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Announcements

« HW10 due Thursday Apr 25 at 11:59PM on Gradescope
- HW11 due Wednesday May 1 at 11:59PM on Gradescope



Recap of Last Lecture

- Secure Multi-party Computation
« Secret Sharing
- Oblivious Transfer



Secure Computation

Input: x Input: y

ﬂ A——p

Alice

Output: FA<x, y)



Secure Two-Party Computation

Input: x Input: y
P
ﬂ _> ‘ q
Alice Bob
Output: FA<x, y) Output: FB(X, y)

Semiditgnest Security:

+ Alice should not learn anything more than x and F,(x, y) .

« Bob should not learn anything more than y and FB(x, y) :



secret b

Secret Sharing

“ share §; share S, share S3 share S, share S,

Dealer

3 Any “authorized” subset of players can recover b.

3 No other subset of players has any info about b.

o Threshold (or t-out-of-n) SS [Shamir’79, Blakley’79]:

“authorized” subset = has size > t.



Shamir’s t-out-of-n Secret Sharing

Key ldea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1)
polynomial (mod p) whose constant term is the secret b.

f)=a_x"'+... +ax+b
where g; are uniformly random mod p

2. Compute the shares:
si=f),s,=f2),....s;, = f(i),....,s, = f(n)
Correctness: can recover secret from any ¢ shares.

Security: the distribution of any t — 1 shares is
independent of the secret.

Note: need p to be larger than the number of parties n.



Oblivious Transfer (OT)

] ixf | Choice bit: b
L —
Sender Receiver

 Sender holds two bits/strings x; and x;.
* Receiver holds a choice bit b.

* Receiver should learn x,, sender should learn nothing.

(We will consider honest-but-curious adversaries; formal
definition in a little bit...)



Why OT? Computing ANDs

Alice and Bob want to
compute the AND @ A f3.

- =0 Run an OT protocol
0T Y < » Choice bithb = f

Bobgetsaif f=1,and0if =0

Here is a way to write the OT selection function: x;b + xo(l — b)

which, in this case is = af.



The Billionaires’ Problem

Who is richer?



The Billionaires’ Problem

f(X,Y)=1
ifandonlyif X > Y
{ &
X Y
-.0100 --- -~ 0111111
Unit Vector uy = 1 in the X" Vector vy = 1 from the
location and O elsewhere Y+ 1)”’ location onwards
U
FX.Y) = (uy,vy) = ) uyli] Avyli]
i=1
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Today’s Lecture

« OT for AND of secret-shared bits
* Definition of MPC
* Definition of OT

« Construction of OT from Trapdoor Permutations



Detour: OT = Secret-Shared-AND
Aloe getsrandom 7, Bob get
i)

Output: ¥ Output: O

— Run an OT protocol
=7 < » Choice bit b =
x1=a®y

Alice outputs v.

Bob getS xlb +XO(1 @ b) = (.xl @XO)b +XO = aﬂ @ Yy = o)
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The Billionaires’ Problem

f(X,Y)=1

ﬂ if and only if X > Y

. 0100 --- .01

Unit Vector Uy Vector UY

U
FX.Y) = (uy,vy) = ) uyli] Avyli]
i=1

1. Alice and Bob run many OTs to get (y;, 6,) s.t. 7@@ o, = uX[i] A vyli]

2. Alice computes y = @; y; and Bob computes 6 = &, 9,

3. Alice reveals y and Bob reveals ¢.

Check (correctness): y @ 6 = (uy,vy) = f(X,Y).
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The Billionaires’ Problem

f(X,Y)=1

ﬂ if and only if X > Y

. 0100 - -~ 0111111

Unit Vector Uy Vector UY

U
FX.Y) = (uy,vy) = ) uyli] Avyli]
i=1

1. Alice and Bob run many OTs to get (y;, 6,) s.t. 7@@ o, = uX[i] A vyli]

2. Alice computes y = @; y; and Bob computes 6 = &, 9,

3. Alice reveals y and Bob reveals ¢.
Check (privacy): Alice & Bob get a bunch of random bits.
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“OT is Complete”

Theorem: OT can solve not just ANDs and money, but
any two-party (and multi-party) problem efficiently.

"

Y
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Defining Security:
The Ideal/Real Paradigm



Secure Two-Party Computation

REAL Input: X
WORLD:

e Z e g



Secure Two-Party Computation

Input: X

ﬂ A——p

Alice

There exists a PPT simulator S 1M 4 such that for any
X and y:

STM 4(x, F(x,y)) = View(x, y)



Secure Two-Party Computation

Input: X

ﬂ A——p

Alice

There exists a PPT simulator S 1M g such that for any
X and y:

SIMp(y, F(x,y)) = Viewpg(x, y)



OT Definition

. Choice bit: b

X1
iL —

Sender Receiver

Receiver Security: Sender should not learn b.

Define Sender’s view Views(x,, x;, b) = her random coins
and the protocol messages.
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OT Definition
j:f | Choice bit: b
{) <

Sender

>

Receiver

Receiver Security: Sender should not learn b.

There exists a PPT simulator S1M g such that for any x,
x; and b:

STM s(xg, x;) = Views(xy, x, b)
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OT Definition

. Choice bit: b

X1
iL —

Sender Receiver

Sender Security: Receiver should not learn x_,.

Define Receiver’s view Viewg(xy, x;, b) = his random coins
and the protocol messages.
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OT Definition

R Choice bit: b

!
iL —

Sender Receiver

Sender Security: Receiver should not learn x_,.

There exists a PPT simulator S1M g such that for any x,
x; and b:

STMRg(b, xp) = Viewpg(xy, x;, D)

24



OT Protocols



OT Protocol 1: Trapdoor Permutations

For concreteness, let's use the RSA trapdoor permutation.

f .

Input bits: (Xq, X;) Choice bit: b

Pick N = PO and N,e
RSA exponent e. >

Choose random r, and
— 7€
Sor S set s, = r, mod N

Choose random s,_,
Compute ry, r; and

XOR X, x; using Xo@ HCB(r,
hardcore bits

» Bob can recover
) X, but not x;_,



OT Protocol 1: Trapdoor Permutations

N,e

ﬂ R @

Input bits: (Xg, X{) Choice bit: b

xo@P HCB(r,)
x @ HCB(r,)

How about Bob’s security
(a.k.a. Why does Alice not learn Bob’s choice bit)?

Alice’s view is sj, s; one of which is chosen randomly
from Z3 and the other by raising a random number
to the e-th power. They look exactly the same!



OT Protocol 1: Trapdoor Permutations

N,e

ﬂ R

Input bits: (Xg, X{) Choice bit: b

xo@P HCB(r,)
x @ HCB(r,)

How about Bob’s security
(a.k.a. Why does Alice not learn Bob’s choice bit)?

Exercise: Show how to construct the simulator.
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OT Protocol 1: Trapdoor Permutations

N,e

ﬂ R @

Input bits: (Xg, X{) Choice bit: b

xo@P HCB(r,)
x @ HCB(r,)

How about Alice’s security
(a.k.a. Why does Bob not learn both of Alice’s bits)?

Assuming Bob is semi-honest, he chose 5 _; uniformly

at random, so the hardcore bit of §;_; = rld—b IS
computationally hidden from him.



Many More Constructions of OT

Theorem: OT protocols can be constructed based
on the hardness of the Diffie-Hellman problem,
factoring, quadratic residuosity, LWE, elliptic curve

isogeny problem etc. etc.



Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
OT can solve any two-party computation problem.

"

{@®]

=

Y



Computing Arbitrary Functions

For us, programs = functions = Boolean circuits with
XOR (+ mod 2) and AND (X mod 2) gates.

ab(a’+ b’ 8

-
o

Want: If you can compute XOR and AND in the
appropriate sense, you can compute everything.



Recap: OT = Secret-Shared-AND
Aloe getsrandom 7, Bob gets
i)

Output: ¥ Output: O

— Run an OT protocol
=7 < » Choice bitb =
x1=a®y

Alice outputs v.

Bob getS xlb +XO(1 @ b) = (.xl @XO)b +XO = aﬂ @ Yy = o)
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Computing Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice
and Bob each have a bit whose XOR is the value at the wire.

XOR gate:
AND gate?? Locally XOR the shares
a
b &
QL a @ ®0
30 b (0 ®b'

Base Case: Input wires

34



Computing the XOR gate

1 X D x’

Alice has & and Bob has ﬂs.t. a®pf=x /\
[ +]
/ / X XI

Alice has & and Bob has ﬁ st.a’'@ p'=x’

Alice computes a @ a’ and Bob computes g @ f'.

So, we have: (a® a' )@ (S & F)
=(a®p)B(d®f) =xBX



Computing the AND gate
Alice has @ and Bob has fist. a @ B = x

. / / / / /
Alice has & and Bob has ﬁ st.a’' @ f'=x x  x'

Desired output (to maintain invariant):
Alice wants a'’ and Bob wants ' s.t. a” @ " = xx’



Computing the AND gate
xx'=(a@® f)a' @ f) N
o, 05 0

L o o 8
Vb Op

/

X X

f g8

a'=ad’®y, &0, P'=pFDy, D,



Computing Arbitrary Functions

Secret-sharing Invariant. For each wire of the circuit, Alice
and Bob each have a bit whose XOR is the value at the wire.

Finally, Alice and Bob exchange the shares at the output wire,
and XOR the shares together to obtain the output.

LY s@p=ab@eb)
op




Security by Composition
Theorem:
If protocol I1 securely realizes a function g in

the “ f-hybrid model” and protocol I’ securely
realizes f, then II o II’ securely realizes g.

Protocol for g in the f-hybrid model Protocol for f

39



Security: Intuition (ss-AND hybrid model)

Imagine that the parties have access to an ss-AND angel.

o - 6\
y \




Security: Intuition (ss-AND hybrid model)

Imagine that the parties have access to an ss-AND angel.

Simulator for Alice’s view: XOR gate: simulate given
Alice’s input shares

‘2

fla a 0

Input wires: can be
simulated given Alice’s input



Security: Intuition (ss-AND hybrid model)

Simulator for Alice’s view:

AND gate: simulate given Alice’s input shares
& outputs from the ss-AND angel.

X /
(@) Alice’s shars a f)

=a.0*ynlinp 0.0)
5alice [ . ]
il a a 0
Yatice @Nd 0,:., @re random,

independent of b



Security: Intuition (ss-AND hybrid model)

Simulator for Alice’s view:
Output wire: need to know both Alice and Bob’s output

shares.

Bob’s output share = Alice’s

output share @ function output X a f)
Simulator knows the

function output, and | + I
can compute Bob’s [

output share given fLa a 0

Alice’s output share.



Secret-Shared AND protocol

Using the RSA trapdoor permutation.

il

Input bit: a Input bit: b
Pick N = PQ
and RSA ne X
eL);T(;cneS;e ' Choose random 7, and

0 — 1€

BN So» 51 set s, = r, mod N
x| = XO@ a « Choose random §_,
Compute 7757F and

one-time pad X, X; XO@HCB<”0)
using hardcore bits xl@HCB(rl:)

Alice outputs Xy Bob outputs X, 44




Secret-Shared AND protocol

Using the RSA trapdoor permutation.

il

Input bit: a Input bit: b

Exercise;: Construct simulators for Alice and Bob.
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In summary: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming OT exists, there is a protocol that
solves any two-party computation problem
against semi-honest adversaries.
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In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming OT exists, there is a protocol that
solves any multi-party computation problem
against semi-honest adversaries.
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MPC Outline

Secret-sharing Invariant: For each wire of the circuit, the n
parties have a bit each, whose XOR is the value at the wire.

Base case: input wires.

XOR gate: given input shares (0[1, cees an) s.t.

@?21 Q; = aand (ﬂl, . ﬂn) s.t. @?21 ﬂi = b,

compute the shareédalfj;hﬁlgp.tggéci of y’ﬁ XOR gate:

AND gate: given input shares as above, compute the shares of
the output of the XOR gate:

(01, ey on) S.t 619;?:1 0; = ab Exercise!
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