CIS 5560

Cryptography
Lecture 15

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Recap of Last Lecture(s)

* Number Theory refresher
 Arithmetic modulo primes
« Fermat's Little Theorem
« Cyclic groups
 Discrete Logarithms
- Key Exchange
« Merkle puzzles
» Diffie—Hellman
- Computational Diffie—Hellman Problem

Today’s Lecture

* Public Key Encryption
 El Gamal Encryption
- Computational Diffie—Hellman Problem
* RSA Encryption
 Arithmetic modulo composites
 Factoring

Public key encryption

Alice: generates (PK, SK) and gives PK to Bob

Alice Bob

nnnnnnnn

Public key encryption

Def: a public-key encryption system is a triple of algs. (G, E, D)
- Gen(): randomized alg. outputs a key pair (pk, sk)
- Enc(pk, m): randomized alg. that takes m € .# and outputs c € €

. Dec(sk, ¢): deterministic alg. that takes ¢ € € and outputs m € A U { L }

Correctness: V(pk, sk) output by Gen(),Vm € ., Dec(sk, Enc(pk, m)) = m

Security: IND-CPA for PKE

(Adv of \ (Challenger \
pk 1.b < {0,1}
< 2. Sample (pk, sk) < Gen(1")
¢, 3. Compute ¢, = Enc(pk, m1,)
<<
b’ 4.b =D
_ J NG J

Pr[b = b'] = 1/2 + negl(n)

Security: IND-CPA for PKE

For all PPT adversaries &, the following holds:

(pk, sk) < Gen(1™)]
Pr | b = o/ (Enc(pk, m;))|Sample b < {0,1} | < negl(n)
(mgy, my) < Qf(pk)_

How does it relate to symmetric-key IND-CPA?

Recall: for symmetric ciphers we had two security notions:
e« One-time security and many-time security (CPA)
« We showed that one-time security does not imply many-time security

For public key encryption:

 One-time security = many-time security (CPA)

(follows from the fact that attacker can encrypt by himself)

e Public key encryption must be randomized

Applications

Session setup (for now, only eavesdropping security)

Alice ok Bob

Generate (pk, sk) choose random x

E(pk, x) (e.g. 48 bytes)

X

Non-interactive applications: (e.g. Email)

« Bob sends email to Alice encrypted using pk_; .

« Note: Bob needs pk

Jice (public key management)

Constructions of PKE:
Elgamal Encryption

Review of cyclic groups
(On board)

Recall: DH Key Exchange

Alice

A=g?

<

¢ = Enc (K, m)

Bob

Convert DH = PKE

Alice Bob
— a
Gen(1") pk =g >
! . Enc(pk, m):
(sk =a,pk = g%) 1. Sample b « Z
2. SetB =g°
¢’ :=(B,c) 3. Setc := Enc’(pkb, m)

Dec(sk = a, (B, ¢)):
1. Compute k = B¢
2. Compute m = Dec'(k, ¢)

The Elgamal system (an abstract view)

* (: finite cyclic group of prime order p with generator g

- (Enc, Dec): symmetric-key encryption with keyspace # = G

Gen(1"): Enc(pk, m): Dec(sk = a. (B.c)):
1.Sample a < Z;f 1. Sample b « Z;f 1. Compute k = B
2.0utput (sk = a, pk = g9)| |2.Set B = g° 2. Output m = Dec'(k, ¢)
3.Set c := Enc’(pkb, m)
4. Output ¢’ = (B, ¢)

What choice of (Enc, Dec)?

How to prove security?

Q1: Choice of (Enc/, Dec’): OTP?

G: finite cyclic group of prime order p with generator g
« Key idea: One-Time Pad works not just with {0,1}" and XOR, but with any group
. Gen(1"): Sample r « Z,, and output g
Enc(k=g",m € G):Outputc =k-me G
Dec (k = g,ceG:ouputm=k!l-ceG

Correctness: Dec (k,Enc'(k,m)) = k-m -k~ =m

Security: Goal: Vm,m' € G, c € G, kPIé [Enc(k,m) = c] = kPr(G [Enc(k,m’) = c]

Exercise: prove this (try to adapt proof from Lecture 1)

The Elgamal system (a concrete view)

* (: finite cyclic group of prime order p with generator g

- (Enc, Dec): symmetric-key encryption with keyspace # = G

Gen(1"): Enc(pk, m): Dec(sk = a. (B.c)):
1.Sample a < Z;f 1. Sample b « Z;f 1. Compute k = B
2.0utput (sk = a, pk = g9)| |2.Set B = g° 2. Output m = Dec'(k, ¢)
3.Set c := Enc’(pkb, m)
4. Output ¢’ = (B, ¢)

What choice of (Enc, Dec)?

How to prove security?

The Elgamal system (a concrete view)

* (: finite cyclic group of prime order p with generator g

- (Enc, Dec): symmetric-key encryption with keyspace # = G

Gen(1"):
1.Sample a < Z;f

Enc(pk, m):
1. Sample b « Zy

2.0utput (sk = a, pk = g%)[|2.Set B = g°

3.Setc:=m- pkb = mg®
4, Qutput ¢’ = (B, ¢)

Dec(sk = a.(B.¢)):

1. Compute k = B¢
2.Output m =k~ !¢

— Cg—ab

— mgabg—ab

«What choice of (Enc, Dec)?

How to prove security?

Problem:
OTP uses random group element

But we only have g%’
s this a problem? Isn’t g% also random?

Problem: adversary also sees g% and g?!

New assumption: Decisional Diffie—Hellman

Roughly, (g%, g%, g%°) is indistinguishable from (g%, g%, g")

Formally, the following two distributions are computationally indistinguishable:

{ (gaa gba gab) }a,b<—Z and { (gaa gb9 gl”) }a,b,I’(—Z
P p

Elgamal is semantically secure under DDH

= @ By DDH _ o
/chal. pk=¢ » | adv. A d hal. pk=¢ » | adv. A h
My, My \/ My, My
pk,sk | < k,sk | <
b, ab =~ || P% b
c=(g",myg") ¢ =(8",myg")
> r<2, >
/ /
N VAN b
~ =~ (ByOTP)
—_ —
chal. pk = (g,8°) » | adv. A A chal. pk =g > | adv. A A
mO , ml ~ mo ’ m]_
pk,sk | < ‘ ~ pk,sk | <
¢ = (g%, mg™ A\ c=(g%mg"
> — Zp >
77| By DDH ,
N | bl

The Elgamal system (a modern view)

* (: finite cyclic group of prime order p with generator g
(Enc, Dec): what about arbitrary keyspace H# ?

« New ingredient: “Random”-ish hash function H : G - H#

Gen(1"): Enc(pk, m): Dec(sk = a, (B.c)):
1.Sample a « Z;f 1. Sample b « Z];“ 1. Compute k = H(B%)
2.Output (sk = a, pk = g9 | |2.Set k := H(g) 2. Output m = Dec'(k, c)

3.Set ¢ « Enc(k, m)
4. Output ¢’ = (g%, ¢)

New assumption: Hash-DDH

Roughly, (g4, g%, H(g“?)) is indistinguishable from (g%, g, R)

Formally, the following two distributions are computationally indistinguishable:

(8% 8" HE)} ez, and {(8°.8" R} upz pecr

Q: If DDH is hard, is H-DDH hard?

Q: If H-DDH is hard, is DDH hard?

Suppose K=1{0,1}128 and

H: G — K only outputs strings in K that begin with O
(i.e. forally: msb(H(y))=0)

Can Hash-DH hold for (G, H) ?

o Yes, forsome groups G
—> 0 No, Hash-DH is easy to break in this case
o Yes, Hash-DH is always true for such H

Elgamal is semantically secure under H-DDH

/T k= ¢ By H-DDH k= gf ™
chal. P8 o [adval) hal, Pk [advA
sk | et V —
PK,s ~ pk,sk ,
c = (gb, Enc/(k,mo) ~ 2 c = (gb, Enc (k, m)
,'_? r < p o W—
— ab / /
_ k = H(g%) ‘ b) _ k— K ‘ b Y,
~ =~ (ByOTP)
— - a
chal. pk = (g,8°) adv. A A chal. pk =g > | adv. A A
mO ’ ml ~ mO ’ m1
pk,sk | < ~ pk,sk | <
¢ = (g%, Enc'(k, my) A S| = (g?, Enc (k, m,)
— > < P A -
K k= H " \b/ By H-DDH P o \b,
= H(g™) — J

