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CIS 5560

Lecture 10
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s24/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/


Announcements
• HW 5 out after lecture 

• Due Tuesday, Feb 27 at 1PM on Gradescope

• Covers MACs, 
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Recap of last lecture
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A triple of algorithms (Gen, MAC, Ver):

• Gen : Produces a key .

• MAC : Outputs a tag  (may be deterministic).

• Ver : Outputs Accept or Reject.


Correctness:   
Security: Hard to forge. Intuitively, it should be hard to 
come up with a new pair (m’, t’) such that Ver accepts.

(1𝑛) k ← 𝒦
(𝑘,  𝑚) 𝑡

(𝑘,  𝑚,  𝑡)

Pr[𝖵𝖾𝗋(k, m, 𝖬𝖠𝖢(k, m)) = 1] = 1

Message Authentication Codes (MACs)
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Existentially Unforgeable against Chosen Message Attacks

EUF-CMA Security

𝑚1

t1 = 𝖬𝖠𝖢(k, m1)
𝑚2

t2 = 𝖬𝖠𝖢(k, m2)

…

(𝑚,  𝑡)

𝑘 ← 𝐾

Accept if  
for all , and 

(𝑚,  𝑡) ≠ (𝑚𝑖,  𝑡𝑖)
𝑖

𝖵𝖾𝗋(k, m, t) = 1

Want:  

where  is the set of queries  that  makes.

Pr((𝑚,  𝑡) ← 𝐴𝑀𝐴𝐶(𝑘,   ∙ )(1𝑛),  𝑉𝑒𝑟(𝑘,  𝑚,  𝑡) = 1,  (𝑚,  𝑡) ∉ 𝑄)) = 𝑛𝑒𝑔𝑙(𝑛) .
𝑄 {(𝑚𝑖,  𝑡𝑖)}𝑖

𝐴
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Constructing a MAC

Alice Bob

m
(m, 𝖬𝖠𝖢(k, m))

Gen : Produces a PRF key .

MAC : Output .

Ver : Accept if , reject otherwise.

(1𝑛) 𝑘 ← 𝐾
(𝑘,  𝑚) 𝑓𝑘(𝑚)

(𝑘,  𝑚,  𝑡) 𝑓𝑘(𝑚) = 𝑡

Security: Our earlier unpredictability lemma 
about PRFs essentially proves that this is 
secure!

k k
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A Simple Lemma about Unpredictability

⧫ Consider an adversary who requests and obtains 
 for a polynomial 𝖥k(x1), …, 𝖥k(xq) 𝑞 = 𝑞(𝑛) .

⧫ Can she predict  for some  of her choosing where 
,…, }? How well can she do it?

𝖥k(x⋆) 𝑥∗

𝑥∗ ∉ {𝑥1 𝑥𝑞

Lemma: If she succeeds with probability , then 

she broke PRF security.

1
2𝑚

+ 1/poly(𝑛)

Let F: K×X⟶Y be a pseudorandom function. 
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raw CBC

Construction:   encrypted CBC-MAC

F(k,⋅) F(k,⋅) F(k,⋅)

m[0] m[1] m[3] m[4]

⊕⊕

F(k,⋅)

⊕

F(k1,⋅) tagLet   F: K × X ⟶ X   be a PRP  

Define new PRF   FECBC : K2 × X≤L ⟶ X 
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cascade

Construction:   NMAC   (nested MAC)

F F F

m[0] m[1] m[3] m[4]

F

F

tag

Let   F: K × X ⟶ K   be a PRF  

Define new PRF   FNMAC : K2 × X≤L ⟶ K

> > > >k t ll fpad

>k1

t
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CMAC   (NIST standard)

Variant of CBC-MAC where      key = (k, k1, k2) 

• No final encryption step   (extension attack thwarted by last keyed xor) 

• No dummy block   (ambiguity resolved by use of k1 or k2)

F(k,⋅) F(k,⋅)

m[0]

⊕
m[1] m[w]

F(k,⋅)

⊕
⋯

tag

100

k1

F(k,⋅) F(k,⋅)

m[0]

⊕
m[1] m[w]

F(k,⋅)

⊕
⋯

tag

k2
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Today’s Lecture
• Collision-resistant Hash Functions (CRHFs)

• CRH → MACs


• HMAC
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Collision Resistance
Let  H: M →T  be a hash function       (  |M| >> |T|  )


A collision for H is a pair  m0 , m1 ∈ M  such that:	 

	 	 	 H(m0)  =  H(m1)    and    m0 ≠ m1


A function H is collision resistant if for all efficient algs. A:

	 	     AdvCR[A,H]  =  Pr[A outputs collision for H] 
	 is “neg”.


Example:   SHA-256  (outputs 256 bits) 12



Formal Definition: Collision-Resistant Hash Functions

A compressing family of functions  
(where ) for which it is computationally hard to find collisions.

ℋ = {h : {0,1}m → {0,1}n}
𝑚 > 𝑛

Def:  is collision-resistant if for every PPT algorithm , there is 
a negligible function  s.t.

ℋ A
𝜇

Prh←ℋ[𝐴(1𝑛, h) = (𝑥, 𝑦):𝑥 ≠ 𝑦,  h(𝑥) = h(𝑦)] = 𝜇(𝑛)



MACs from Collision Resistance
Let  be a MAC for short messages over (K,M,T)     (e.g. AES) 
Let  H: Mbig → M be a hash function 

Def:    MACbig = (MACbig , Verbig )    over   (K, Mbig, T)   as: 

	 	 MACbig(k,m) = S(k,H(m))    ;     Verbig(k,m,t) = V(k,H(m),t) 

Thm:   If  MAC  is a secure MAC and  H  is collision resistant  
	 then     MACbig  is a secure MAC. 

Example:      MAC(k,m) = AES2-block-cbc(k,  SHA-256(m))   is a secure MAC.

𝖬𝖠𝖢
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MACs from Collision Resistance

Collision resistance is necessary for security: 

	 Suppose adversary can find  m0 ≠ m1  s.t.   H(m0) = H(m1). 

	 Then:   MACbig is insecure under a 1-chosen msg attack 

	 	 step 1:  adversary asks for  t ← MAC(k, m0) 

	 	 step 2:   output   (m1, t)   as forgery

	 MACbig(k, m) = MAC(k, H(m))    ;      

             Verbig(k, m, t) = V(k, H(m), t)
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Dan Boneh

Collision resistance

Generic birthday attack



Generic attack on C.R. functions
Let  H: M → {0,1}n  be a hash function    ( |M| >> 2n  ) 

Generic alg. to find a collision in time   O(2n/2)   hashes 

Algorithm: 
1. Choose 2n/2  random messages in M:     m1, …, m2n/2       (distinct w.h.p ) 

2. For i = 1, …,  2n/2  compute    ti = H(mi)    ∈{0,1}n  

3. Look for a collision  (ti = tj).    If not found, got back to step 1. 

How well will this work?
17



The birthday paradox
Let      be IID integers.  

Thm:   When    then    

Proof:   (for uniform indep. r1, …, rn )

r1, …, rn ∈ {1,…, B}

n ≈ B Pr[ri = rj |∃i ≠ j] ≥
1
2
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B=106

# samples  n 19



Generic attack
H: M → {0,1}n  .      Collision finding algorithm: 
1. Choose 2n/2  random elements in M:     m1, …, m2n/2 

2. For i = 1, …,  2n/2  compute    ti = H(mi)    ∈{0,1}n  

3. Look for a collision  (ti = tj).    If not found, got back to step 1. 

Expected number of iteration ≈   2 

Running time:  O(2n/2)         (space  O(2n/2) )
20



Sample C.R. hash functions:	 Crypto++  5.6.0      [ Wei Dai ]

AMD Opteron,   2.2 GHz     ( Linux)


	 	 	    digest	 	 	 	 	    generic

	 function	 size (bits)	 Speed  (MB/sec)	 attack time


	 SHA-1	 	 160	 	153	 280


	 SHA-256	 	 256	 	111	 2128


	 SHA-512	 	 512	 	99	 2256


	 Whirlpool	 	 512	 	57	 2256

N
IST standards

* SHA-1 is broken; do not use! 21



Dan Boneh

The Merkle-Damgard Paradigm: 



Collision resistance:  review
Let  H: M →T  be a hash function    ( |M| >> |T| ) 

A collision for H is a pair  m0 , m1 ∈ M  such that:	 
	 	 	 H(m0)  =  H(m1)    and    m0 ≠ m1 

Goal:   collision resistant (C.R.) hash functions 

Step 1:  given C.R. function for short messages,  
	 	 construct C.R. function for long messages 23



The Merkle-Damgard iterated construction

Given   h: T × X ⟶ T         (compression function) 

we obtain    H: X≤L ⟶ T .            Hi  -  chaining variables 

PB:    padding block 

h h h

m[0] m[1] m[2] m[3]  ll   PB

h
IV 

(fixed)

H(m)
H0 H1 H2 H3 H4

1000…0  ll  msg len

64 bits

If no space for PB  
add another block

24



Proof on Board



MD collision resistance
Thm:   if  h  is collision resistant then so is  H. 

Proof:    collision on H   ⇒   collision on h 

   Suppose  H(M) = H(M’).    We build collision for  h.

IV  = H0     ,     H1    ,  …  ,   Ht  ,     Ht+1   = H(M) 

IV  = H0’   ,      H1’   ,  …  ,   H’r,     H’r+1   = H(M’)

h( Ht, Mt ll PB) = Ht+1 = H’r+1 = h(H’r, M’r ll PB’)
26



Suppose    Ht = H’r    and    Mt = M’r   and   PB = PB’ 

Then:  h( Ht-1, Mt-1) = Ht = H’t = h(H’t-1, M’t-1 )



Dan Boneh

End of Segment

⇒  To construct C.R. function,    

	 	 suffices to construct compression function

28



Dan Boneh

Collision resistance

Constructing Compression 
Functions

Online Cryptography Course                                      Dan Boneh



The Merkle-Damgard iterated construction

Thm:    h collision resistant   ⇒    H collision resistant 

Goal:   construct compression function  h: T × X ⟶ T 

h h h

m[0] m[1] m[2] m[3]  ll   PB

h
IV 

(fixed)

H(m)
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Compr. func. from a block cipher
E: K× {0,1}n ⟶ {0,1}n     a block cipher. 

The Davies-Meyer compression function:      h(H, m) = E(m, H)⨁H 

Thm:   Suppose E is an ideal cipher (collection of |K| random perms.). 
Finding a collision h(H,m)=h(H’,m’)  takes O(2n/2) evaluations of (E,D).

E
>

mi

Hi ⨁

Best possible !! 31



Suppose we define     h(H, m) = E(m, H) 

Then the resulting h(.,.) is not collision resistant: 

	 to build a collision (H,m) and (H’,m’)   
	 choose random (H,m,m’) and construct H’ as follows:

H’=D(m’, E(m,H)) 
H’=E(m’, D(m,H)) 
H’=E(m’, E(m,H)) 
H’=D(m’, D(m,H)) 
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Other block cipher constructions

Miyaguchi-Preneel:       h(H, m) = E(m, H)⨁H⨁m       (Whirlpool) 

	 	 	   h(H, m) =  E(H⨁m, m)⨁m 

	 	 	       total of 12 variants like this  

Other natural variants are insecure: 

	 	 	 h(H, m) = E(m, H)⨁m        (HW)

Let  E: {0,1}n × {0,1}n ⟶ {0,1}n    for simplicity  
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Case study:   SHA-256
• Merkle-Damgard function  
• Davies-Meyer compression function 
• Block cipher:   SHACAL-2 

512-bit key

SHACAL-2
>

256-bit block
256-bit block
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Provable compression functions
Choose a random 2000-bit prime  p  and random  1 ≤ u, v  ≤ p  . 

For  m,h ∈ {0,…,p-1}      define      h(H,m) = uH ⋅ vm      (mod p) 

Fact:   finding collision for h(.,.) is as hard as  
            solving “discrete-log” modulo p. 

Problem:    slow.
35



Dan Boneh

Collision resistance

HMAC: a MAC from SHA-256
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The Merkle-Damgard iterated construction

Thm:    h collision resistant   ⇒    H collision resistant 

Can we use  H(.)  to directly build a MAC?

h h h

m[0] m[1] m[2] m[3]  ll   PB

h
IV 

(fixed)

H(m)
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MAC from a Merkle-Damgard Hash Function

H: X≤L ⟶ T   a C.R. Merkle-Damgard Hash Function 

Attempt #1:     S(k, m) = H( k ll m) 

This MAC is insecure because:

Given  H( k ll m)   can compute   H( k ll m ll PB ll w )  for any  w.
Given  H( k ll m)   can compute   H( k ll m ll w )  for any  w.
Given  H( k ll m)   can compute   H( w ll k ll m ll PB)  for any  w.

Anyone can compute   H( k ll m )  for any  m.
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Standardized method:   HMAC  (Hash-MAC)

Most widely used MAC on the Internet.      

Building a MAC out of a hash function : 

HMAC:       

H

𝖬𝖠𝖢(k, m) = H(k ⊕ 𝗈𝗉𝖺𝖽 | | H(k ⊕ 𝗂𝗉𝖺𝖽 | | m))
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HMAC in pictures

Similar to the NMAC PRF.         
	 main difference:  the two keys k1, k2 are dependent

h h

m[0] m[1] m[2]  ll   PB

h

h
tag

> > >h

k⨁ipad

IV 
(fixed)

>

>IV 
(fixed)

h
>

k⨁opad
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HMAC properties
Built from a black-box implementation of SHA-256. 

HMAC is assumed to be a secure PRF 
• Can be proven under certain PRF assumptions about h(.,.) 
• Security bounds similar to NMAC 

– Need  q2/|T|  to be negligible    ( q << |T|½ ) 

In TLS:    must support   HMAC-SHA1-96

41



Dan Boneh

Timing attacks on MAC verification
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Warning:  verification timing attacks  [L’09]

Example: Keyczar crypto library  (Python)       [simplified] 

	 def Verify(key, msg, sig_bytes): 
	 	 return HMAC(key, msg) == sig_bytes 

The problem:    ‘==‘   implemented as a byte-by-byte comparison 
• Comparator returns false when first inequality found
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Warning:  verification timing attacks  [L’09]

Timing attack:   to compute tag for target message m do: 
Step 1:   Query server with random tag 
Step 2:   Loop over all possible first bytes and query server. 
	 stop when verification takes a little longer than in step 1 
Step 3:   repeat for all tag bytes until valid tag found

m ,  tag k
accept or reject

target  
msg  m
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Defense #1
Make string comparator always take same time   (Python) :  

	 return false if  sig_bytes  has wrong length 
	 result = 0         
	 for x, y in zip( HMAC(key,msg) , sig_bytes): 
  	        result |= ord(x) ^ ord(y) 
	 return result == 0 

Can be difficult to ensure due to optimizing compiler.
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Defense #2
Make string comparator always take same time   (Python) :  

	 def Verify(key, msg, sig_bytes): 
	       mac = HMAC(key, msg) 
	       return HMAC(key, mac) == HMAC(key, sig_bytes) 

Attacker doesn’t know values being compared
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Lesson

Don’t implement crypto yourself !
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