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Recap of Last Lecture(s)

* Number Theory refresher
 Arithmetic modulo primes
« Fermat's Little Theorem
« Cyclic groups
 Discrete Logarithms
- Key Exchange
« Merkle puzzles
» Diffie—Hellman
- Computational Diffie—Hellman Problem



Today’s Lecture

* Public Key Encryption
 El Gamal Encryption
- Computational Diffie—Hellman Problem
* RSA Encryption
 Arithmetic modulo composites
 Factoring



Public key encryption

Alice: generates (PK, SK) and gives PK to Bob

Alice Bob
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Public key encryption

Def: a public-key encryption system is a triple of algs. (G, E, D)
- Gen(): randomized alg. outputs a key pair (pk, sk)
- Enc(pk, m): randomized alg. that takes m € .# and outputs c € €

. Dec(sk, ¢): deterministic alg. that takes ¢ € € and outputs m € A U { L }

Correctness: V(pk, sk) output by Gen(),Vm € ., Dec(sk, Enc(pk, m)) = m



Security: IND-CPA for PKE

( Adv of \ ( Challenger \
pk 1.b < {0,1}
< 2. Sample (pk, sk) < Gen(1")
¢, 3. Compute ¢, = Enc(pk, m1,)
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Security: IND-CPA for PKE

For all PPT adversaries &, the following holds:

(pk, sk) < Gen(1™) ]
Pr | b = o/ (Enc(pk, m;))|Sample b < {0,1} | < negl(n)
(mgy, my) < Qf(pk)_




How does it relate to symmetric-key IND-CPA?

Recall: for symmetric ciphers we had two security notions:
e« One-time security and many-time security (CPA)
« We showed that one-time security does not imply many-time security

For public key encryption:

 One-time security = many-time security (CPA)

(follows from the fact that attacker can encrypt by himself)

e Public key encryption must be randomized



Applications

Session setup (for now, only eavesdropping security)

Alice ok Bob

Generate (pk, sk) choose random x

E(pk, x) (e.g. 48 bytes)

X

Non-interactive applications: (e.g. Email)

« Bob sends email to Alice encrypted using pk_; .

« Note: Bob needs pk

Jice  (public key management)



Constructions of PKE:
Elgamal Encryption



Review of cyclic groups
(On board)



Recall: DH Key Exchange

Alice

A=g?

<

¢ = Enc (K, m)

Bob




Convert DH = PKE

Alice Bob
— a
Gen(1") pk =g >
! . Enc(pk, m):
(sk =a,pk = g%) 1. Sample b « Z
2. SetB =g°
¢’ :=(B,c) 3. Setc := Enc’(pkb, m)

Dec(sk = a, (B, ¢)):
1. Compute k = B¢
2. Compute m = Dec'(k, ¢)




The Elgamal system (an abstract view)

* (: finite cyclic group of prime order p with generator g

- (Enc, Dec): symmetric-key encryption with keyspace # = G

Gen(1"): Enc(pk, m): Dec(sk = a. (B.c)):
1.Sample a < Z;f 1. Sample b « Z;f 1. Compute k = B
2.0utput (sk = a, pk = g9)| |2.Set B = g° 2. Output m = Dec'(k, ¢)
3.Set c := Enc’(pkb, m)
4. Output ¢’ = (B, ¢)

What choice of (Enc, Dec)?

How to prove security?



Q1: Choice of (Enc/, Dec’): OTP?

G: finite cyclic group of prime order p with generator g
« Key idea: One-Time Pad works not just with {0,1}" and XOR, but with any group
. Gen(1"): Sample r « Z,, and output g
Enc(k=g",m € G):Outputc =k-me G
Dec (k = g,ceG:ouputm=k!l-ceG

Correctness: Dec (k,Enc'(k,m)) = k-m -k~  =m

Security: Goal: Vm,m' € G, c € G, kPIé [Enc(k,m) = c] = kPr(G [Enc(k,m’) = c]

Exercise: prove this (try to adapt proof from Lecture 1)



The Elgamal system (a concrete view)

* (: finite cyclic group of prime order p with generator g

- (Enc, Dec): symmetric-key encryption with keyspace # = G

Gen(1"): Enc(pk, m): Dec(sk = a. (B.c)):
1.Sample a < Z;f 1. Sample b « Z;f 1. Compute k = B
2.0utput (sk = a, pk = g9)| |2.Set B = g° 2. Output m = Dec'(k, ¢)
3.Set c := Enc’(pkb, m)
4. Output ¢’ = (B, ¢)

What choice of (Enc, Dec)?

How to prove security?



The Elgamal system (a concrete view)

* (: finite cyclic group of prime order p with generator g

- (Enc, Dec): symmetric-key encryption with keyspace # = G

Gen(1"):
1.Sample a < Z;f

Enc(pk, m):
1. Sample b « Zy

2.0utput (sk = a, pk = g%)[|2.Set B = g°

3.Setc:=m- pkb = mg®
4, Qutput ¢’ = (B, ¢)

Dec(sk = a.(B.¢)):

1. Compute k = B¢
2.Output m =k~ !¢

— Cg—ab

— mgabg—ab

«What choice of (Enc, Dec)?

How to prove security?




Problem:
OTP uses random group element

But we only have g%’
s this a problem? Isn’t g% also random?

Problem: adversary also sees g% and g?!



New assumption: Decisional Diffie—Hellman

Roughly, (g%, g%, g%°) is indistinguishable from (g%, g%, g")

Formally, the following two distributions are computationally indistinguishable:

{ (gaa gba gab) }a,b<—Z and { (gaa gb9 gl”) }a,b,I’(—Z
P p



Elgamal is semantically secure under DDH

= @ By DDH _ o
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The Elgamal system (a modern view)

* (: finite cyclic group of prime order p with generator g
(Enc, Dec): what about arbitrary keyspace H# ?

« New ingredient: “Random”-ish hash function H : G - H#

Gen(1"): Enc(pk, m): Dec(sk = a, (B.c)):
1.Sample a « Z;f 1. Sample b « Z];“ 1. Compute k = H(B%)
2.Output (sk = a, pk = g9 | |2.Set k := H(g) 2. Output m = Dec'(k, c)

3.Set ¢ « Enc(k, m)
4. Output ¢’ = (g%, ¢)




New assumption: Hash-DDH

Roughly, (g4, g%, H(g“?)) is indistinguishable from (g%, g, R)

Formally, the following two distributions are computationally indistinguishable:

(8% 8" HE)} ez, and {(8°.8" R} upz pecr

Q: If DDH is hard, is H-DDH hard?

Q: If H-DDH is hard, is DDH hard?



Suppose K=1{0,1}128 and

H: G — K only outputs strings in K that begin with O
( i.e. forally: msb(H(y))=0 )

Can Hash-DH hold for (G, H) ?

o  Yes, forsome groups G
—> 0 No, Hash-DH is easy to break in this case
o  Yes, Hash-DH is always true for such H



Elgamal is semantically secure under H-DDH

/T k= ¢ By H-DDH k= gf ™
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