CIS 5560

Cryptography
Lecture 24

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan


http://pratyushmishra.com/classes/cis-5560-s24/

Announcements

« HW10 due Thursday Apr 25 at 11:59PM on Gradescope
- HW11 will be released tomorrow evening



Recap of Last Lecture

- Complete proof of ZK for 3COL
 Succinct Arguments

- PCPs

- Kilian construction of succinct arguments from PCPs



Why is 3COL Protocol ZK?

Simulator S works as follows:

1. First pick a random edge (i, j*)

Color vertices i and j* with {Com(p(k);r) Yz
random, different colors :
Color all other vertices red.

~ edge (la .]) Q
colors to V™ and get edge (i, j)

y

2. Feed the commitments of the

3 |If <i,j) ?é (i*,j*), go back and send openings ¥; and I‘j:
repeat.

4. If (i,j) = (i%, j¥), output the commitments and
openings r; and r;as the simulated transcript.



Why is this zero-knowledge?

Simulator S works as follows (call this Hybrid 0)

1. First pick a random edge (i, j*)

Color vertices i and j* with {Com(p(k);r) Yz
random, different colors :
Color all other vertices red.

~ edge (la .]) g
colors to V™ and get edge (i, j)

y

2. Feed the commitments of the

3 |If <i,j) ?é (i*,j*), go back and send openings ¥; and I‘j:
repeat.

4. If (i,j) = (i%, j¥), output the commitments and
openings r; and r;as the simulated transcript.



Why is this zero-knowledge?

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (i, j*)

Permute a legal coloring and {Com(p(k);ry) Yy
color all vertices correctly. g

~ edge (i, j) Q
colors to V™ and get edge (i, j) |

y

2. Feed the commitments of the

3 |If (i,j) ?é (i*,j*), go back and send openings ¥; and I‘j:
repeat.

4. If (i,j) = (i%, j¥), output the commitments and
openings r; and r;as the simulated transcript.



Why is this zero-knowledge?

Here is the real view of V* (Hybrid 2)

1.F. l . I | | E.* .*;

Permute a legal coloring and {Com(p(k);re) Vi,
color all edges correctly. g
. ) edge (i, ])
2. Feed the commitments of the <
colors to V™ and get edge (i, j)
3. " 1 '*, [ : send openings ¥; and ri
repeat:

4. l—f—éiﬁ'}—;@*ﬂ'*%,—output the commitments and

openings r; and r;as the transcript.



Today’s Lecture

- Secure Multi-party Computation



Secure Computation

Input: x

ﬂ A——p

Alice

Output: FA<x, y)



Secure Two-Party Computation

Input: x Input: y
P
ﬂ _> ‘ q
Alice Bob
Output: FA<x, y) Output: FB(X, y)

Semiditgnest Security:

+ Alice should not learn anything more than x and F,(x, y) .

« Bob should not learn anything more than y and FB(x, y) :



Secure Two-Party Computation

Input: x Input: y
P
ﬂ _> ‘ q
Alice Bob
Output: FA<x, y) Output: FB(X, y)

Malicious Security:

« No (PPT) Alice* can learn anything more than x* and F,(x*, ).

« No (PPT) Bob* can learn anything more than y* and Fg(x, y*) .



Tool 1: Secret Sharing



secret b

Secret Sharing

“ share §; share S, share S3 share S, share S,

Dealer

3 Any “authorized” subset of players can recover b.

3 No other subset of players has any info about b.

o Threshold (or t-out-of-n) SS [Shamir’79, Blakley’79]:

“authorized” subset = has size > t.

13



secretb € z,

Dealer

n-out-of-n Secret Sharing

2358

P

share s;: random
share s,: random
share s3: random
share s,: random

share s, =b—(s;+s,+ ... +5, ;) modp

14



secretb € z,

,ﬁ
4

Dealer

1-out-of-n Secret Sharing

22358

P

share s; = b
share s, = b
share s; =b

share s, = b

share s, = b
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secretb € z,

1

2-out-of-n Secret Sharing

@ 235

Dealer Py

Here is a solution.

Repeat for every two-person subset {F, P}
Generate a 2-out-of-2 secret sharing (s;, s;) of b.
Give s;to P, and s; to P,

What is the size of shares each party gets?

How does this scale to t-out-of-n?
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Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

17



Shamir’s 2-out-of-n Secret Sharing

Each share s, is truly
random (independent of

secret b)

Any two shares uniquely
determine b.
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Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose
constant term is the secret b.

f(x) = ax + b where a is uniformly random mod p

2. Compute the shares:

sy=f(), sy = Q) ..0ns; = f(D),....s, = f(n)

Correctness: can recover secret from any two shares.

Proof: Parties i and j, given shares s, = ai + b and
JS; — 1S,

J).

s; = aj+ b can solve for b (= ——
J—1



Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose
constant term is the secret b.

f(x) = ax + b where a is uniformly random mod p

2. Compute the shares:

sy=f(), sy = Q) ..0ns; = f(D),....s, = f(n)

Security: any single party has no information about the secret.

Proof: Party i’s share s, = a * i + b is uniformly random,
independent of b, as a is random and so is a * i.



Shamir’s t-out-of-n Secret Sharing

Key ldea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1)
polynomial (mod p) whose constant term is the secret b.

f)=a_x"'+... +ax+b
where g; are uniformly random mod p

2. Compute the shares:
si=f),s,=f2),....s;, = f(i),....,s, = f(n)
Correctness: can recover secret from any ¢ shares.

Security: the distribution of any t — 1 shares is
independent of the secret.

Note: need p to be larger than the number of parties n.
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Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f)=a_x"'+ ... +ax+b
where a; are uniformly random mod p

si=f),s5,=f2),....s; = fQi),....,s, = f(n)

Correctness: via Vandermonde matrices.

Let’s look at shares of parties P, P, ..., P..

s UL
s |12 22 | g
ss| =11 3 3% ... 37| a, |(mod p)
| %] 1 ¢ 2 . g1 L%

t-by-t Vandermonde matrix which is invertible 2



Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f)=a_x"'+ ... +ax+b
where a; are uniformly random mod p

si=f),s5,=f2),....s; = fQi),....,s, = f(n)

Correctness: Alternatively, Lagrange interpolation gives
an explicit formula that recovers b.

b=ro =y fof ] —

X, — X;
i=1 1<jstj#i T T
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Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f)=a_x"'+ ... +ax+b
where a; are uniformly random mod p

si=f),s5,=f2),....s; = fQi),....,s, = f(n)

Security:

Let’s look at shares of parties P, P, ..., P_;.

a1 [ R T
5, 1 2 22 ... 2l a,
s | =11 3 3> ... 3 a, |(mod p)
R I DU OO DR SuE ol R

~ (t — 1)-by-t Vandermonde matrix

24



Shamir’s t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

f)=a_x"'+ ... +ax+b
where a; are uniformly random mod p

si=f),s5,=f2),....s; = fQi),....,s, = f(n)

Security: For every value of b there is a unique polynomial with
constant term b and agrees with fon s, ...,s,_;.

a1 [ R T
5, 1 2 22 ... 2l a,
s | =11 3 32 ... 3l a, |(mod p)
R I DU OO DR SuE ol R

~ (t — 1)-by-t Vandermonde matrix 25



Shamir’s t-out-of-n Secret Sharing

Key ldea: Polynomials are Amazing!

f)=a_x"'+ ... +ax+b
where a; are uniformly random mod p

si=f),s5,=f2),....s; = fQi),....,s, = f(n)

Security: For every value of b there is a unique polynomial with
constant term b and agrees with fon s, ...,s,_;.

Corollary: for every value of the secret b is equally likely
given the shares s, s,, ..., s,_; . In other words, the secret b
is perfectly hidden given ¢ — 1 shares.
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Tool 2: Oblivious Transfer



Oblivious Transfer (OT)

] ixf | Choice bit: b
L —
Sender Receiver

 Sender holds two bits/strings x; and x;.
* Receiver holds a choice bit b.

* Receiver should learn x,, sender should learn nothing.

(We will consider honest-but-curious adversaries; formal
definition in a little bit...)

28



Why OT? Computing ANDs

Alice and Bob want to
compute the AND @@ A f3.




Why OT? Computing ANDs

Alice and Bob want to
compute the AND @ A f3.

- =0 Run an OT protocol
0T Y < » Choice bithb = f

Bobgetsaif f=1,and0if =0

Here is a way to write the OT selection function: x;b + xo(l — b)

which, in this case is = af.

30



The Billionaires’ Problem

Who is richer?



The Billionaires’ Problem

f(X,Y)=1
ifandonlyif X > Y
{ &
X Y
-.0100 --- -~ 0111111
Unit Vector uy = 1 in the X" Vector vy = 1 from the
location and O elsewhere Y+ 1)”’ location onwards
U
FX.Y) = (uy,vy) = ) uyli] Avyli]
i=1

32



Detour: OT = Secret-Shared-AND
Aloe getsrandom 7, Bob get
i)

Output: ¥ Output: O

— Run an OT protocol
=7 < » Choice bit b =
x1=a®y

Alice outputs v.

Bob getS xlb +XO(1 @ b) = (.xl @XO)b +XO = aﬂ @ Yy = o)

33



The Billionaires’ Problem

f(X,Y)=1

ﬂ if and only if X > Y

. 0100 --- .01

Unit Vector Uy Vector UY

U
FX.Y) = (uy,vy) = ) uyli] Avyli]
i=1

1. Alice and Bob run many OTs to get (y;, 6,) s.t. 7@@ o, = uX[i] A vyli]

2. Alice computes y = @; y; and Bob computes 6 = &, 9,

3. Alice reveals y and Bob reveals ¢.

Check (correctness): y @ 6 = (uy,vy) = f(X,Y).

34



The Billionaires’ Problem

f(X,Y)=1

ﬂ if and only if X > Y

. 0100 - -~ 0111111

Unit Vector Uy Vector UY

U
FX.Y) = (uy,vy) = ) uyli] Avyli]
i=1

1. Alice and Bob run many OTs to get (y;, 6,) s.t. 7@@ o, = uX[i] A vyli]

2. Alice computes y = @; y; and Bob computes 6 = &, 9,

3. Alice reveals y and Bob reveals ¢.
Check (privacy): Alice & Bob get a bunch of random bits.

35



“OT is Complete”

Theorem: OT can solve not just ANDs and money, but
any two-party (and multi-party) problem efficiently.

"

Y

36



Defining Security:
The Ideal/Real Paradigm



OT Definition

. Choice bit: b

X1
iL —

Sender Receiver

Receiver Security: Sender should not learn b.

Define Sender’s view Views(x,, x;, b) = her random coins
and the protocol messages.

38



OT Definition
j:f | Choice bit: b
{) <

Sender

>

Receiver

Receiver Security: Sender should not learn b.

There exists a PPT simulator S1M g such that for any x,
x; and b:

STM s(xg, x;) = Views(xy, x, b)

39



OT Definition

. Choice bit: b

X1
iL —

Sender Receiver

Sender Security: Receiver should not learn x_,.

Define Receiver’s view Viewg(xy, x;, b) = his random coins
and the protocol messages.

40



OT Definition

R Choice bit: b

!
iL —

Sender Receiver

Sender Security: Receiver should not learn x_,.

There exists a PPT simulator S1M g such that for any x,
x; and b:

STMRg(b, xp) = Viewpg(xy, x;, D)

41



OT Protocols



OT Protocol 1: Trapdoor Permutations

For concreteness, let's use the RSA trapdoor permutation.

f .

Input bits: (Xq, X;) Choice bit: b

Pick N = PO and N,e
RSA exponent e. >

Choose random r, and
— 7€
Sor S set s, = r, mod N

Choose random s,_,
Compute ry, r; and

XOR X, x; using Xo@ HCB(r,
hardcore bits

» Bob can recover
) X, but not x;_,



OT Protocol 1: Trapdoor Permutations

N,e

ﬂ R @

Input bits: (Xg, X{) Choice bit: b

xo@P HCB(r,)
x @ HCB(r,)

How about Bob’s security
(a.k.a. Why does Alice not learn Bob’s choice bit)?

Alice’s view is sj, s; one of which is chosen randomly
from Z3 and the other by raising a random number
to the e-th power. They look exactly the same!



OT Protocol 1: Trapdoor Permutations

N,e

ﬂ R

Input bits: (Xg, X{) Choice bit: b
xo@P HCB(r,)

x; @ HCB(ry)

How about Bob’s security
(a.k.a. Why does Alice not learn Bob’s choice bit)?

Exercise: Show how to construct the simulator.
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OT Protocol 1: Trapdoor Permutations

N,e

ﬂ R @

Input bits: (Xg, X{) Choice bit: b
xo@P HCB(r,)

x; @ HCB(ry)

How about Alice’s security
(a.k.a. Why does Bob not learn both of Alice’s bits)?

Assuming Bob is semi-honest, he chose 5 _; uniformly

at random, so the hardcore bit of §;_; = rld—b IS
computationally hidden from him.



OT from Trapdoor Permutations

N,e

ﬂ R @

Input bits: (Xg, X{) Choice bit: b
xo@P HCB(r,)

x; @ HCB(ry)

How about Alice’s security
(a.k.a. Why does Bob not learn both of Alice’s bits)?

Exercise: Show how to construct the simulator.



OT Protocol 2: Additive HE

Q.

Input bits: (Xq, X;) Choice bit: b

Encrypt choice bit b

c Enc(sk, b
Homomorphically ) T (sk. 6)
evaluate the X
selection function
_ ¢'=Eval(SEL, , (b),c)
SELy,x,(b) = o Decrypt to get X,

(x4

6% x0)b + x,

ob’s security: computational, from CPA-security of Enc.

Alice’s security: statistical, from function-privacy of Eval.

48



Many More Constructions of OT

Theorem: OT protocols can be constructed based
on the hardness of the Diffie-Hellman problem,
factoring, quadratic residuosity, LWE, elliptic curve

isogeny problem etc. etc.

49



Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
OT can solve any two-party computation problem.

N

-

A



