CIS 5560

Cryptography
Lecture 18

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Announcements

- HW 8 out Wednesday evening
« Due Wednesday Apr 10 at 11:59PM on Gradescope
- Covers

- RSA

- little bit of IND-CCA PKE

Recap of last lecture

Symmetric-key Message Authentication

0
Q (m, 1) w (m, t)or L \ Q

: Bob
Alice Can also alter/
k inject more k
messages!

We want Alice to generate a tag for the message m
which is hard to generate without the secret key k.

Public-key Message Authentication?

w
Q (m, o) %(m,a)orl \ Q

: Bob
Alice Can also alter/
sk inject more pk
messages!

We want Alice to generate a signature for the message m
which is hard to forge without the secret/signing key sk.

Does PKE not solve this?

m
: Enc(pk, m)wEnC(Pk,m’) . Q

Alice
sk

Can toggle

between m

and m’ How can
Bob check?

Anybody can encrypt, and no
way for recipient to check.

New primitive: Digital Signatures

Digital Signatures: Definition

A triple of PPT algorithms (Gen, Sign, Verify) such that

e Key generation: Gen(1") — (sk, pk)
e Message signing: Sign(sk, m) — o
e Signature verification: Verify(pk, m,o) — b € {0,1}

Correctness: For all vk, sk, m: Verify(pk, m, Sign(sk, m)) = 1

EUF-CMA for Signatures

Challenger

Pr

Verify(pk, m*,6*) = 1

Adversary

= negl(1)

Strong EUF-CMA for Signatures

Challenger

<

(m*, o)

Pr

- (m*,0%) & {(m,0))

and

Verify(pk, m*,6*) = 1

Adversary

= negl(1)

Digital Signatures vs. MACs

Signatures MACs
n users require n key-pairs n users require n’ keys
Publicly Verifiable Privately Verifiable
Transferable Not Transferable
Provides Non-Repudiation Does not provide Non-Rep.

(is this a good thing or a bad thing?)

Let (Gen, Sign,V) be a signature scheme.

Suppose an attacker is able to find m, # m, such that
V(pk, Mg, o) = V(pk, m,,0) for all o and keys (pk, sk) < Gen

Can this signature be secure?

O Yes, the attacker cannot forge a signature for either m, or m,

O No, signhatures can be forged using a chosen msg attack

O It depends on the details of the scheme

Alice generates a (pk,sk) and gives pk to her bank.

Later Bob shows the bank a message m=“pay Bob 100$”
properly signed by Alice, i.e. Verify(pk,m,sig) = 1

Alice says she never signed m. Is Alice lying?

Alice is lying: existential unforgeability means Alice signed m
and therefore the Bank should give Bob 100$ from Alice’s account

Bob could have stolen Alice’s signing key and therefore
the bank should not honor the statement

O O

What a mess: the bank will need to refer the issue to the courts

Applications

Code signing:

software vendor

sk

Applications

Software vendor signs code
Clients have vendor’s pk.

initial software install (pk)

many clients

[software udate #1 , sig]

>

[software udate #2 , sig]

>

>

Install software if signature verifies.

Dan Boneh

More generally:

One-time authenticated channel (non-private, one-directional)
= many-time authenticated channel

Initial software install is authenticated, but not private

Sender Recipients
(pk, sk) Ge) one-time authenticated channel pk >[((pk \\\

> eavesdrop, but not modify

g, Sisk, m,
g sisk)

&

Dan Boneh

Important application: Certificates

Problem: browser needs server’s public-key to setup a session key
Solution: server asks trusted 3rd party (CA) to sign its public-key pk

Certificate

browser Gmail.com

pk and
— proof “Iam Gmait™—

verification key

Sign Cert using sk, :

% pk is key
-for Gmail

% pk is key
-for Gmail CA b signing key
Sig

Server uses Cert for an extended period (e.g. one year)

<
<

Dan Boneh

Certificates: example

Important fields:

Serial Number

Version

Signature Algorithm
Parameters

5814744488373890497
3

T

SHA-1 with RSA Encryption (1.2.840.113549.1.1.5)
none

[Z] Equifax Secure Certificate Authority
L GeoTrust Global CA
L Google Internet Authority G2
L mail.google.com

Not Valid Before

Not Valid After

Wednesday, July 31, 2013 4:59:24 AM Pacific
Daylight Time

Thursday, July 31, 2014 4:59:24 AM Pacific Daylight

Time

Algorithm
Parameters
Public Key
Key Size
Key Usage

Signature

Elliptic Curve Public Key (1.2.840.10045.2.1)
Elliptic Curve secp256rl (1.2.840.10045.3.1.7)

65 bytes : 04 71 6C DD EO 0A C9 76 ... €——
256 bits

Encrypt, Verify, Derive

256 bytes : 8A 38 FED6 F5 E7 F6 59 ... b

—
C ,r'/'////‘(w/r

L

Time

mail.google.com
Issued by: Google Internet Authority G2
Expires: Thursday, July 31, 2014 4:59:24 AM Pacific Daylight

@ This certificate is valid

v Details

Country
State/Province
Locality
Organization

Common Name

Country
Organization

Common Name

us

California
Mountain View
Google Inc
mail.google.com

<

us
Google Inc
Google Internet Authority G2

Dan Boneh

What entity generates the CA’s secret key sk, ?

the browser

Gmail
the CA

the NSA

O O O O

Slgnlng email: DKIM (domain key identified mail)

Problem: bad email claiming to be from someuser@gmail.com
but in reality, mail is coming from domain badguy.com
= Incorrectly makes gmail.com look like a bad source of email

Solution: gmail.com (and other sites) sign every outgoing mail

From: bob@gmail.com

email sy Q\)GN
body signing key] Sig < Qe
= J > | Recipients
J verffysig—>

Gmail.com

badguy.com ??

Dan Boneh

When to use sighatures

Generally speaking:
* If one party signs and one party verifies: use a MAC
— Often requires interaction to generate a shared key

— Recipient can modify the data and re-sign it before
passing the data to a 3 party

* If one party signs and many parties verify: use a signature

— Recipients cannot modify received data before
passing data to a 3rd party (non-repudiation)

Constructions

Simpler Goal: EUF-CMA for 1-time Signatures

Challenger pk Adversary

(m*, o)

m* # m,
Pr and = negl(1)
Verify(pk,m*,6*) = 1

Lamport (One-time) Signatures from OWFs

.. X0
Signing Key sk:
X1

Yo :f(xo)>
y1 =f(x)

Signing a bit b: The signature is o = x,

Public Key pk: <

Verifying (b, 0): Check if f(o) = y,

Claim: Assuming fis a OWF, no PPT adversary can

produce a signature of b given a signature of b.

Lamport (One-time) Signatures for n bits

Secret Key sk: X0 %20 - a0
xl’l xl’l e oo xn’l
Y10 Y20 -+ Yno
' ; T ’ where y,, = f(x;,).
Public Key pk: <y1’1 Voi - ym) i.b ib
Signing m = (my, ...,m,): 6 = (X 1, X s Xy)

Claim: Assuming f is a OWF, no PPT adv can produce
a signature of m given a signature of a single m’ # m.

Claim: Can forge signature on any message given the
signatures on (some) two messages.

Lamport (One-time) Signatures for arbitrary bits

Secret Key sk: 10 Y20 -
xl,l 'xl,l ..

: Y10 Y20 -
Public Key pk: <y1’1 Va1 -
Signing m: 1.7 := H(m)

X0

L Xy

' yn’0> where y; , = f(x; ;).
. yn,l ’ ’

2. O = (Zlaml, Zz’mz, eo ey Zl’l,mn)

Claim: Assuming H is CRH and fis a OWF, no PPT
adv can produce a signature of m given a signature of

a single m’ # m.

Claim: Can forge signature on any message given the
signatures on (some) two messages.

Constructing a Signature Scheme

Step O. Still one-time, but arbitrarily long messages.

27

So far, only one-time security...

Constructing a Signature Scheme

Theorem [Naor-Yung’89, Rompel’90]
(EUF-CMA-secure) Signature schemes exist assuming
that one-way functions exist.

TODAY:
(EUF-CMA-secure) Signature schemes exist assuming
that collision-resistant hash functions exist.

(Many-time) Signature Scheme
In four+ steps
Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.
|dea: Pseudorandom Trees

Step 4. How to make Alice stateless.
|dea: Randomization

Step 5 (optional). How to make Alice stateless and
deterministic. Idea: PRFs.

30

Step 1: Stateful Many-time Signatures

Idea: Signature Chains.

Alice starts with a secret signing Key sk

When sighing a message m;:
Generate a new pair (sky, pk,)
Produce signature o, < Sign(sko, m, ||pk,)
Output pk, || oy.

Remember pk, | |m, ||o; as well as sk;.

To verify a signature pk, || o, for message m;:
Run Verify(pk,, pk, | [my,01) = 1

31

Step 1: Stateful Many-time Signatures

Idea: Signature Chains.

Alice starts with a secret signing Key sk
When sighing a message m;:
Generate a new pair (sky, pk,)
Produce signature o, < Sign(sko, m, | |pk,)
Output pk, || oy.
Remember pk, | |m, ||o; as well as sk;.

m
o 1

pkO > pkl

32

Step 1: Stateful Many-time Signatures

Idea: Signature Chains. Alice pk,

Alice starts with a secret signing Key sk

When signing the next message m,

Generate a new pair (ska, pk,)
Produce signature o, < Sign(sky,m,||pk,)
Output ?7?

Step 1: Stateful Many-time Signatures

Idea: Signature Chains. Alice pk,

Alice starts with a secret signing Key sk

When signing the next message m,

Generate a new pair (sk, pk,)
Produce signature o, < Sign(sky, m,||pk,)

Output pk, | [5,77

Step 1: Stateful Many-time Signatures

Idea: Signature Chains. Alice pk,

Alice starts with a secret signing Key sk

When signing the next message m,

Generate a new pair (sk, pk,)
Produce signature o, < Sign(sky, m,||pk,)

Output pk, | | pk, |[06,??

Step 1: Stateful Many-time Signatures

Idea: Signature Chains. Alice pk,

Alice starts with a secret signing Key sk

When signing the next message m,

Generate a new pair (sky, pk,)

Produce signature o, < Sign(sky, m,||pk,)

Output (pk, | [, |)) || pk, | |,

(additionally) remember pk, | [m, || o, as well as sk,.

m m,

0 0y

Pk, - pk, - pk,

36

Step 1: Stateful Many-time Signatures

Idea: Signature Chains.

Two major problems:

1. Alice is stateful: Alice needs to remember a whole lot of
things, O(T) information after Tsteps.

2. The signatures grow: Length of the signature of the Tth
message is O(T).

m ms my

//

__VK;

//

37

(Many-time) Signature Scheme
In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature Trees

38

Alice

VK

Step 2. How to Shrink the signatures.
VK,

39

Alice VK, Step 2. How to Shrink the signatures.

VK,

vke— Tk

VKo VKo VK VK

SN RN /
101 VK19 \7<111

VKoo VKoot VKoo VKol VKoo

Alice (the stateful signer) computes many (VK, SK) pairs

and arranges them in a tree of depth = sec. param. A

40

Step 2. How to Shrink the signatures.
VK,

vk e T vk,

00
VKoo VKoot VKoo VKol VKoo 101 VK110 11

| 0
my,

Signature of the first message M,
Use VKOOO to sign M.

“Authenticate” VK()()() using the “signature path”.

Step 2. How to Shrink the signatures.
VK,

VKe— P7 T VK

VKOO KOI VK10 VKU

00
VKoo VKoot VKoo VKoii VKigg VKo VK{ﬁ VK

| 0
my,

(6 Sian(SKE VRSV RY;
ay > Rugn EK oy, AOoKbod 1 K¥iK 001).
Tﬂ <« Sign(SK()()(), mO)) 0

Step 2. How to Shrink the signatures.
VK,

vk P T VK,

00
VKoo VKoot VKoo VKoii VKigg VKo VK{ﬁ VK

| 0
my,

e i e,
%00(;_ D %‘fg koK]&kIO(l)(ﬁﬁ<ﬁ}<om))

43

Step 2. How to Shrink the signatures.
VK,

vk e T vk,

00
VKoo VKoot VKoo VKol VKoo 101 VK110 11

| 0
my,

ignature of the first message M,
?Authentlcatlon path for I;jéOOOr

7o < Sign(SKogo, my))

44

Step 2. How to Shrink the signatures.
VK,

vk e T vk,

00
VKoo VKoot VKoo VKol VKoo 101 VK110 11

|
my

ignature of the second message m
?Authentlcatlon path for 1(1/%001, 1

7o < Sign(SKoo1, m;))

45

Step 2. How to Shrink the signatures.
VK,

vk e T vk,

VKoo Ko VK VK
\ /<>\ " / \7<
VKoo VKoo VKTom VKo VKoo 101 VKii0 \7<111
>
,

ignature of the third %sage m:.
Authentication path for 010

T, < Sign(SKo19, m,))

46

Step 2. How to Shrink the signatures.
VK,

vk e T vk,

VKoo Ko VK VK
N /<>\ " / \7<
VKoo VKoo VKTmo VKo VKoo 101 VKii0 \7<111
>
,
Goop NEws: | 0¢,

Each verification key (incl. at the leaves) is used only
once, so one-time security suffices!

47

Step 2. How to Shrink the signatures.
VK,

vk e T vk,

VKoo Ko VK VK
N /<>\ " / \7<
VKoo VKoo VKTmo VKo VKoo 101 VKii0 \7<111
>
,
Goop NEws: | 0¢,

Signatures consist of A one-time signatures and do now
grow with time! 4

Step 2. How to Shrink the signatures.
VK,

vk e T vk,

VKoo Ko VK VK
\ /<>\ " / \7<
VKoo VKoo VKTom VKo VKoo 101 VKii0 \7<111
>
,
o0
BAD NEWS: \/\

Signer generates and keeps the entire (& 2/1—size)
signature tree in memory! 4

(Many-time) Signature Scheme
In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.
|dea: Pseudorandom Trees

50

Step 3. pseudorandom Signature Trees.

)

f///”’////// \\\\\\\\\\\\

SKp)

/\”61 /\.
O\ O\ 7\ /\

Y000 Y001 Fo10 Foi1 Ti00 F101 110 111

SK)

Tree of pseudorandom values:

The signing key is a PRF key K.
gtilate the nodes with ¥ PRF(K, x).

erive the keys X
(VK- SK)« Gen(14-p)

5]

Step 3. pseudorandom Signature Trees.

VK,
VKOO W/KOI VK 10 L>K11

N N e

V4 0 o ,
VKoo VKoot VKoo VKot VKoo VKior VK119 VKii

Tree of pseudorandom values:

The signing key is a PRF key K.
gtilate the nodes with ¥ PRF(K, x).

erive the keys X
(VK- SK)« Gen(14-p)

Step 3. pseudorandom Signature Trees.
VK,

vke— Tk

VKo VKo VK VK

SN RN /
101 VK19 \7<111

VKoo VKoot VKoo VKol VKoo

00
GOOD NEWS:

Short signatures and small storage for the signer

53

Step 3. pseudorandom Signature Trees.
VK,

vke— Tk

VKo VKo VK VK

SN RN /
101 VK19 \7<111

VKooo VKoor VK010 VKo VKoo

|
’nz

. /00
BAD NEWS: e
Signer needs to keep a counter indicating which leaf
(which tells her which secret key) to use next.

54

(Many-time) Signature Scheme
In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.
|dea: Pseudorandom Trees

Step 4. How to make Alice stateless.
|dea: Randomization

55

Step 4. statelessness via Randomization
VK,

VKe— PF T VK

VKo VKo VK VK11
001 (o]
\ 10

VKoo VKoot VKoo VEKoir VKo 101 VKHO 11

Signature of a message M.
Pick a random leaf r. Use VKr to sign m.

o, < Sign(SK,, m)
Output (1‘, 0,., authentication path for VK,,)

56

Step 4. statelessness via Randomization
VK,

v F VK,

VKo VKo VK VK11

01
VKoo VKoot VKoo VEKoir VKo 101 VKHO 11

00
GOOD NEWS:
No need to keep state.

57

Step 4. statelessness via Randomization
VK,

v F VK,

VKo VKo VK VK11

01
VKoo VKoot VKoo VEKoir VKo 101 VKHO 11

Key ldea:
If the signer produces { signatures, the probability she

picks the same leaf twice is < q2/2’1.

58

(Many-time) Signature Scheme
In four+ steps
Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.
|dea: Pseudorandom Trees

Step 4. How to make Alice stateless.
|dea: Randomization

Step 5 (optional). How to make Alice stateless and
deterministic. Idea: PRFs.

59

Step 5. Making the Signer Deterministic.
VK,

v F VK,

VKo VKo VK VK

01
N\ =X / \7< \k
VKoo VKoot VKoo VKol VKigo 101 VKiio 11

Key ldea:

Generate ¥ pseudo-randomly.

Have another PRF key K’ and letr = PRF(", m)

That’s it for the construction.

