
1

CIS 5560

Lecture 10
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Announcements
• HW 5 out after lecture

• Due Tuesday, Feb 27 at 1PM on Gradescope

• Covers MACs,

2

Recap of last lecture

3

A triple of algorithms (Gen, MAC, Ver):

• Gen : Produces a key .

• MAC : Outputs a tag (may be deterministic).

• Ver : Outputs Accept or Reject.

Correctness:
Security: Hard to forge. Intuitively, it should be hard to
come up with a new pair (m’, t’) such that Ver accepts.

(1𝑛) k ← 𝒦
(𝑘, 𝑚) 𝑡

(𝑘, 𝑚, 𝑡)

Pr[𝖵𝖾𝗋(k, m, 𝖬𝖠𝖢(k, m)) = 1] = 1

Message Authentication Codes (MACs)

4

Existentially Unforgeable against Chosen Message Attacks

EUF-CMA Security

𝑚1

t1 = 𝖬𝖠𝖢(k, m1)
𝑚2

t2 = 𝖬𝖠𝖢(k, m2)

…

(𝑚, 𝑡)

𝑘 ← 𝐾

Accept if
for all , and

(𝑚, 𝑡) ≠ (𝑚𝑖, 𝑡𝑖)
𝑖

𝖵𝖾𝗋(k, m, t) = 1

Want:

where is the set of queries that makes.

Pr((𝑚, 𝑡) ← 𝐴𝑀𝐴𝐶(𝑘, ∙)(1𝑛), 𝑉𝑒𝑟(𝑘, 𝑚, 𝑡) = 1, (𝑚, 𝑡) ∉ 𝑄)) = 𝑛𝑒𝑔𝑙(𝑛) .
𝑄 {(𝑚𝑖, 𝑡𝑖)}𝑖

𝐴
5

Constructing a MAC

Alice Bob

m
(m, 𝖬𝖠𝖢(k, m))

Gen : Produces a PRF key .

MAC : Output .

Ver : Accept if , reject otherwise.

(1𝑛) 𝑘 ← 𝐾
(𝑘, 𝑚) 𝑓𝑘(𝑚)

(𝑘, 𝑚, 𝑡) 𝑓𝑘(𝑚) = 𝑡

Security: Our earlier unpredictability lemma
about PRFs essentially proves that this is
secure!

k k

6

A Simple Lemma about Unpredictability

⧫ Consider an adversary who requests and obtains
 for a polynomial 𝖥k(x1), …, 𝖥k(xq) 𝑞 = 𝑞(𝑛) .

⧫ Can she predict for some of her choosing where
,…, }? How well can she do it?

𝖥k(x⋆) 𝑥∗

𝑥∗ ∉ {𝑥1 𝑥𝑞

Lemma: If she succeeds with probability , then

she broke PRF security.

1
2𝑚

+ 1/poly(𝑛)

Let F: K×X⟶Y be a pseudorandom function.

7

raw CBC

Construction: encrypted CBC-MAC

F(k,⋅) F(k,⋅) F(k,⋅)

m[0] m[1] m[3] m[4]

⊕⊕

F(k,⋅)

⊕

F(k1,⋅) tagLet F: K × X ⟶ X be a PRP

Define new PRF FECBC : K2 × X≤L ⟶ X
8

cascade

Construction: NMAC (nested MAC)

F F F

m[0] m[1] m[3] m[4]

F

F

tag

Let F: K × X ⟶ K be a PRF

Define new PRF FNMAC : K2 × X≤L ⟶ K

> > > >k t ll fpad

>k1

t

9

CMAC (NIST standard)

Variant of CBC-MAC where key = (k, k1, k2)

• No final encryption step (extension attack thwarted by last keyed xor)

• No dummy block (ambiguity resolved by use of k1 or k2)

F(k,⋅) F(k,⋅)

m[0]

⊕
m[1] m[w]

F(k,⋅)

⊕
⋯

tag

100

k1

F(k,⋅) F(k,⋅)

m[0]

⊕
m[1] m[w]

F(k,⋅)

⊕
⋯

tag

k2

10

Today’s Lecture
• Collision-resistant Hash Functions (CRHFs)

• CRH → MACs

• HMAC

11

Collision Resistance
Let H: M →T be a hash function (|M| >> |T|)

A collision for H is a pair m0 , m1 ∈ M such that:	

	 	 	 H(m0) = H(m1) and m0 ≠ m1

A function H is collision resistant if for all efficient algs. A:

	 	 AdvCR[A,H] = Pr[A outputs collision for H]
	 is “neg”.

Example: SHA-256 (outputs 256 bits) 12

Formal Definition: Collision-Resistant Hash Functions

A compressing family of functions
(where) for which it is computationally hard to find collisions.

ℋ = {h : {0,1}m → {0,1}n}
𝑚 > 𝑛

Def: is collision-resistant if for every PPT algorithm , there is
a negligible function s.t.

ℋ A
𝜇

Prh←ℋ[𝐴(1𝑛, h) = (𝑥, 𝑦):𝑥 ≠ 𝑦, h(𝑥) = h(𝑦)] = 𝜇(𝑛)

MACs from Collision Resistance
Let be a MAC for short messages over (K,M,T) (e.g. AES)
Let H: Mbig → M be a hash function

Def: MACbig = (MACbig , Verbig) over (K, Mbig, T) as:

	 	 MACbig(k,m) = S(k,H(m)) ; Verbig(k,m,t) = V(k,H(m),t)

Thm: If MAC is a secure MAC and H is collision resistant
	 then MACbig is a secure MAC.

Example: MAC(k,m) = AES2-block-cbc(k, SHA-256(m)) is a secure MAC.

𝖬𝖠𝖢

14

MACs from Collision Resistance

Collision resistance is necessary for security:

	 Suppose adversary can find m0 ≠ m1 s.t. H(m0) = H(m1).

	 Then: MACbig is insecure under a 1-chosen msg attack

	 	 step 1: adversary asks for t ← MAC(k, m0)

	 	 step 2: output (m1, t) as forgery

	 MACbig(k, m) = MAC(k, H(m)) ;

 Verbig(k, m, t) = V(k, H(m), t)

15

Dan Boneh

Collision resistance

Generic birthday attack

Generic attack on C.R. functions
Let H: M → {0,1}n be a hash function (|M| >> 2n)

Generic alg. to find a collision in time O(2n/2) hashes

Algorithm:
1. Choose 2n/2 random messages in M: m1, …, m2n/2 (distinct w.h.p)

2. For i = 1, …, 2n/2 compute ti = H(mi) ∈{0,1}n

3. Look for a collision (ti = tj). If not found, got back to step 1.

How well will this work?
17

The birthday paradox
Let be IID integers.

Thm: When then

Proof: (for uniform indep. r1, …, rn)

r1, …, rn ∈ {1,…, B}

n ≈ B Pr[ri = rj |∃i ≠ j] ≥
1
2

18

B=106

samples n 19

Generic attack
H: M → {0,1}n . Collision finding algorithm:
1. Choose 2n/2 random elements in M: m1, …, m2n/2

2. For i = 1, …, 2n/2 compute ti = H(mi) ∈{0,1}n

3. Look for a collision (ti = tj). If not found, got back to step 1.

Expected number of iteration ≈ 2

Running time: O(2n/2) (space O(2n/2))
20

Sample C.R. hash functions:	 Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

	 	 	 digest	 	 	 	 	 generic

	 function	 size (bits)	 Speed (MB/sec)	 attack time

	 SHA-1	 	 160	 	153	 280

	 SHA-256	 	 256	 	111	 2128

	 SHA-512	 	 512	 	99	 2256

	 Whirlpool	 	 512	 	57	 2256

N
IST standards

* SHA-1 is broken; do not use! 21

Dan Boneh

The Merkle-Damgard Paradigm:

Collision resistance: review
Let H: M →T be a hash function (|M| >> |T|)

A collision for H is a pair m0 , m1 ∈ M such that:	
	 	 	 H(m0) = H(m1) and m0 ≠ m1

Goal: collision resistant (C.R.) hash functions

Step 1: given C.R. function for short messages,
	 	 construct C.R. function for long messages 23

The Merkle-Damgard iterated construction

Given h: T × X ⟶ T (compression function)

we obtain H: X≤L ⟶ T . Hi - chaining variables

PB: padding block

h h h

m[0] m[1] m[2] m[3] ll PB

h
IV

(fixed)

H(m)
H0 H1 H2 H3 H4

1000…0 ll msg len

64 bits

If no space for PB
add another block

24

Proof on Board

MD collision resistance
Thm: if h is collision resistant then so is H.

Proof: collision on H ⇒ collision on h

 Suppose H(M) = H(M’). We build collision for h.

IV = H0 , H1 , … , Ht , Ht+1 = H(M)

IV = H0’ , H1’ , … , H’r, H’r+1 = H(M’)

h(Ht, Mt ll PB) = Ht+1 = H’r+1 = h(H’r, M’r ll PB’)
26

Suppose Ht = H’r and Mt = M’r and PB = PB’

Then: h(Ht-1, Mt-1) = Ht = H’t = h(H’t-1, M’t-1)

Dan Boneh

End of Segment

⇒ To construct C.R. function,

	 	 suffices to construct compression function

28

Dan Boneh

Collision resistance

Constructing Compression
Functions

Online Cryptography Course Dan Boneh

The Merkle-Damgard iterated construction

Thm: h collision resistant ⇒ H collision resistant

Goal: construct compression function h: T × X ⟶ T

h h h

m[0] m[1] m[2] m[3] ll PB

h
IV

(fixed)

H(m)

30

Compr. func. from a block cipher
E: K× {0,1}n ⟶ {0,1}n a block cipher.

The Davies-Meyer compression function: h(H, m) = E(m, H)⨁H

Thm: Suppose E is an ideal cipher (collection of |K| random perms.).
Finding a collision h(H,m)=h(H’,m’) takes O(2n/2) evaluations of (E,D).

E
>

mi

Hi ⨁

Best possible !! 31

Suppose we define h(H, m) = E(m, H)

Then the resulting h(.,.) is not collision resistant:

	 to build a collision (H,m) and (H’,m’)
	 choose random (H,m,m’) and construct H’ as follows:

H’=D(m’, E(m,H))
H’=E(m’, D(m,H))
H’=E(m’, E(m,H))
H’=D(m’, D(m,H))

32

Other block cipher constructions

Miyaguchi-Preneel: h(H, m) = E(m, H)⨁H⨁m (Whirlpool)

	 	 	 h(H, m) = E(H⨁m, m)⨁m

	 	 	 total of 12 variants like this

Other natural variants are insecure:

	 	 	 h(H, m) = E(m, H)⨁m (HW)

Let E: {0,1}n × {0,1}n ⟶ {0,1}n for simplicity

33

Case study: SHA-256
• Merkle-Damgard function
• Davies-Meyer compression function
• Block cipher: SHACAL-2

512-bit key

SHACAL-2
>

256-bit block
256-bit block

34

Provable compression functions
Choose a random 2000-bit prime p and random 1 ≤ u, v ≤ p .

For m,h ∈ {0,…,p-1} define h(H,m) = uH ⋅ vm (mod p)

Fact: finding collision for h(.,.) is as hard as
 solving “discrete-log” modulo p.

Problem: slow.
35

Dan Boneh

Collision resistance

HMAC: a MAC from SHA-256

36

The Merkle-Damgard iterated construction

Thm: h collision resistant ⇒ H collision resistant

Can we use H(.) to directly build a MAC?

h h h

m[0] m[1] m[2] m[3] ll PB

h
IV

(fixed)

H(m)

37

MAC from a Merkle-Damgard Hash Function

H: X≤L ⟶ T a C.R. Merkle-Damgard Hash Function

Attempt #1: S(k, m) = H(k ll m)

This MAC is insecure because:

Given H(k ll m) can compute H(k ll m ll PB ll w) for any w.
Given H(k ll m) can compute H(k ll m ll w) for any w.
Given H(k ll m) can compute H(w ll k ll m ll PB) for any w.

Anyone can compute H(k ll m) for any m.

38

Standardized method: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

Building a MAC out of a hash function :

HMAC:

H

𝖬𝖠𝖢(k, m) = H(k ⊕ 𝗈𝗉𝖺𝖽 | | H(k ⊕ 𝗂𝗉𝖺𝖽 | | m))

39

HMAC in pictures

Similar to the NMAC PRF.
	 main difference: the two keys k1, k2 are dependent

h h

m[0] m[1] m[2] ll PB

h

h
tag

> > >h

k⨁ipad

IV
(fixed)

>

>IV
(fixed)

h
>

k⨁opad

40

HMAC properties
Built from a black-box implementation of SHA-256.

HMAC is assumed to be a secure PRF
• Can be proven under certain PRF assumptions about h(.,.)
• Security bounds similar to NMAC

– Need q2/|T| to be negligible (q << |T|½)

In TLS: must support HMAC-SHA1-96

41

Dan Boneh

Timing attacks on MAC verification

42

Warning: verification timing attacks [L’09]

Example: Keyczar crypto library (Python) [simplified]

	 def Verify(key, msg, sig_bytes):
	 	 return HMAC(key, msg) == sig_bytes

The problem: ‘==‘ implemented as a byte-by-byte comparison
• Comparator returns false when first inequality found

43

Warning: verification timing attacks [L’09]

Timing attack: to compute tag for target message m do:
Step 1: Query server with random tag
Step 2: Loop over all possible first bytes and query server.
	 stop when verification takes a little longer than in step 1
Step 3: repeat for all tag bytes until valid tag found

m , tag k
accept or reject

target
msg m

44

Defense #1
Make string comparator always take same time (Python) :

	 return false if sig_bytes has wrong length
	 result = 0
	 for x, y in zip(HMAC(key,msg) , sig_bytes):
 	 result |= ord(x) ^ ord(y)
	 return result == 0

Can be difficult to ensure due to optimizing compiler.
45

Defense #2
Make string comparator always take same time (Python) :

	 def Verify(key, msg, sig_bytes):
	 mac = HMAC(key, msg)
	 return HMAC(key, mac) == HMAC(key, sig_bytes)

Attacker doesn’t know values being compared

46

Lesson

Don’t implement crypto yourself !

47

