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Announcements
• HW10 due Thursday Apr 25 at 11:59PM on Gradescope

• HW11 will be released tomorrow evening
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Recap of Last Lecture
• Complete proof of ZK for 3COL

• Succinct Arguments

• PCPs

• Kilian construction of succinct arguments from PCPs
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Why is 3COL Protocol ZK?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Simulator S works as follows:

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to and get edge   𝑉 ∗  (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Color vertices  and  with 
random, different colors

 𝑖∗ 𝑗∗

Color all other vertices red.

4. If , output the commitments and 
openings  and  as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗
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Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Simulator S works as follows (call this Hybrid 0) 

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to and get edge   𝑉 ∗  (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Color vertices  and  with 
random, different colors

 𝑖∗ 𝑗∗

Color all other vertices red.

4. If , output the commitments and 
openings  and  as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗
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Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to  and get edge   𝑉 ∗ (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Permute a legal coloring and 
color all vertices correctly.

4. If , output the commitments and 
openings  and  as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗
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Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Here is the real view of V* (Hybrid 2)

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to  and get edge   𝑉 ∗ (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Permute a legal coloring and 
color all edges correctly.

4. If , output the commitments and 
openings  and  as the transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗



Today’s Lecture
• Secure Multi-party Computation
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Secure Computation

Bob

Input: 𝒚

Output:  𝐹𝐴(𝑥, 𝑦)

Alice

Input: 𝒙

Output:  𝐹𝐵(𝑥, 𝑦)
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Secure Two-Party Computation

• Alice should not learn anything more than  and   𝑥 𝐹𝐴(𝑥, 𝑦) .

• Bob should not learn anything more than  and   𝑦 𝐹𝐵(𝑥, 𝑦) .

Semi-honest Security:Security:

Bob

Input: 𝒚

Output:  𝐹𝐴(𝑥, 𝑦)

Alice

Input: 𝒙

Output:  𝐹𝐵(𝑥, 𝑦)
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Secure Two-Party Computation

• No (PPT) Alice* can learn anything more than  and   𝑥∗ 𝐹𝐴(𝑥∗, 𝑦) .

• No (PPT) Bob* can learn anything more than  and   𝑦∗ 𝐹𝐵(𝑥, 𝑦∗) .

Malicious Security:

Bob

Input: 𝒚

Output:  𝐹𝐴(𝑥, 𝑦)

Alice

Input: 𝒙

Output:  𝐹𝐵(𝑥, 𝑦)
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Tool 1: Secret Sharing
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Secret Sharing
secret b

share 𝑠1 share 𝑠2 share 𝑠3 share 𝑠4 share 𝑠𝑛

𝑃1 𝑃2 𝑃3 𝑃4 𝑃𝑛Dealer

o Threshold (or t-out-of-n) SS [Shamir’79, Blakley’79]: 

❑  Any “authorized” subset of players can recover b.
❑  No other subset of players has any info about b.

“authorized” subset = has size t. ≥  

…
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-out-of-  Secret Sharingn n
secret b  ∈ 𝑍𝑝

share   random 𝑠1:
share :  random 𝑠2

share : random 𝑠3
share : random𝑠4

share  mod p𝑠𝑛 = 𝑏 − (𝑠1 + 𝑠2 + … + 𝑠𝑛−1)

𝑃1 𝑃2 𝑃3 𝑃4 𝑃𝑛Dealer

…

…
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-out-of-  Secret Sharing1 n

share 𝑠1 = b

share 𝑠2 = b

share 𝑠3 = b

share 𝑠4 = b

share 𝑠𝑛 = 𝑏

𝑃1 𝑃2 𝑃3 𝑃4 𝑃𝑛Dealer

…

…

secret b  ∈ 𝑍𝑝
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Here is a solution.

Repeat for every two-person subset {  
Generate a 2-out-of-2 secret sharing  of b. 
Give  to  and  to 

𝑃𝑖, 𝑃𝑗}:  
(𝑠𝑖, 𝑠𝑗)

𝑠𝑖 𝑃𝑖 𝑠𝑗 𝑃𝑗

𝑃1 𝑃2 𝑃3 𝑃4 𝑃𝑛Dealer

…

What is the size of shares each party gets?

How does this scale to t-out-of-n?

secret b  ∈ 𝑍𝑝

-out-of-  Secret Sharing2 n
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Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!
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Shamir’s 2-out-of-n Secret Sharing

𝒔𝟏 𝒔𝟐

𝒔𝟑

secret 𝑏

(1,𝑠1)
(2,𝑠2)

(3,𝑠3)

Each share  is truly  
random (independent of 

secret b) 

𝑠𝑖

Any two shares uniquely 
determine b.

random line through (0,b)
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Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose 
constant term is the secret 𝑏 .

 where  is uniformly random mod  𝑓(𝑥) = 𝑎𝑥 + 𝑏 𝑎 𝑝

2.   Compute the shares   :
𝑠1 = 𝑓(1), 𝑠2 = 𝑓(2), …, 𝑠𝑖 = 𝑓(𝑖), …, 𝑠𝑛 = 𝑓(𝑛)

Correctness: can recover secret from any two shares. 
Proof: Parties  and , given shares  and 

 can solve for .

𝑖 𝑗 𝑠𝑖 = 𝑎𝑖 + 𝑏

𝑠𝑗 = 𝑎𝑗 + 𝑏 𝑏 ( =
𝑗𝑠𝑖 − 𝑖𝑠𝑗

𝑗 − 𝑖
)
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Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose 
constant term is the secret 𝑏 .

 where  is uniformly random mod  𝑓(𝑥) = 𝑎𝑥 + 𝑏 𝑎 𝑝

2.   Compute the shares   :
𝑠1 = 𝑓(1), 𝑠2 = 𝑓(2), …, 𝑠𝑖 = 𝑓(𝑖), …, 𝑠𝑛 = 𝑓(𝑛)

Security: any single party has no information about the secret.  
Proof: Party ’s share  is uniformly random, 
independent of  as  is random and so is .

𝑖 𝑠𝑖 = 𝑎 ∗ 𝑖 + 𝑏
𝑏, 𝑎 𝑎 ∗ 𝑖
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Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1) 
polynomial (mod p) whose constant term is the secret 𝑏 .

  
	 where  are uniformly random mod  
𝑓(𝑥) = 𝑎𝑡−1𝑥𝑡−1 + … + 𝑎1𝑥 + 𝑏

𝑎𝑖 𝑝

2.   Compute the shares   :
𝑠1 = 𝑓(1), 𝑠2 = 𝑓(2), …, 𝑠𝑖 = 𝑓(𝑖), …, 𝑠𝑛 = 𝑓(𝑛)

Correctness: can recover secret from any  shares. 𝑡

Security: the distribution of  shares is 
independent of the secret.

𝑎𝑛𝑦 𝑡 − 1

Note: need p to be larger than the number of parties n. 21



𝑠1
𝑠2
𝑠3…
𝑠𝑡

=

1 1 1 … 1
1 2 22 … 2𝑡−1

1 3 32 … 3𝑡−1

1 … … … …
1 𝑡 𝑡2 … 𝑡𝑡−1

𝑏
𝑎1
𝑎2…

𝑎𝑡−1

(mod 𝑝)

  
	 where  are uniformly random mod  
𝑓(𝑥) = 𝑎𝑡−1𝑥𝑡−1 + … + 𝑎1𝑥 + 𝑏

𝑎𝑖 𝑝
𝑠1 = 𝑓(1), 𝑠2 = 𝑓(2), …, 𝑠𝑖 = 𝑓(𝑖), …, 𝑠𝑛 = 𝑓(𝑛)

Correctness: via Vandermonde matrices.

Let’s look at shares of parties 𝑃1, 𝑃2, …, 𝑃𝑡 .

-by-  Vandermonde matrix which is invertible𝑡 𝑡

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!
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Correctness: Alternatively, Lagrange interpolation gives 
an explicit formula that recovers b. 

𝑏 = 𝑓(0) =
𝑡

∑
𝑖=1

𝑓(𝑖) ∏
1≤𝑗≤𝑡,𝑗≠𝑖

−𝑥𝑗

𝑥𝑖 − 𝑥𝑗

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

  
	 where  are uniformly random mod  
𝑓(𝑥) = 𝑎𝑡−1𝑥𝑡−1 + … + 𝑎1𝑥 + 𝑏

𝑎𝑖 𝑝
𝑠1 = 𝑓(1), 𝑠2 = 𝑓(2), …, 𝑠𝑖 = 𝑓(𝑖), …, 𝑠𝑛 = 𝑓(𝑛)
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𝑠1
𝑠2
𝑠3…

𝑠𝑡−1

=

1 1 1 … 1
1 2 22 … 2𝑡−1

1 3 32 … 3𝑡−1

1 … … … …
1 𝑡 − 1 (𝑡 − 1)2 … (𝑡 − 1)𝑡−1

𝑏
𝑎1
𝑎2…

𝑎𝑡−1

(mod 𝑝)

Security:

Let’s look at shares of parties 𝑃1, 𝑃2, …, 𝑃𝑡−1 .

-by-  Vandermonde matrix(𝑡 − 1) 𝑡

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

  
	 where  are uniformly random mod  
𝑓(𝑥) = 𝑎𝑡−1𝑥𝑡−1 + … + 𝑎1𝑥 + 𝑏

𝑎𝑖 𝑝
𝑠1 = 𝑓(1), 𝑠2 = 𝑓(2), …, 𝑠𝑖 = 𝑓(𝑖), …, 𝑠𝑛 = 𝑓(𝑛)
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𝑠1
𝑠2
𝑠3…

𝑠𝑡−1

=

1 1 1 … 1
1 2 22 … 2𝑡−1

1 3 32 … 3𝑡−1

1 … … … …
1 𝑡 − 1 (𝑡 − 1)2 … (𝑡 − 1)𝑡−1

𝑏
𝑎1
𝑎2…

𝑎𝑡−1

(mod 𝑝)

Security: For every value of  there is a unique polynomial with 
constant term  and agrees with  on .

𝑏
𝑏 f s1, …, st−1

-by-  Vandermonde matrix(𝑡 − 1) 𝑡

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

  
	 where  are uniformly random mod  
𝑓(𝑥) = 𝑎𝑡−1𝑥𝑡−1 + … + 𝑎1𝑥 + 𝑏

𝑎𝑖 𝑝
𝑠1 = 𝑓(1), 𝑠2 = 𝑓(2), …, 𝑠𝑖 = 𝑓(𝑖), …, 𝑠𝑛 = 𝑓(𝑛)
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Corollary: for every value of the secret is equally likely 
given the shares  In other words, the secret 
is perfectly hidden given  shares.

𝑏 
𝑠1, 𝑠2, …, 𝑠𝑡−1 . 𝑏 

𝑡 − 1

Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

  
	 where  are uniformly random mod  
𝑓(𝑥) = 𝑎𝑡−1𝑥𝑡−1 + … + 𝑎1𝑥 + 𝑏

𝑎𝑖 𝑝
𝑠1 = 𝑓(1), 𝑠2 = 𝑓(2), …, 𝑠𝑖 = 𝑓(𝑖), …, 𝑠𝑛 = 𝑓(𝑛)

26

Security: For every value of  there is a unique polynomial with 
constant term  and agrees with  on .

𝑏
𝑏 f s1, …, st−1



Tool 2: Oblivious Transfer
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Oblivious Transfer (OT)

Receiver

Choice bit: 𝒃
𝑥0
𝑥1

• Sender holds two bits/strings  and .𝑥0 𝑥1

• Receiver holds a choice bit .𝑏

• Receiver should learn , sender should learn nothing. 𝑥𝑏

(We will consider honest-but-curious adversaries; formal 
definition in a little bit…)

Sender

28



Why OT? Computing ANDs
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}

Alice and Bob want to 
compute the AND .𝛼 ∧ 𝛽

29



𝛼 ∈ {0,1} 𝛽 ∈ {0,1}
Alice and Bob want to 

compute the AND .𝛼 ∧ 𝛽

𝑥0 = 0
𝑥1 = 𝛼

Choice bit 𝑏 = 𝛽
Run an OT protocol

Bob gets  if , and 0 if  𝛼 β = 1 β = 0

Here is a way to write the OT selection function: 𝒙𝟏𝒃 +  𝒙𝟎(𝟏 − 𝒃)
which, in this case is . = 𝛼𝛽

Why OT? Computing ANDs

30



The Billionaires’ Problem
Net worth: $X Net worth: $Y

Who is richer?
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The Billionaires’ Problem

𝑋 𝑌

  
if and only if 

𝑓(𝑋, 𝑌 ) = 1
𝑋 > 𝑌

Unit Vector  = 1 in the  
location and 0 elsewhere

𝑢𝑋 𝑋𝑡h

10 0 0 ……

Vector  = 1 from the 
 location onwards
𝑣𝑌

(𝑌 + 1)𝑡h

10 1 1… 1 1 1

𝒇(𝑿, 𝒀 ) = ⟨𝒖𝑿, 𝒗𝒀⟩ =
𝑼

∑
𝒊=𝟏

𝒖𝑿[𝒊] ∧ 𝒗𝒀[𝒊]

Compute each AND individually and sum it up? 
32



Detour: OT  Secret-Shared-AND⟹
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}Alice gets random , Bob gets 

random  s.t. .
𝛾

𝛿 γ ⊕ δ = αβ

x0 = γ
x1 = a ⊕ γ

Choice bit 𝑏 = 𝛽
Run an OT protocol

Bob gets x1b + x0(1 ⊕ b)

Output: 𝛾 Output: 𝛿

= (x1 ⊕ x0)b + x0 = αβ ⊕ γ := δ

Alice outputs .𝛾

33



The Billionaires’ Problem
  

if and only if 
𝑓(𝑋, 𝑌 ) = 1

𝑋 > 𝑌

Unit Vector 𝑢𝑋

10 0 0 ……

Vector 𝑣𝑌

10 1 1… 1 1 1

𝒇(𝑿, 𝒀 ) = ⟨𝒖𝑿, 𝒗𝒀⟩ =
𝑼

∑
𝒊=𝟏

𝒖𝑿[𝒊] ∧ 𝒗𝒀[𝒊]

1. Alice and Bob run many OTs to get  s.t.(𝛾𝑖, 𝛿𝑖) 𝛾𝑖⨁𝛿𝑖 =  𝒖
𝑿

[𝒊] ∧ 𝒗𝒀[𝒊]

2. Alice computes  and Bob computes  γ = ⊕i γi δ = ⊕i δi

Check (correctness): .γ ⊕ δ = ⟨uX, vY⟩ = f (X, Y )
3. Alice reveals  and Bob reveals 𝛾 𝛿 .
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The Billionaires’ Problem
  

if and only if 
𝑓(𝑋, 𝑌 ) = 1

𝑋 > 𝑌

Unit Vector 𝑢𝑋

10 0 0 ……

Vector 𝑣𝑌

10 1 1… 1 1 1

𝒇(𝑿, 𝒀 ) = ⟨𝒖𝑿, 𝒗𝒀⟩ =
𝑼

∑
𝒊=𝟏

𝒖𝑿[𝒊] ∧ 𝒗𝒀[𝒊]

1. Alice and Bob run many OTs to get  s.t.(𝛾𝑖, 𝛿𝑖) 𝛾𝑖⨁𝛿𝑖 =  𝒖
𝑿

[𝒊] ∧ 𝒗𝒀[𝒊]

2. Alice computes  and Bob computes  γ = ⊕i γi δ = ⊕i δi

3. Alice reveals  and Bob reveals 𝛾 𝛿 .
35Check (privacy): Alice & Bob get a bunch of random bits.



“OT is Complete”

Theorem: OT can solve not just ANDs and money, but 
any two-party (and multi-party) problem efficiently. 

36



Defining Security: 
The Ideal/Real Paradigm
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OT Definition

Receiver

Choice bit: 𝒃
𝑥0
𝑥1

Receiver Security: Sender should not learn b.

Sender

Define Sender’s view  = her random coins 
and the protocol messages.

𝑉𝑖𝑒𝑤𝑆(𝑥0, 𝑥1, 𝑏)
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OT Definition

Receiver

Choice bit: 𝒃
𝑥0
𝑥1

Receiver Security: Sender should not learn b.

Sender

There exists a PPT simulator  such that for any ,
 and : 

𝑆𝐼𝑀𝑆 𝑥0
𝑥1 𝑏

𝑆𝐼𝑀𝑆(𝑥0, 𝑥1) ≅ 𝑉𝑖𝑒𝑤𝑆(𝑥0, 𝑥1, 𝑏)
39



OT Definition

Receiver

Choice bit: 𝒃
𝑥0
𝑥1

Sender Security: Receiver should not learn .𝑥1−𝑏

Sender

Define Receiver’s view  = his random coins 
and the protocol messages.

𝑉𝑖𝑒𝑤𝑅(𝑥0, 𝑥1, 𝑏)
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OT Definition

Receiver

Choice bit: 𝒃
𝑥0
𝑥1

Sender Security: Receiver should not learn .𝑥1−𝑏

Sender

There exists a PPT simulator  such that for any ,
 and : 

𝑆𝐼𝑀𝑅 𝑥0
𝑥1 𝑏

𝑆𝐼𝑀𝑅(𝑏, 𝑥𝑏) ≅ 𝑉𝑖𝑒𝑤𝑅(𝑥0, 𝑥1, 𝑏)
41



OT Protocols
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OT Protocol 1: Trapdoor Permutations

Pick  and 
RSA exponent  

𝑁 = 𝑃𝑄
𝑒 .

𝑁, 𝑒

Choose random  and  
set 

𝑟𝑏
𝑠𝑏 = 𝑟𝑒

𝑏  mod 𝑁

For concreteness, let’s use the RSA trapdoor permutation.

Choice bit: 𝑏Input bits: (𝑥0, 𝑥1)

Choose random 𝑠1−𝑏

𝑠0, 𝑠1

𝑥0⨁𝐻𝐶𝐵(𝑟0)
Compute  and 
XOR  using 
hardcore bits

𝑟0, 𝑟1
𝑥0, 𝑥1

𝑥1⨁𝐻𝐶𝐵(𝑟1)
Bob can recover 

 but not   𝑥𝑏 𝑥1−𝑏
43



OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥0, 𝑥1)

𝑠0, 𝑠1

𝑥0⨁𝐻𝐶𝐵(𝑟0)

How about Bob’s security  
(a.k.a. Why does Alice not learn Bob’s choice bit)?

𝑥1⨁𝐻𝐶𝐵(𝑟1)

Alice’s view is  one of which is chosen randomly 
from  and the other by raising a random number 
to the -th power. They look exactly the same!

𝑠0, 𝑠1
𝑍∗

𝑁
𝑒
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OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥0, 𝑥1)

𝑠0, 𝑠1

𝑥0⨁𝐻𝐶𝐵(𝑟0)

How about Bob’s security  
(a.k.a. Why does Alice not learn Bob’s choice bit)?

𝑥1⨁𝐻𝐶𝐵(𝑟1)

Exercise: Show how to construct the simulator.
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OT Protocol 1: Trapdoor Permutations

How about Alice’s security  
(a.k.a. Why does Bob not learn both of Alice’s bits)?

Assuming Bob is semi-honest, he chose  uniformly 
at random, so the hardcore bit of  is 
computationally hidden from him.

𝑠1−𝑏
𝑠1−𝑏 = 𝑟𝑑

1−𝑏

46

𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥0, 𝑥1)

𝑠0, 𝑠1

𝑥0⨁𝐻𝐶𝐵(𝑟0)
𝑥1⨁𝐻𝐶𝐵(𝑟1)



OT from Trapdoor Permutations
𝑁, 𝑒

How about Alice’s security  
(a.k.a. Why does Bob not learn both of Alice’s bits)?

Exercise: Show how to construct the simulator.
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𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥0, 𝑥1)

𝑠0, 𝑠1

𝑥0⨁𝐻𝐶𝐵(𝑟0)
𝑥1⨁𝐻𝐶𝐵(𝑟1)



OT Protocol 2: Additive HE

Encrypt choice bit b

Choice bit: 𝑏Input bits: (𝑥0, 𝑥1)

𝑐 ⟵ Enc(𝑠𝑘, 𝑏)

𝑐′￼= Eval(𝑆𝐸𝐿𝑥0,𝑥1(𝑏), 𝑐)

Homomorphically 
evaluate the 
selection function

𝑐

 
𝑺𝑬𝑳𝒙𝟎,𝒙𝟏(𝒃) =
(𝒙𝟏

⨁  𝒙𝟎)𝒃 + 𝒙𝟎

Decrypt to get 𝑥𝑏

Bob’s security: computational, from CPA-security of Enc.
Alice’s security: statistical, from function-privacy of Eval. 48



Many More Constructions of OT

Theorem: OT protocols can be constructed based 
on the hardness of the Diffie-Hellman problem, 
factoring, quadratic residuosity, LWE, elliptic curve 
isogeny problem etc. etc.
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Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:  
OT can solve any two-party computation problem. 
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