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Announcements

« HW O will be released tomorrow Wed Jan 22

- Due Friday Jan 31 at 5PM on Gradescope

* Recap on probability and mathematical background
- Get started ASAP and make use of office hours!

- Will have Homework “party” Wednesdays 4:30-6PM
- Course website is up!



Recap



An important property of XOR
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Secure Communication

Y Key k

"

Eavesdropper “Eve”

0
)4 - 8

Alice wants to send a message m to Bob without revealing it to Eve.



Key Notion: Secret-key Encryption

(or Symmetric-key Encryption)

m Message space (probability distribution) /A
Ciphertext ¢ <« Enc(k, m) Q

g Ciphertext space €

Key k Key k

m <« Dec(k,c)

Key space %

Three (possibly randomized) polynomial-time algorithms:

o Key Generation Algorithm: Gen(1%) — k

o Encryption Algorithm: Enc(k,m) — ¢

o Decryption Algorithm: Dec(k,c) » m



What is a secure encryption scheme?

Attacker’s abilities: CT only attack (for now)

Possible security requirements:
attempt #1:. attacker cannot recover secret key

Enc(k, m) = m would be secure

attempt #2: attacker cannot recover all of plaintext
Enc(k, (m;,m,)) = Enc(k,m,) || m, would be secure

Shannon’s idea: CT should reveal no “info” about PT
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Today

* First reasonable definition of secure encryption
* First construction of “perfectly” secure encryption
- Downsides of perfect secrecy



Shannon’s Perfect Secrecy Definition

m e M Message space (probability distribution) .Z
¢ < Enc(k, m)

g Ciphertex’é space &

Key space \% Keyk « X

K \@{
What Eve knows after looking at ¢
Probability =
that ¢ What Eve knew before looking at ¢
encrypts the Vm e M ,Vc € €, M is adversary's guess
particular
message m Pr[M = m|Enc(#,m) = c] = Pr[M = m]

> after before




Shannon’s Perfect Secrecy Definition

What Eve knows after looking at ¢

What Eve knew before looking at ¢
Vm &€ M ,Nc € €, M is adversary's guess

PrIM = m|Enc(H#,m) = c] = Pr[]M = m]

after before

v CT reveals no info about PT

But this def is difficult to work with:
How to prove that ciphertext reveals no info?
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Alternate Def: Perfect Indistinguishability

Vm,m' € M,c € C
Pr [Enc(k,m) =c] = Pr [Enc(k,m’) = c]
kK kK

For every m,m’
Probability that ¢ encrypts m (with random key k)

Probability that c encrypts m’ (with diff. key &)

Hence every ciphertext is equally likely to decrypt to a given message
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The Two Definitions are Equivalent

THEOREM: An encryption scheme (Gen, Enc, Dec)
satisfies perfect secrecy IFF it satisfies perfect
indistinguishability.

Intuition:
SEC — IND: If a ciphertext reveals no information about
plaintext, it can equally likely be an encryption for m or m’

IND — SEC: If for any m, m’, ciphertext is equally likely to
decrypt to either m or m/, then it reveals no “distinguishing”

information about 71 or m'. Since this works for any m, m’,
ciphertext reveals no information about any message.
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Perfect Secrecy is Achievable

The One-time Pad Construction:
Gen: Choose an n-bit string k at random, i.e. k < {0,1}"
Enc(k,m) with # = {0,1}": Output c =m @ k
Dec(k,c): Output m = c ® k
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Perfect Secrecy is Achievable

The One-time Pad Construction:
Gen: Choose an n-bit string k at random, i.e. k < {0,1}"
Enc(k,m) with # = {0,1}": Output c =m @ k
Dec(k,c): Output m = c ® k

Correctness: c @k =mPkPk =m
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Perfect Secrecy is Achievable

The One-time Pad Construction:
Gen: Choose an n-bit string k at random, i.e. k < {0,1}"
Enc(k,m) with # = {0,1}": Output c =m @ k
Dec(k,c): Output m = c ® k

Claim: One-time Pad achieves Perfect
Indistinguishability (and therefore perfect secrecy).

Proof: For any m, c € {0,1}",
Pr [Enclk,m) =c]|=Prlk@®m=c]=Prlk =c®dm] =1/2"
k—F
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Perfect Secrecy is Achievable

The One-time Pad Construction:
Gen: Choose an n-bit string k at random, i.e. k < {0,1}"
Enc(k,m) with # = {0,1}": Output c =m @ k
Dec(k,c): Output m = c ® k

Claim: One-time Pad achieves Perfect
Indistinguishability (and therefore perfect secrecy).

Proof: For any m,m’,c € {0,1}"
So, Pr[Enc(K, m) = c¢] = Pr[Enc(K,m’) = c].
QED.
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Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption scheme,
| F | > | A |
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" V. .
@ Shannon’s impossibility!

Messages n+1 bits ciphertexts

Keys n bits

Set of messages
consistent with ¢
= {D(k,c): all k}

Each cipher text can correspond to at most 2" messages, but
message space contains o+l possible messages!

So it is possible (and likely!) that a given cipher text can never
decrypt to m,!

Pr[Enc(#,m;) =c] =0
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Why is this bad?

- Exchanging large keys is difficult
* Need to keep large keys secure for a long time

+ Generating truly random bits is kinda expensive!

So what can we do?
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Let’s look at our definition in
more detall...



Why Perfect Indistinguishability?

For all my, my, c:Pr[E(F, my) = c] = Pt[E(H,m,) = c]

Why do we call it indistinguishability?

g World O: A 4 World 1: A
k— X k— X
\C = Enc(k, mo) ) \C = Enc(k, ml) )

For all mg, m, ¢ : Pr[world 0] = Pr[world 1]

Ok, but why do we care? What does it
matter whether we are in world 0 or world 1?
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Perfect Indistinguishability from Eve’s POV

Let’s bring introduce Eve into this definition.
Now we don’t care whether or not we are in
world 0 or world 1, but rather whether Eve

can tell whether we are in world 0 or world 1

g World O: ) g World 1: A
k — KA k — KA
\C = Enc(k, mo) ) \C = Enc(k, ml) )

\\@( Eve is an all-powerful distinguisher.
She needs to decide whether ¢ came from World 0 or World 1.

For every Eve and all m), m,,
Pr [Eve says that we are in world O]

= Pr [Eve says that we are in world 1]




Perfect Indistinguishability from Eve’s POV

Let’s formalize what it means for Eve to
guess correctly:

g World O: A 4 World 1: A
k— X k— X
\C = Enc(k, mo) ) \C = Enc(k, ml) )

\\@( Eve is an all-powerful distinguisher.
She needs to decide whether ¢ came from World 0 or World 1.

For every Eve and all m), m,,




Perfect Indistinguishability from Eve’s POV

Equivalently,
g World O: ) g World 1: A
k — KA k — KA
\C = Enc(k, mo) / \C = Enc(k, ml) /
\\@( Eve is an all-powerful distinguisher.
She needs to decide whether ¢ came from World 0 or Worlq ©2/led :
adversary’s
For every Eve and all my, m,, "advantage”
k— X k — H - ’
Pr [Eve(c) =0 ‘ o = B mo)] — Pr [Eve(c) =1 ‘c = Enell ) =0




Perfect Indistinguishability from Eve’s POV, Take 2

We can rewrite this into an equivalent form with just one probability.
Essentially, if Eve can’t distinguish between either world, it means
that she is right half the time, and wrong half the time.

( World O: ) g World 1: )
k — H k — H
\C = Enc(k, mo) / \C = Enc(k, ml) /

\3@( Eve is an all-powerful distinguisher.
She needs to decide whether ¢ came from World 0 or World 1.

[ kK|
For every Eve and myy, m, Pr | Eve(c) = b b {01} | ==
¢ = Enc(k, m)
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So what can we do with this
framing?



The Key ldea:

Computationally Bounded
Adversaries



Life
The Axiom of Modern-E€rypto

Feasible Computation = randomized polynomial-time* algorithms
(P-P-t. = Probabilistic polynomial-time)

(polynomial in a security parameter n)

* in recent years, quantum polynomial-time
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Secure Communication

= — 8

Alice Bob

Running time of Alice and Bob?
Fixed p.p.t. (e.g., run in time O(n?))

Running time of Eve?
Arbitrary p.p.t. (e.g., run in time O(n?) or O(n*) or O(n'""))
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Computational Indistinguishability  (take 1)

g World O: A g World 1: B
k — KX k — KA
\C = Enc(k, mo) ) \C = Enc(k, ml) )

\\@, Eve is a PPT distinguisher.
She needs to decide whether ¢ came from World O or World 1.

For every PPT Eve and my,, my,

k — X
¢ = Enc(k, m)

k — H

¢ = Enc(k,m;) =0

Pr [Eve(c) =0

] — Pr [Eve(c) =1
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Is this enough?

No!



" . : Vs .
@ Still subject to Shannon’s impossibility!

Messages n+1 bits ciphertexts

Keys n bits

Set of messages
consistent with ¢
= {D(k,c): all k}

Consider Eve that picks a random key k and
outputs 0 if Dec(k, ¢) = myw.p > 1/2"
outputs 1 if Dec(k,c) =m; w.p=0
and a random bit if neither holds.

Bottomline: Pr[EVE succeeds] > 1/2 + 1/2"

32



What do we do?

Relax guarantees further!



Computational Indistinguishability  (take 2)

4 World O: ) g World 1: )
k — A k — A
¢ = Enc(k, m) ) ¢ = Enc(k, m,) )

\w’ Eve is arbitrary PPT distinguisher.
She needs to decide whether ¢ came from World 0 or World 1.

For every PPT Eve and my, my,

k — KX

¢ = Enc(k, m,) N

A

7
[Idea: Eve can only do ¢ better than random guessing‘]

Pr [Eve(c) = O‘

]—Pr[Eve(c)=1‘ k(_‘%]

¢ = Enc(k, m;)




How small should £ be?

» In practice:
. Non-negligible (too large): 1/2%"
. Negligible: 1/21%%

- In theory, we care about asymptotics:
. Non-negligible: € > 1/n?
- Negligible: € < 1/p(n) for every poly p




New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function £ : N — R is negligible if
for every polynomial function p,

there exists an n s.t.

forall n > ng:
1

p(n)

e(n) <

Key property: Events that occur with negligible probability look
to poly-time algorithms like they never occur.
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Why is this the right notion?

Let Eve’s € be non-negligible 1/n°
(i.e. distinguishes wp1/2 + 1/n?)

Eve can distinguish for 1/n? fraction of keys!
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Formalization: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function £ : N — R is negligible if
for every polynomial function p,

there exists an n s.t.
forall n > ng:
1

e < p(n)

Question: Let ¢(n) = 1/n'°¢", Is ¢ negligible?
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New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function £ : N — R is negligible if
for every polynomial function p,

there exists an n s.t.
forall n > ng:
1

e < p(n)




Security Parameter: n sometimes 4

Definition: A function € : N — R is negligible if
for every polynomial function p,

there exists an n; s.t.
forall n > ngy:

e(n) <

p(n)

Runtimes & success probabilities are measured as a function of A.
Want: Honest parties run in time (fixed) polynomial in 1.
Allow: Adversaries to run in time (arbitrary) polynomial in A1,

Require: adversaries to have success probability negligible in A.



