CIS 5560

Cryptography
Lecture 20

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Announcements

- HW8 due tomorrow evening
- HW 9 out Wednesday evening
« Due Wednesday Apr 17 at 11:59PM on Gradescope
- Covers
« One-time signatures
- RSA-based signatures

Recap of last lecture

New primitive: Digital Signatures

Digital Signatures: Definition

A triple of PPT algorithms (Gen, Sign, Verify) such that

e Key generation: Gen(1") — (sk, pk)
e Message signing: Sign(sk, m) — o
e Signature verification: Verify(pk, m,o) — b € {0,1}

Correctness: For all vk, sk, m: Verify(pk, m, Sign(sk, m)) = 1

EUF-CMA for Signatures

Challenger

Pr

and
Verify(pk, m*,6*) = 1

Adversary

= negl(1)

Lamport (One-time) Signatures for arbitrary bits

Secret Key sk: 10 Y20 -
xl,l 'xl,l ..

: Y10 Y20 -
Public Key pk: <y1’1 Va1 -
Signing m: 1.7 := H(m)

X0

L Xy

' yn’0> where y; , = f(x; ;).
. yn,l ’ ’

2.0 = (xl’zl,xz,zz, ...,xn’zn)

Claim: Assuming H is CRH and fis a OWF, no PPT
adv can produce a signature of m given a signature of

a single m’ # m.

Claim: Can forge signature on any message given the
signatures on (some) two messages.

(Many-time) Signhature Scheme

In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.
|dea: Pseudorandom Trees

Step 4. How to make Alice stateless.
|dea: Randomization

Step 5 (optional). How to make Alice stateless and
deterministic. Idea: PRFs.

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1%): Pick primes (P, Q) and let N = PQ . Pick e relatively
prime to @(N) and let d = e~ (mod @(N)).

sk=(N,d) and pk=(N,e, H)
Sign(sk, m): Output signature ¢ = H(m)* (mod N) .
Verify(vk, m, 6): Check if 6¢ = H(m) (mod N) .

H is a random oracle.

Today’s lecture

- What is a proof?
- Interactive Proofs
- Zero-knowledge interactive proofs

Beyond Secure Communication
Ax il
= - Q

[

Alice " Bob

Much more than communicating securely.

« Complex Interactions: proofs, computations, games.

« Complex Adversaries: Alice or Bob, adaptively chosen.

« Complex Properties: Correctness, Privacy, Fairness.

« Many Parties: this class, MIT, the internet.

Classical Proofs

V. ii i ‘
Steve Cook Leonid Levin

Prover writes down a string (proof); Verifier checks.

(@)
Axiom 1
Axiom 2

a Va*+ b? Axiom 1=A

A=B

Proofs

Claim/Theorem

/ accept/
< R reject
X e 4

Prover Verifier

Efficiently Verifiable Proofs: NP

o

Prover

Works hard

Claim/Theorem

proof

\ accept/
reject
:(2

Verifier

Polynomial-time

Theorem: N is a product of two prime numbers

Proof = (P, Q) Q
Q ' Verifier

Prover

Accept iff N = PQ
and P, O are prime

Efficiently Verifiable Proofs: NP

Claim/Theorem

Af accept/
R reject
proof Q

Prover Verifier

Works hard Polynomial-time

Def: A language/decision procedure ZLis simply a set

of strings. So, & C {0,1}"

Efficiently Verifiable Proofs: NP

Claim/Theorem

Af accept/
N reject
proof Q

Prover Verifier

Def: £ is an NP-language if there is a poly-time verifier 1 where
 Completeness: True theorems have (short) proofs.
for all x € Z, there is a poly(| x |)-long witness
(proof) w € {0,1}* s.t. V(x, w) = 1.
* Soundness: False theorems have no short proofs.
for all x &€ &£, there is no witness.
That is, for all polynomially long w, V(x, w) = 0.

Theorem: N is a product of two prime numbers

.
»

Proof = (P, Q) Q

Verifier

Prover

Accept iff N = PQ
and P, O are prime
After interaction, the Verifier knows:

1) N is a product of two primes.

2) Also, the two factors of V.

Theorem: Graphs G, and G, are isomorphic.

2 6
3 8
4 10
9 7
Proof 7 : [N] — [N], Q
the isomorphism Verifior
Prover
Check Vi, j:

(z(i),=(j)) € E;
iff (i, j) € E,.

Theorem: Graphs G, and G, are isomorphic.

2 6
3 8
4 10
9 7
Proof 7 : [N] — [N], Q
the isomorphism Verifior
Prover

After interaction, Bob the Verifier knows: _CheC!‘ Vi, j:
. . (7(1), n(j)) € E|
1) G, and G, are isomorphic. it (i, j) € E,

2) Also, the isomorphism.

Theorem: Boolean Formula ¢ is satisfiable

PXps .. Xy) =X VX VXD A AXsV Xy_s VX))

-
»

Proof = Satisfying assignment Q

(XO’ " x”) Verifier
Prover Check ¢(x, ...,x,) = 1

After interaction, Bob the Verifier knows:
1) @ is satisfiable

2) Also, the satisfying assignment

Theorem: Boolean Formula ¢ is satisfiable

PXps .. Xy) =X VX VXD A AXsV Xy_s VX))

»

Proof = Satisfying assignment Q

(XO’ " Xn) Verifier
Prover Check ¢(x, ...,x,) = 1

NP-Complete Problem:

Every one of the other problems can be reduced to it

Is there any other way?

Zero Knowledge Proofs

“I will prove to you that |
could’ve sent you a proof
if | felt like it.”

Prover

Zero Knowledge Proofs

“I will not give you the
isomorphism, but will prove to you
that | could have one.”

Prover

Two (Necessary) New Ingredients

1. Interaction: Rather than passively reading the proof, the
verifier engages in a conversation with the prover.

2. Randomness: The verifier is randomized and can make
a mistake with a (exponentially small) probability.

A 4

A

\ 4

- 2

A

v

Interactive Proofs for a Language £

Claim/Theorem

aj
R accept/
_ d reject
< \
Q -
q2 Verifier

Prover

Probabilistic

Comp. Unbounded Polynomial-time

Interactive Proofs for a Language #

Claim/Theorem

aj
/ R accept/
. q reject

< v
a, Q

Verifier

Prover

Def: £ is an IP-language if there is a unbounded P and

probabilistic poly-time verifier 1V where

 Completeness: If x € &£, V always accepts.

* Soundness: If x & £, regardless of the cheating
prover strategy, V accepts with negligible probability.

Interactive Proofs for a Language A

Def: £ is an IP-language if there is a probabilistic
poly-time verifier 1V where
« Completeness: If x € &,
Pr [(P, V(x) = accept] = 1.
 Soundness: If X € £, there is a negligible
function negl s.t. for every P,

Pr[(P*, V) (x) = accept} = negl(A).

Interactive Proof for QR

<L = (N , y) : ¥ 1s a quadratic residue mod N}.

s =r2(mod N)
N, N,
(N.3) b {0.1] (py‘)
fb=0:Z = r ‘ Check:
If b=1: 7% = syb (mod N)

Z =rXx

Completeness

Claim: If (N, y) = L, then the verifier accepts the

proof with probability 1.
Proof:

b
7% = (rxb)2 = r2(x2)b = sy (mod N)

So, the verifier’s check passes and he accepts.

Soundness

Claim: If (N, y) ¢ L, then for every cheating prover

P*, the verifier accepts with probability at most 1/2.
Proof: Suppose the verifier accepts with probability > 1/2.

Then, there is some § € Z;i] s.t. the prover produces
Zo :zg = s (mod N)

Z4 :z12= sy (mod N)

This means (21/20)2 =Yy (mod N), which tells us
that (N, y) e L.

Interactive Proof for QR

<L = (N , y) : ¥ 1s a quadratic residue mod N}.

s; = r? (mod N)
N, N,
(No) o (/le)
If bl-=0: ‘ Check for all i:
Eb=1r; zi2 = sl-yb (mod N)

7 — XPr.

REPEAT sequentially A times.

Soundness

Claim: If (N, y) ¢ L, then for every cheating prover

A
1
PﬁpfheE\)@ﬂﬂéﬁ?-accepts with probability at most (5) :

This is Zero-Knowledge.

But what does that mean?

s =r2(mod N)

»

b < {0,1}

Ifb=0:Z = r

(N.y)

2

If b=1:
Z =rX

Check:
7% = syb (mod N)

How to Define Zero-Knowledge?

After the interaction, V knows:
e The theorem is true; and

« Aview of the interaction
(= transcript + randomness of V)

Pgives zero knowledge to V:

When the theorem is true, the view gives V
nothing that he couldn’t have obtained on
his own without interacting with P.

How to Define Zero-Knowledge?

(P, V) is zero-knowledge if V' can

generate his VIEW of the interaction all by
himself in probabilistic polynomial time.

How to Define Zero-Knowledge?

(P, V) is zero-knowledge if V' can

“simulate” his VIEW of the interaction all by
himself in probabilistic polynomial time.

The Simulation Paradigm

PPT “simulator” .S
ng.
b, z)
s =712 (mod N)
viewy (P, V): NV, y)
. b < {0,1}
Gramsexipt = (s, b, 2),]
Coins=b Ifb=0:z =1 Check:
Ifb=1:z = rx z? = syP (mod N)

Zero Knowledge: Definition

An Interactive Protocol (P\V) is zero-knowledge
for a language L if there exists a PPT algorithm

S (a simulator) such that for every X € L, the
following two distributions are indistinguishable:

1. viewy(P, V)
2.S(x, 1%

(PV) is a zero-knowledge interactive protocol if it
is complete, sound and zero-knowledge.

Perfect Zero Knowledge: Definition

An Interactive Protocol (PV) is perfect zero-

knowledge for a language L if there exists a
PPT algorithm S (a simulator) such that for every

X € L, the following two distributions are
identical: .
1. viewy(P, V)

2.S(x, 1%

(PV) is a zero-knowledge interactive protocol if it
is complete, sound and zero-knowledge.

Statistical Zero Knowledge: Definition

An Interactive Protocol (PV) is statistical zero-

knowledge for a language L if there exists a
PPT algorithm S (a simulator) such that for every

X € L, the following two distributions are
statistically indistinguishable:

1. viewy(P, V)
2.S(x, 1%

(PV) is a zero-knowledge interactive protocol if it
is complete, sound and zero-knowledge.

Computational Zero Knowledge: Definition

An Interactive Protocol (PV) is computational

zero-knowledge for a language L if there exists
a PPT algorithm S (a simulator) such that for

every X € L, the following two distributions
are computationally indistinguishable:

1. viewy(P, V)
2.S(x, 1%

(PV) is a zero-knowledge interactive protocol if it
is complete, sound and zero-knowledge.

Zero Knowledge

Claim: The QR protocol is zero knowledge.

Simulator S works as follows:

s =12 (mod N)
(N,y) 1. First pick a random bit b.
. %k
Ifb=0:z =1 Check: 2. pick arandom Z & ZN'
If b=1: z = rx z? = sy (mod N)

2/4,b
. 3.computeS = 2 /y°.
UlewV(P, 4): Y

(S b Z) 4. output (S, b, Z).

Exercise: The simulated transcript is identically distributed
as the real transcript in the interaction (PV).

< What if V is NOT HONEST.

An Interactive Protocol (PV) is honest-verifier perfect zero-

knowledge for a language L if there exists a PPT

simulator S such that for every X & L, the following two
distributions are identical: P
« viewy (P, V) 2.5(x, 17%)

v;\
&

An Interactive Protocol (PV) is perfect zero-knowledge for a
language L if for every PPT V*, there exists a (expected)

poly time simulator S s.t. for every X & L, the following
two distributions are identical:

1. viewy(P,V*) 2.8(x, 1%

NOW: (Malicious Ver) Zero Knowledge

Theorem: The QR protocol is (malicious verifier) zero

knowledge.
s =12 (mod N)
b « {0,1} @)
fb=0:z=r Check:
If b=1:z = rx z? = sy? (mod N)

viewV*(P, V*) ;
(s, b, 2)

Simulator S works as follows:

1. First pick a random s and
“feed it to” V™.

2.Letb = V*(s).

Now what???

(Malicious Ver) Zero Knowledge

Theorem: The QR protocol is (malicious verifier) zero
knowledge.

Simulator S works as follows:

Z2

1. First set S = — for a random z and b and feed s to

2. I:ketb’ — V*()S'lj
ylf'b’ = b, output (S, b, Z) and stop.

4. Otherwise, go back to step 1 and repeat. (also called
“rewinding”).

Simulator S works as follows:

22

1. First set S = — for a random z and feed s to V*.
2.Lletb’ = V*Qﬂ’%
3.1fb" = b, output (S, b, Z) and stop.

4. Otherwise, go back to step 1 and repeat. (also called
“rewinding”).

Lemma:
(1) S runs in expected polynomial-time.
(2) When S outputs a view, it is identically distributed

to the view of V™ in a real execution.

What Made it Possible?

1. Each statement had multiple proofs of which the prover
chooses one at random.

2. Each such proof is made of two parts: seeing either
one on its own gives the verifier no knowledge; seeing
both imply 100% correctness.

3. Verifier chooses to see either part, at random.
The prover’s ability to provide either part on demand
convinces the verifier.

