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CIS 5560

Lecture 2
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s25/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s25/


Announcements
• HW 0 will be released tomorrow Wed Jan 22 

• Due Friday Jan 31 at 5PM on Gradescope

• Recap on probability and mathematical background

• Get started ASAP and make use of office hours!

• Will have Homework “party” Wednesdays 4:30-6PM


• Course website is up!
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Recap
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An important property of XOR
Thm:  is an RV over  ,   is a uniform ind. RV over 

 


	 Then  is uniform var. on  
Proof:    (for n=1)


    Pr[ Z=0 ] = 

Y {0,1}n X
{0,1}n

Z := Y ⊕ X {0,1}n
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Secure Communication

Key k Key k

Eavesdropper “Eve”

m
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Alice wants to send a message  to Bob without revealing it to Eve. m



Key Notion: Secret-key Encryption	  
(or Symmetric-key Encryption)

Three (possibly randomized) polynomial-time algorithms:

o Key Generation Algorithm: 𝖦𝖾𝗇(1k) → k

o Encryption Algorithm: 𝖤𝗇𝖼(k, m) → c

o Decryption Algorithm: 𝖣𝖾𝖼(k, c) → m 6

Key k Key k

 𝑚
Ciphertext c ← 𝖤𝗇𝖼(k, m)

m ← 𝖣𝖾𝖼(k, c)

Message space (probability distribution)  ℳ

Key space  𝒦

Ciphertext space  𝒞



What is a secure encryption scheme?
Attacker’s abilities:    CT only attack       (for now) 

Possible security requirements:   

    attempt #1:  attacker cannot recover secret key 

 would be secure  

    attempt #2:  attacker cannot recover all of plaintext 

 would be secure 

    Shannon’s idea:  CT should reveal no “info” about PT  

𝖤𝗇𝖼(k, m) = m

𝖤𝗇𝖼(k, (m1, m2)) = 𝖤𝗇𝖼(k, m1) | | m2

7



Today
• First reasonable definition of secure encryption

• First construction of “perfectly” secure encryption

• Downsides of perfect secrecy

8



Pr[M = m |𝖤𝗇𝖼(𝒦, m) = c] = Pr[M = m]
beforeafter

Shannon’s Perfect Secrecy Definition

Key k ← 𝒦 Key k  ← 𝒦

𝑚 ← ℳ
𝑐 ← Enc(𝑘, 𝑚)

Message space (probability distribution)  ℳ

Key space 
 𝒦

Ciphertext space  𝒞

∀m ∈ ℳ, ∀c ∈ 𝒞, M is adversary's guess

What Eve knows after looking at  
=  

What Eve knew before looking at 

c

c

9

Probability 
that  
encrypts the 
particular 
message 

c

m



Pr[M = m |𝖤𝗇𝖼(𝒦, m) = c] = Pr[M = m]
beforeafter

Shannon’s Perfect Secrecy Definition

∀m ∈ ℳ, ∀c ∈ 𝒞, M is adversary's guess

What Eve knows after looking at  
=  

What Eve knew before looking at 

c

c

✓ CT reveals no info about PT
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But this def is difficult to work with: 
How to prove that ciphertext reveals no info?



,∀m, m′￼∈ ℳ c ∈ 𝒞

Alternate Def: Perfect Indistinguishability

Pr
k←𝒦

[𝖤𝗇𝖼(k, m) = c] = Pr
k←𝒦

[𝖤𝗇𝖼(k, m′￼) = c]
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For every  
Probability that  encrypts  (with random key ) 

=  
Probability that  encrypts  (with diff. key ) 

Hence every ciphertext is equally likely to decrypt to a given message

m, m′￼

c m k

c m′￼ k′￼



The Two Definitions are Equivalent
THEOREM: An encryption scheme  
satisfies perfect secrecy IFF it satisfies perfect 
indistinguishability.

(𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼)

Intuition: 
SEC → IND: If a ciphertext reveals no information about 
plaintext, it can equally likely be an encryption for  or  
 
IND → SEC: If for any , ciphertext is equally likely to 
decrypt to either  or , then it reveals no “distinguishing” 
information about  or . Since this works for any , 
ciphertext reveals no information about any  message.

m m′￼

m, m′￼

m m′￼

m m′￼ m, m′￼
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Perfect Secrecy is Achievable

The One-time Pad Construction:

: Choose an -bit string k at random, i.e. 𝖦𝖾𝗇 𝑛 k ← {0,1}n

 with : Output 𝖤𝗇𝖼(k, m) ℳ = {0,1}n c = m ⊕ k

: Output 𝖣𝖾𝖼(k, c) m = c ⊕ k
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Perfect Secrecy is Achievable

Correctness: c ⊕ k = m ⊕ k ⊕ k = m

The One-time Pad Construction:

: Choose an -bit string k at random, i.e. 𝖦𝖾𝗇 𝑛 k ← {0,1}n

 with : Output 𝖤𝗇𝖼(k, m) ℳ = {0,1}n c = m ⊕ k

: Output 𝖣𝖾𝖼(k, c) m = c ⊕ k
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Perfect Secrecy is Achievable

Claim: One-time Pad achieves Perfect 
Indistinguishability (and therefore perfect secrecy). 
Proof: For any  𝑚, 𝑐 ∈ {0,1}𝑛,

Pr
k←𝒦

[𝖤𝗇𝖼(k, m) = c] = Pr[k ⊕ m = c] = Pr[k = c ⊕ m] = 1/2n

The One-time Pad Construction:

: Choose an -bit string k at random, i.e. 𝖦𝖾𝗇 𝑛 k ← {0,1}n

 with : Output 𝖤𝗇𝖼(k, m) ℳ = {0,1}n c = m ⊕ k

: Output 𝖣𝖾𝖼(k, c) m = c ⊕ k
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Perfect Secrecy is Achievable

Claim: One-time Pad achieves Perfect 
Indistinguishability (and therefore perfect secrecy). 
Proof: For any  m, m′￼, c ∈ {0,1}n

So,  .Pr[𝖤𝗇𝖼(K, m) = c] = Pr[𝖤𝗇𝖼(K, m′￼) = c]

QED.

The One-time Pad Construction:

: Choose an -bit string k at random, i.e. 𝖦𝖾𝗇 𝑛 k ← {0,1}n

 with : Output 𝖤𝗇𝖼(k, m) ℳ = {0,1}n c = m ⊕ k

: Output 𝖣𝖾𝖼(k, c) m = c ⊕ k
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Perfect Secrecy has its Price
THEOREM: For any perfectly secure encryption scheme, 
	 	 	  |𝒦 | ≥ |ℳ |
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Shannon’s impossibility!

c
Set of messages 
consistent with c

= {D(k,c): all k} 

Messages n+1 bits 

𝑚0

𝑚1

ciphertexts 

Each cipher text can correspond to at most  messages, but 
message space contains  possible messages!


So it is possible (and likely!) that a given cipher text can never 
decrypt to !

2n

2n+1

m1

Keys n bits 

18Pr[𝖤𝗇𝖼(𝒦, m1) = c] = 0



Why is this bad?

• Exchanging large keys is difficult 

• Need to keep large keys secure for a long time 

• Generating truly random bits is kinda expensive!
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So what can we do?



Let’s look at our definition in 
more detail…



Why Perfect Indistinguishability?
For all 𝑚0, 𝑚1, 𝑐:Pr[𝐸(𝒦, 𝑚0) = 𝑐] = Pr[𝐸(𝒦, 𝑚1) = 𝑐]

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦
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Why do we call it indistinguishability?

For all m0, m1, c : Pr[world 0] = Pr[world 1]

Ok, but why do we care? What does it 
matter whether we are in world 0 or world 1?



Perfect Indistinguishability from Eve’s POV

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is an all-powerful distinguisher.

She needs to decide whether  came from World 0 or World 1.c
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For every Eve and all ,m0, m1
Pr [𝖤𝗏𝖾 says that we are in world 0]

= Pr [𝖤𝗏𝖾 says that we are in world 1]

Let’s bring introduce Eve into this definition.

Now we don’t care whether or not we are in 
world 0 or world 1, but rather whether Eve 
can tell whether we are in world 0 or world 1



Perfect Indistinguishability from Eve’s POV

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is an all-powerful distinguisher.

She needs to decide whether  came from World 0 or World 1.c
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For every Eve and all ,m0, m1

Pr [𝖤𝗏𝖾(c) = 0 k ← 𝒦
c = 𝖤𝗇𝖼(k, m0)] = Pr [𝖤𝗏𝖾(c) = 1 k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)]

Let’s formalize what it means for Eve to 
guess correctly:



World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is an all-powerful distinguisher.

She needs to decide whether  came from World 0 or World 1.c
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For every Eve and all ,m0, m1

Pr [𝖤𝗏𝖾(c) = 0 k ← 𝒦
c = 𝖤𝗇𝖼(k, m0)] − Pr [𝖤𝗏𝖾(c) = 1 k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)] = 0

Equivalently,

Called 
adversary’s 
“advantage”

Perfect Indistinguishability from Eve’s POV



Perfect Indistinguishability from Eve’s POV, Take 2

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is an all-powerful distinguisher.

She needs to decide whether  came from World 0 or World 1.c

For every Eve and , m0, m1 Pr 𝖤𝗏𝖾(c) = b
k ← 𝒦

b ← {0,1}
c = 𝖤𝗇𝖼(k, mb)

=
1
2
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We can rewrite this into an equivalent form with just one probability. 
Essentially, if Eve can’t distinguish between either world, it means 
that she is right half the time, and wrong half the time.



So what can we do with this 
framing?



The Key Idea:  
Computationally Bounded 

Adversaries
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The Axiom of Modern Crypto

Feasible Computation = randomized polynomial-time* algorithms

(p.p.t. = Probabilistic polynomial-time)

* in recent years, quantum polynomial-time

(polynomial in a security parameter n)

Life
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Secure Communication

Alice

Eve

29

Bob

Running time of Alice and Bob?

Fixed p.p.t.  (e.g., run in time )O(n2)

Running time of Eve?

Arbitrary p.p.t.  (e.g., run in time  or  or  )O(n2) O(n4) O(n1000)



World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is a PPT distinguisher.

She needs to decide whether  came from World 0 or World 1.c

30

For every PPT Eve and , m0, m1

Pr [𝖤𝗏𝖾(c) = 0 k ← 𝒦
c = 𝖤𝗇𝖼(k, m0)] − Pr [𝖤𝗏𝖾(c) = 1 k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)] = 0

Computational Indistinguishability (take 1)



Is this enough?


No!



Still subject to Shannon’s impossibility!

c
Set of messages 
consistent with c

= {D(k,c): all k} 

Messages n+1 bits 

𝑚0

𝑚1

ciphertexts 

Consider Eve that picks a random key k and  
	 outputs 0 if  = 

	 outputs 1 if  = 

	 and a random bit if neither holds.

𝖣𝖾𝖼(k, c) 𝑚0
𝖣𝖾𝖼(k, c) 𝑚1

w.p  ≥ 𝟏 /𝟐𝒏

w.p = 0

Bottomline: Pr[EVE succeeds]  1/2 +  ≥ 1/2𝑛

Keys n bits 
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What do we do?


Relax guarantees further!



World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is arbitrary PPT distinguisher.

She needs to decide whether  came from World 0 or World 1.c

For every PPT Eve and , m0, m1

Pr [𝖤𝗏𝖾(c) = 0 k ← 𝒦
c = 𝖤𝗇𝖼(k, m0)] − Pr [𝖤𝗏𝖾(c) = 1 k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)] = ε
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Idea: Eve can only do  better than random guessing.ε

Computational Indistinguishability (take 2)



How small should  be?ε

• In practice:
• Non-negligible (too large): 
• Negligible: 

• In theory, we care about asymptotics:
• Non-negligible:  
• Negligible:  for every poly 

1/230

1/2128

ε > 1/n2

ε < 1/p(n) p



New Notion: Negligible Functions
Functions that grow slower than  for any polynomial . 1/p(n) p

Definition: A function  is negligible if  
	 for every polynomial function p, 
	 for all sufficiently large n:

	  
	 


 

ε : ℕ → ℝ

ε(n) <
1

p(n)

there exists an  s.t. 
for all  

𝑛0
𝑛 > 𝑛0:

Key property: Events that occur with negligible probability look 
to poly-time algorithms like they never occur. 
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Why is this the right notion?

Let Eve’s  be non-negligible   
(i.e. distinguishes wp ) 

Eve can distinguish for  fraction of keys!

ε 1/n2

1/2 + 1/n2

1/n2
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Formalization: Negligible Functions
Functions that grow slower than 1/p(n) for any polynomial p. 

Question:  Let . Is  negligible?   ε(n) = 1/nlog n ε
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Definition: A function  is negligible if  
	 for every polynomial function p, 
	 for all sufficiently large n:

	  
	 


 

ε : ℕ → ℝ

ε(n) <
1

p(n)

there exists an  s.t. 
for all  

𝑛0
𝑛 > 𝑛0:



New Notion: Negligible Functions
Functions that grow slower than 1/p(n) for any polynomial p. 

Definition: A function  is negligible if  
	 for every polynomial function p, 
	 for all sufficiently large n:

	  
	 


 

ε : ℕ → ℝ

ε(n) <
1

p(n)

there exists an  s.t. 
for all  

𝑛0
𝑛 > 𝑛0:



Security Parameter:  (sometimes )n 𝜆

• Runtimes & success probabilities are measured as a function of .

• Want: Honest parties run in time (fixed) polynomial in .  
• Allow: Adversaries to run in time (arbitrary) polynomial in ,  
• Require: adversaries to have success probability negligible in .

𝑛
𝑛

𝑛
𝑛

Definition: A function  is negligible if  
	 for every polynomial function p, 
	 for all sufficiently large n:

	  
	 


 

ε : ℕ → ℝ

ε(n) <
1

p(n)

there exists an  s.t. 
for all  

𝑛0
𝑛 > 𝑛0:


