CIS 5560

Cryptography
Lecture 12

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Announcements

- Final Exam May 10, 2024, 9-11AM, DRLB A2
- HW6 out later today, due in 2 weeks (Tuesday 3/12)

Recap of last lecture

(Goals

An authenticated encryption system (Gen, Enc, Dec) is a cipher
where

Asusual: Enc: A X A — %{L}

but Dec:%x%%ﬂk
ciphertext

Security: the system must provide is rejected
IND-CPA, and

- ciphertext integrity:
attacker cannot create new ciphertexts that decrypt properly

Ciphertext integrity

Let (Gen, Enc, Dec) be a cipher with message space /.

m, € M Mr, ...,M
Chal. : 2 4 Adv.

k < Gen(l’ ¢, < Enclk,m)) ¢y,C,

|

C

b=1 if Dec(k,c)# L and c & {c, ...,cq}
b =0 otherwise

Def: (Gen, Enc, Dec) has ciphertext integrity if for all PPT A:
Advci[A] = Pr[b = 1] = negl(4)

Chosen ciphertext security

Adversary’s power: both CPA and CCA

- (Can obtain the encryption of arbitrary messages of his
choice

- Can decrypt any ciphertext of his choice, other than
challenge

(conservative modeling of real life)

Adversary’s goal:
Learn partial information about challenge plaintext

Chosen ciphertext security: definition

Let (Gen, Enc, Dec) be a cipher with message space

Challenger

k «— Gen(1%)
b« {0,1}

fori e {1,...,q}:

(1) CPA query:
m g, € M \m;o| = |m;,

Adversary

¢; < Enc(k,m, ;)
(2) CCA query:

c; € € ‘¢ € eyl

m; < D(k,c;) :m; € M U { -

)

b’ e {0,1}

Authenticated enc. = CCA security

Thm: Let (E,D) be a cipher that provides AE.
Then (E,D) is CCA secure !

In particular, for any g-query eff. A there exist eff. B,, B,
s.t.

AdV.ca[AE] < 29-Advg By, E] + AdVepa[Bo,El

Combining MAC and ENC (CCA)

Encryption key k.

MAC key — kM

MAC(k,,, m) Enc(k,, m||1)
Option 1: (SSL) msg m = msg m tagt | = e
always correct
y Enc(ky, m) MAC(ky,, ¢)
Option 2: (IPsec) msg m — [Ermmmess] — |[Zrmmeeces| tagl
Enc(k,, m) MAC(ky,, m)
Option 3: (SSH) msg m — [Ermrmes) Eseeoeeoood | tag f

Security of Encrypt-then-MAC

Today’s Lecture

* Number Theory refresher
 Arithmetic modulo primes
Fermat's Little Theorem
Quadratic residuosity
Discrete Logarithms

Arithmetic modulo composites
Euler's Theorem
Factoring

Background

We will use a bit of number theory to construct:
« Key exchange protocols

 Digital signatures

* Public-key encryption

This module: crash course on relevant concepts

More info: read parts of Shoup’s book referenced
at end of module

Notation

From here on:
- N denotes a positive integer.

- p denote a prime.
Notation: Z, = {0,1,..., N — 1}

Can do addition and multiplication modulo N

Greatest common divisor

Def: Forallx,y € Z, gcd(x,y) is the greatest common divisor of X,y

Example: gcd(12,18) =6

Fact: forallx,y € Z, there exist a, b € Z such that
a-x+b-y=gcd(x,y)

a, b can be found efficiently using the extended Euclid algorithm

If gcd(x,y) = 1, we say that x and y are relatively prime

Modular inversion

Over the rationals, inverse of 2 is 2. What about Z/?
Def: Theinverse of x € Zyisanelementy € Z, s.t.
x-y=1 mod N

y is denoted x~ L

Example: let N be an odd integer. What is the inverse of 2 mod N?

Modular inversion

Which elements have an inverse in ZN?

Lemma: x € Z, has an inverse if and only if gcd(x, N) = 1

Proof:
gcdx,N)=1 = da,b:a-x+b-N=1

=i a-x=1 mod N

gcd(x,N)#1 = wva: gcd(a-x,N)>1 = ax=z1in

Invertible elements

Def: Z;’\; = set of invertible elements in Z,,
= {x€ Zy:gedx,N) =1}
Examples:

1. forprimep, Z5 := {0,....,.p— 1}

. Z¥, = {1,5,7,11)

1

For x € Z,, we can find x™ " using extended Euclid algorithm.

Solving modular linear equations

Solve: a-x+b=0,wherea,x,b € Z,

Soluton: x=—-b-a" ! mod N

Find a~! using extended Euclid algorithm.
Run time: O(log2 N)

Fermat’s theorem (1640

Thm: Let p be a prime. Then,

% o p—1
Vxe Z;:x'"" =1 mod p
Example: p=5. 34=81=1 In Z
How can we use this to compute inverses?

xEZ;f;"x-xp_zzlix_l:xp_z

(less efficient than Euclid)

Application: generating random primes

Suppose we want to generate a large random prime

say, prime p of length 1024 bits (i.e. p = 21024)

Step 1: sample p € [21024 21025 _ 1]
Step 2: testif 271 =1 mod p

If so, output p and stop. If not, goto step 1.

Simple algorithm (not the best).
Pr[p ¢ PRIMES| test passes | < 2%

The structure of Z;f

Thm (Euler): Z;f is a cyclic group, that is

2 .3 -2\ —
dg € Z; suchthat {l,g,8%,8%....8" "} =2}

g is called a generator of Z7

Example: p=7. {1,3,32,33 3435 ={1,3,2,6,4,5}= Z?

Not every elem. is a generator: {1, 2, 22, 23, 24, 25} = {1, 2, 4}

Order

For g € Z the set {1,g,8% ¢° ...} iscalled
the group generated by g, denoted (g)
Def: the order of g € Z! is the size of (g)

ord(g) = [(g)| = (smallesta>0s.t. g=1 mod p)

Examples: ord,(3)=6 ; ord_ (2)=3 ; ord,(1)=1

Thm (Lagrange): vge(Z) : ord,(g) divides p-1

How to come up with a generator g

(1) There are lots of generators: ~ 1/logn fraction
of Zlf are generators (where p is an n-bit prime).

(2) Testing if g is a generator:

Theorem: let ¢, ..., g, be the prime factors of p — 1.
Then, g is a generator of Z; if and only if

g~ V4 £ 1 (mod p) for all i.

OPEN: Can you test if g is a generator without knowing
the prime factorization of p-1?

OPEN: Deterministically come up with a generator?

The Multiplicative Group 7

Z,: ({1,...,p — 1}, group operation: « mod p)
- Computing the group operation is easy.
« Computing inverses is easy: Extended Euclid.

. Exponentiation (given g € Z; andx € Z,_,, find g* mod
p) is easy: Repeated Squaring Algorithm.

The discrete logarithm problem (given a generator
gand h € Z;, find x € Z,_; s.t. h = g* mod p) is hard, to

the best of our knowledge!

The Discrete Log Assumption

The discrete logarithm problem is: given a generator
gand h € Z;‘;, findx € Z, | s.t.h=g* mod p.

Distributions...

1. Is the discrete log problem hard for a random p?
Could it be easy for some p?

2. Given p: is the problem hard for all generators g?

3. Given p and g: is the problem hard for all x?

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.
Pr[A(p, g.¢" mod p) = x] > 1/poly(logp)
for some p, random generator g of Z7, and random x in Zp_l,

then there is a p.p.t. algorithm B s.t.

B(p, g, g*mod p) = x
for all g and x.

Proof: On the board.

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.

Pr [A(p, g.¢" mod p) = x] > 1/poly(logp)
for some p, random generator g of Z7, and random x in Zp_l,
then there is a p.p.t. algorithm B s.t.

B(p, g, g*mod p) = x
for all g and x.

2. Given p: is the problem hard for all generators g?

... as hard for any generator is it for a random one.
3. Given p and g: is the problem hard for all x?

... as hard for any x is it for a random one.

Algorithms for Discrete Log
(for General Groups)

Baby Step-Giant Step algorithm: time —and space— O(\/ﬁ) :

Pohlig-Hellman algorithm: time O(\/E) where ¢ is the largest

prime factor of the order of group (e.g. p — 1 in the case of
Z). That is, there are dlog-easy primes.

The Discrete Log (DLOG) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A,
there is a negligible function u s.t.

p < PRIMES,: g < GEN(Z;j);

Pr = u(n)

x—Z,;: A(p, g, 2" mod p) =X

Sophie-Germain Primes and Safe Primes

A prime q is called a Sophie-Germain prime if
p = 2q + 1 is also prime. In this case, ¢ is called
a safe prime.

Safe primes are maximally hard for the Pohlig-
Hellman algorithm.

It is unknown if there are infinitely many safe primes,
let alone that they are sufficiently dense. Yet,

heuristically, about C/ n® of n-bit integers seem to be
safe primes (for some constant C).

The Discrete Log (DLOG) Assumption

(the “safe prime” version)

W.r.t. a random safe prime: for every p.p.t.
algorithm A, there is a negligible function u s.t.

p < SAFEPRIMES,: g — GEN(Zj);
Pr = u(n)

x—Z,: A(p, g, 2" mod p) =X

One-way Permutation (Family)

F(p.g,x) = (p, g g* mod p)

Fn,=1F,, } where F, , (x) = (p, g, & modp)

Theorem: Under the discrete log assumption, F
IS a one-way permutation (resp. &, is a one-way
permutation family).

Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A,
there is a negligible function y s.t.

p < PRIMES, g GEN(Z;f);

Pr = u(n)

x.y < Z,: A(p.g.8"%.8") =g

DLOG: more generally

Let 3 be a finite cyclic group and { a generator of G
G = { 1,9,09%2,9%, ..., g9 } (g is called the order of G)

Def: We say that DLOG is hard in G if for all efficient alg. A:

Pr g{_Gl,X{_Zq[A(G,qg, g, g¥X)= x] < negligible

Example candidates:
(1) (£,)" forlarge p, (2) Elliptic curve groups mod p

COmpUting DIOg N (Zp)* (n-bit prime p)

Best known algorithm (GNFS): runtime exp(O(v/n))
Elliptic Curve
cipher key size modulus size group size
80 bits 1024 bits 160 bits
128 bits 3072 bits 256 bits
256 bits (AES) 15360 bits 512 bits

As a result: slow transition away from (mod p) to elliptic
curves

An application: collision resistance

Choose a group G where Dlog is hard (e.g. (£,)" for large p)

Let g =|G| be a prime. Choose generators g, h of G

For x,y e {1,...,q} define |H(xyy)=gx-hy | inG

Lemma: finding collision for H(.,.) is as hard as computing Dlog,(h)

Proof: Suppose we are given a collision H(x,,y,) = H(x;,Y,)

then gXo0-hYo =gX1.hY1 = gXo-X1i =hY1-Yo = h =g Xo-X1/¥i7¥o

Further reading

- A Computational Introduction to Number Theory and

Algebra,
V. Shoup, 2008 (V2), Chapter1-4, 11,12

Available at //shoup.net/ntb/ntb-v2.pdf

