples
• RC4: old PRG from 1987 

• Proposed by Ron Rivest (of RSA fame) 
• Fast and simple 
• Used in TLS till 2013

• However lots of biases


• e.g. 2nd byte of output has 2/256 chance of being 0.

• In 2013, attack which made key recovery feasible with just 

220 ciphertexts!

• Finally deprecated in 2015, 28 years after creation!
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Constructing PRGs: Two Methodologies
The Foundational Methodology (much of this course)

Reduce to simpler primitives.

OWF

well-studied, average-case hard, problems

“Science wins either way” –Silvio Micali

PRG

PRF

Hashing

Digital 
Signatures
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One-way Functions (Informally)
F

domain
range

Easy to  
compute

Hard to  
invert

28

Source of all hard problems in cryptography!



What is a good definition?



OWF Security Attempt #1

30

Challenger

1.
2.

4. 

x ← {0,1}n

y = f (x)

x ?= x′￼

Eve

y

x′￼



One-way Functions (Take 1)

A function (family)  where  is 
one-way if for every p.p.t. adversary , the following holds:


{Fn}n∈ℕ F( ⋅ ) : {0,1}n → {0,1}m(n)

A

Pr [A(1n, y) = x
x ← {0,1}n

y := Fn(x)] = negl(n)

Consider  for all . 𝑭𝒏(𝒙) = 𝟎 x
This is one-way according to the above definition.  
In fact, impossible to find the inverse even if  has 
unbounded time.

𝐴

Conclusion: not a useful/meaningful definition. 31



OWF Security Attempt #2
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Challenger

1.
2.

4. 

x ← {0,1}n

y = f (x)

x ?= x′￼

Eve

y

x′￼

Does it have to be the exact input?



One-way Functions (Take 1)

A function (family)  where  is 
one-way if for every p.p.t. adversary , the following holds:


{Fn}n∈ℕ F( ⋅ ) : {0,1}n → {0,1}m(n)

A

Pr [A(1n, y) = x
x ← {0,1}n

y := Fn(x)] = negl(n)
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The Right Definition: Impossible to find an inverse efficiently.



OWF Security Attempt #2
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Challenger

1.
2.

4. 

x ← {0,1}n

y = f (x)

y ?= f (x′￼)

Eve

y

x′￼



One-way Functions: The Definition

One-way Permutations:
One-to-one one-way functions with  𝑚(𝑛) = 𝑛 .

• Can always find an inverse with unbounded time

• … but should be hard with probabilistic 

polynomial time

35

A function (family)  where  is 
one-way if for every p.p.t. adversary , the following holds:


{Fn}n∈ℕ F( ⋅ ) : {0,1}n → {0,1}m(n)

A

Pr Fn(x′￼) = y
x ← {0,1}n

y := Fn(x)
x′￼← A(1n, y)

= negl(n)



How to get PRG from OWF?



1. Output 

𝖯𝖱𝖦(k)

Fn(k)

OWF → PRG, Attempt #1

(Assume )m(n) > n

Does this work?



1. Output 

𝖯𝖱𝖦(k)

Fn(k)

OWF → PRG, Attempt #1
Consider  constructed from another OWF :


1. Compute 


2. Output 

Fn(x) F′￼n

y := F′￼n(x)
y′￼:= (y0, 1,y1, 1,…, yn, 1)

Is  one-way?F

Yes!

Is  unpredictable?𝖯𝖱𝖦

No!



Our problem: 

OWFs don’t tell us anything about 
how their outputs are distributed.


They are only hard to invert!



1. Output 

𝖯𝖱𝖦(k)

F(k)

OWP → PRG, Attempt #1

Does this work?
No, it’s not expanding!

Let  be a one-way permutationF : {0,1}n → {0,1}n

Consider the following PRG candidate

But how are outputs distributed?

Claim: Output of  is uniformly distributedF



Claim: Output of OWP is uniformly distributed

Proof: Assume for contradiction that this is not the case. 


This means that there exists some  such that 





This means that , 


which in turn means that  is not a permutation!

y

Pr[F(x) = y |x ← {0,1}n] > 1/2n

{x |F(x) = y}

2n
>

1
2n

F



Our problem: 

OWFs don’t tell us anything about how 
their outputs are distributed.


Solution: use OWP iiiiii   
Problem: no expansion



1.Output 

𝖯𝖱𝖦(k)

F(k) | | B(k)

OWP → PRG, Attempt #2

What properties do we need of ?B

Let  be a one-way permutationF : {0,1}n → {0,1}n

Imagine there existed  such that 
the following was a PRG

B : {0,1}n → {0,1}

1. One-way: can’t find  from 

2. Pseudorandom:  looks like a random bit

3. Unpredictable:  is unpredictable given 

k B(k)
B(k)

B(k) F(k)



Hardcore Bits

HARDCORE PREDICATE

For any   
is a hardcore predicate if for every efficient 

, there is a negligible function  s.t.

𝐹 :{0,1}𝑛 → {0,1}𝑚, 𝐵:{0,1}𝑛 → {0,1}

𝐴 𝜇

Pr [b = B(x)
x ← {0,1}n

b ← A(F(x))] = 1/2 + μ(n)



Hardcore Predicate (in pictures)

x

Eas
y to  

compute

Easy to  compute

F(x)

B(x)

Hard to  
compute



Existence of hardcore predicates

Let  be a one-way function. 
Define .


Then  is a hardcore predicate for 


F : {0,1}n → {0,1}n

H(x | |r) := F(x) | |r

B(x | |r) := ⟨x, r⟩ H

Goldreich-Levin Theorem



Existence of hardcore predicates

Define  to be the RSA OWF.


Then  is a hardcore predicate for 


FN,e(x) := xe mod N

𝗅𝗌𝖻(x) F

Hardcore predicate for RSA



OWP → PRG



OWP  PRG⇒

Let  be a one-way permutation, and let  be 
a hardcore predicate for .

𝐹 𝐵
𝐹

Theorem

Then,  is a PRG.G(x) := F(x) | | B(x)

Proof (next slide): Use next-bit unpredictability.



PRG Indistinguishability
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Challenger

1.
2.

4. 

s ← {0,1}n

y := G(s)

b ?= PRG

Distinguisher

y

b

Pr[D(G(Un)) = 1] − Pr[D(Um) = 1] = ε(n)



PRG Next-Bit Unpredictability
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Challenger

1.
2.

4. 

s ← {0,1}n

y := G(s)

b ?= yi

Distinguisher

y1, …, yi−1

b

Pr [A(y1, . . . , yi−1) = yi
s ← {0,1}n

y ← G(s)] = 1/2 + ε(n)



PRG Def 2: Next-bit Unpredictability
Definition [Next-bit Unpredictability]:  
A deterministic polynomial-time computable function G: {0,1}n 

 {0,1}m is next-bit unpredictable if:

for every PPT algorithm P (called a next-bit predictor) and 
every  if there is a negligible function  such 
that:

→

𝑖 ∈ {1,…, 𝑚}, 𝝁
𝐏𝐫[ 𝒚 ← 𝑮(𝑼𝒏):𝑷(𝒚𝟏𝒚𝟐…𝒚𝒊−𝟏) = 𝒚𝒊] =

𝟏
𝟐

+  𝝁(𝒏)

Notation:  are the bits of the m-bit string .𝒚𝟏, 𝒚𝟐, …𝒚𝒎 𝒚



Def 1 and Def 2 are Equivalent

Theorem:  
A PRG G is indistinguishable if and only if it 
is next-bit unpredictable.



Def 1 and Def 2 are Equivalent

Theorem:  
A PRG G passes all PPT distinguishers if and 
only if it passes PPT next-bit distinguishers.



NBU and Indistinguishability
⧫ Next-bit Unpredictability (NBU): Seemingly much weaker 

requirement. Only says that next bit predictors, a 
particular type of distinguishers, cannot succeed.

⧫ Yet, surprisingly, Next-bit Unpredictability (NBU) = 
Indistinguishability.

⧫ NBU often much easier to use.



OWP  PRG⇒
Theorem:  is a PRG assuming  is a one-way permutation.𝐺 𝐹

Proof: Assume for contradiction that  is not a PRG. 
Therefore, there is a next-bit predictor , and index , and a 
polynomial  such that

𝐺
P 𝑖

p

Pr [P(y1, . . . , yi−1) = yi
x ← {0,1}n

y ← G(x)] = 1/2 + 1/p(n)

Observation: The index  has to be . Do you see why? 𝑖 𝑛 + 1

Hint:  and we 
know  is uniformly distributed

G(x) := F(x) | |B(x)
F(x)



OWP  PRG⇒
Theorem:  is a PRG assuming  is a one-way permutation.𝐺 𝐹

Proof: Assume for contradiction that  is not a PRG. 
Therefore, there is a next-bit predictor , and polynomial  
such that

𝐺
P p

Pr [P(y1, . . . , yn) = yn+1
x ← {0,1}n

y ← G(x)] = 1/2 + 1/p(n)



OWP  PRG⇒
Theorem:  is a PRG assuming  is a one-way permutation.𝐺 𝐹

Proof: Assume for contradiction that  is not a PRG. 
Therefore, there is a next-bit predictor , and polynomial  
such that

𝐺
P p

Pr [P(F(x)) = B(x)
x ← {0,1}n

y ← G(x)] = 1/2 + 1/p(n)

So,  can figure out  and break hardcore property! 
QED.

P B(x)



Next class
• Indistinguishability <=> Unpredictability

• How to extend the length of PRGs

• How to get PRGs with “exponentially-large” output
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