
1

CIS 5560

Lecture 9
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Announcements
• HW 4 out after lecture

• Due Tuesday, Feb 20 at 1PM on Gradescope

• Covers PRFs, IND-CPA

2

Recap of last lecture

3

Pseudorandom Functions

 Generate a random -bit key . 𝐆𝐞𝐧(1𝑛): 𝑛 𝑘

 is a poly-time algorithm that outputs 𝐄𝐯𝐚𝐥(𝑘, 𝑥) Fk(x)

Collection of functions ℱℓ = {Fk : {0,1}ℓ → {0,1}m}k∈{0,1}n

• indexed by a key 𝑘
• : key length, : input length, output length.𝑛 ℓ 𝑚:

• Independent parameters, all poly(sec-param) = poly() 𝑛

• #functions in (singly exponential in)ℱℓ ≤ 2𝑛 𝑛

4

Security: Cannot distinguish from random function

5

Pr [Afk(1n) = 1 | k ← {0,1}ℓ] − Pr [AF(1n) = 1 | F ← 𝖥𝗇𝗌] ≤ 𝗇𝖾𝗀𝗅(n) .

PRP/Block Cipher
A block cipher is a pair of efficient algs. (E, D):

6

E, D CT Block
n bits

PT Block
n bits

Key k bits

Canonical examples:

1. AES: n=128 bits, k = 128, 192, 256 bits

2. 3DES: n= 64 bits, k = 168 bits (historical)

 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) = where and are
both n bits each.

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠) 𝐺1(𝑠)

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠) 𝐺1(𝑠)

𝑠

 𝐺0(𝐺0(…𝐺0(𝑠)) 𝐺1(𝐺1(…𝐺1(𝑠)) 𝑮𝒙ℓ
(𝑮

𝒙ℓ−𝟏
(…𝑮𝒙𝟏

(𝒔))

D
epth

 ℓ

Each path/leaf labeled by corresponds to 𝑥 ∈ {0,1}ℓ 𝑓𝑠(𝑥) .

The authentication problem

Alice Bob

m

 k k
Can also alter/
inject more
messages!

(𝑚, 𝑡) or (𝑚, 𝑡) ⊥

We want Alice to generate a tag for the message m
which is hard to generate without the secret key k.

A triple of algorithms (Gen, MAC, Ver):

• Gen : Produces a key .

• MAC : Outputs a tag (may be deterministic).

• Ver : Outputs Accept or Reject.

Correctness:
Security: Hard to forge. Intuitively, it should be hard to
come up with a new pair (m’, t’) such that Ver accepts.

(1𝑛) k ← 𝒦
(𝑘, 𝑚) 𝑡

(𝑘, 𝑚, 𝑡)

Pr[𝖵𝖾𝗋(k, m, 𝖬𝖠𝖢(k, m) = 1] = 1

Message Authentication Codes (MACs)

Existentially Unforgeable against Chosen Message Attacks

EUF-CMA Security

𝑚1

t1 = 𝖬𝖠𝖢(k, m1)
𝑚2

t2 = 𝖬𝖠𝖢(k, m2)

…

(𝑚, 𝑡)

𝑘 ← 𝐾

Accept if
for all , and

(𝑚, 𝑡) ≠ (𝑚𝑖, 𝑡𝑖)
𝑖

𝖵𝖾𝗋(k, m, t) = 1

Want:

where is the set of queries that makes.

Pr((𝑚, 𝑡) ← 𝐴𝑀𝐴𝐶(𝑘, ∙)(1𝑛), 𝑉𝑒𝑟(𝑘, 𝑚, 𝑡) = 1, (𝑚, 𝑡) ∉ 𝑄)) = 𝑛𝑒𝑔𝑙(𝑛) .
𝑄 {(𝑚𝑖, 𝑡𝑖)}𝑖

𝐴

Constructing a MAC

Alice Bob

m
(m, 𝖬𝖠𝖢(k, m))

Gen : Produces a PRF key .

MAC : Output .

Ver : Accept if , reject otherwise.

(1𝑛) 𝑘 ← 𝐾
(𝑘, 𝑚) 𝑓𝑘(𝑚)

(𝑘, 𝑚, 𝑡) 𝑓𝑘(𝑚) = 𝑡

Security: Our earlier unpredictability lemma
about PRFs essentially proves that this is
secure!

k k

Today’s Lecture
• Proof of security for MAC

• Short MAC → Long MACs

12

Let I = (S,V) be a MAC.

Suppose an attacker is able to find m0 ≠ m1 such that

	 MAC(k, m0) = MAC(k, m1) for ½ of the keys k in K

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for m0 or m1

No, this MAC can be broken using a chosen msg attack
It depends on the details of the MAC

Let I = (S,V) be a MAC.

Suppose MAC(k,m) is always 5 bits long

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for any message
It depends on the details of the MAC
No, an attacker can simply guess the tag for messages

Constructing a MAC

Alice Bob

m
(m, 𝖬𝖠𝖢(k, m))

Gen : Produces a PRF key .

MAC : Output .

Ver : Accept if , reject otherwise.

(1𝑛) 𝑘 ← 𝐾
(𝑘, 𝑚) Fk(m)

(𝑘, 𝑚, 𝑡) Fk(m) = t

Security: ??

k k

A bad example

Suppose F: K × X ⟶ Y is a secure PRF with Y = {0,1}10

 Is the derived MAC IF a secure MAC system?
Yes, the MAC is secure because the PRF is secure
No tags are too short: anyone can guess the tag for any msg
It depends on the function F

Dan Boneh

Security
Thm:	 If F: K×X⟶Y is a secure PRF and 1/|Y| is negligible
	 (i.e. |Y| is large) then IF is a secure MAC.

	 In particular, for every eff. MAC adversary A attacking IF

	 there exists an eff. PRF adversary B attacking F s.t.:

	 	 	 AdvMAC[A, IF] ≤ AdvPRF[B, F] + 1/|Y|

⇒ IF is secure as long as |Y| is large, say |Y| = 280 .

A Simple Lemma about Unpredictability

⧫ Consider an adversary who requests and obtains
 for a polynomial 𝖥k(x1), …, 𝖥k(xq) 𝑞 = 𝑞(𝑛) .

⧫ Can she predict for some of her choosing where
,…, }? How well can she do it?

𝖥k(x⋆) 𝑥∗

𝑥∗ ∉ {𝑥1 𝑥𝑞

Lemma: If she succeeds with probability , then

she broke PRF security.

1
2𝑚

+ 1/poly(𝑛)

Let F: K×X⟶Y be a pseudorandom function.

Dan Boneh

Proof Sketch
Suppose f: X ⟶ Y is a truly random function

Then MAC adversary A must win the following game:

A wins if t = f(m) and m ∉ { m1 , … , mq }

⇒ Pr[A wins] = 1/|Y|

Chal. Adv.

f in
 Funs[X,Y] (m,t)

m1 ∈ X
t1 ← f(m1)

m2 , …, mq

f(m2) , …, f(mq)

By PRF security,
same must hold for F(k,x)

• The adversary could send an old valid (m, tag) at a
later time.

– In fact, our definition of security does not rule this
out.

• In practice:
– Append a time-stamp to the message. Eg. (m, T,

MAC(m, T)) where T = 21 Sep 2022, 1:47pm.

– Sequence numbers appended to the message (this

requires the MAC algorithm to be stateful).

Dealing with Replay Attacks

Dan Boneh

MACs and PRFs
So far: secure PRF F ⇒ secure MAC, as long as |Y| is large

	 	 MAC(k, m) = F(k, m)

Our goal:
	 given a PRF for short messages (AES)
	 construct a PRF for long messages

From here on let X = {0,1}n (e.g. n=128)

Ideas?

22

On board: randomized construction

23

Dan Boneh

raw CBC

Construction Attempt: just CBC-MAC

F(k,⋅) F(k,⋅) F(k,⋅)

m[0] m[1] m[3] m[4]

⊕⊕

F(k,⋅)

⊕

Dan Boneh

Why is this broken?
 rawCBC is easily broken using a 1-chosen msg attack.

Adversary works as follows:

– Choose an arbitrary one-block message m∈X

– Request tag for m. Get t = F(k,m)

– Output t as MAC forgery for the 2-block message (m, t⊕m)

Indeed: rawCBC(k, (m, t⊕m)) = F(k, F(k,m)⊕(t⊕m)) = F(k, t⊕(t⊕m)) = t

Dan Boneh

raw CBC

Construction: encrypted CBC-MAC

F(k,⋅) F(k,⋅) F(k,⋅)

m[0] m[1] m[3] m[4]

⊕⊕

F(k,⋅)

⊕

F(k1,⋅) tagLet F: K × X ⟶ X be a PRP

Define new PRF FECBC : K2 × X≤L ⟶ X

Dan Boneh

cascade

Construction Attempt: Just Cascade

F F F

m[0] m[1] m[3] m[4]

F> > > >k t

Does this work?

This MAC is secure
This MAC can be forged without any chosen msg queries
This MAC can be forged with one chosen msg query
This MAC can be forged, but only with two msg queries

Dan Boneh

cascade

Construction: NMAC (nested MAC)

F F F

m[0] m[1] m[3] m[4]

F

F

tag

Let F: K × X ⟶ K be a PRF

Define new PRF FNMAC : K2 × X≤L ⟶ K

> > > >k t ll fpad

>k1

t

Dan Boneh

Comparison
ECBC-MAC is commonly used as an AES-based MAC
• CCM encryption mode (used in 802.11i)
• NIST standard called CMAC

NMAC not usually used with AES or 3DES
• Main reason: need to change AES key on every block
	 	 requires re-computing AES key expansion
• But NMAC is the basis for a popular MAC called HMAC (next)

Dan Boneh

What if msg. len. is not multiple of block-size?

F(k,⋅) F(k,⋅) F(k,⋅)

m[0] m[1] m[3] ???

⊕⊕

F(k,⋅)

⊕

F(k1,⋅) tag

m[4]

CBC MAC padding

Yes, the MAC is secure

No, given tag on msg m attacker obtains tag on mll0
It depends on the underlying MAC

m[0] m[1] m[0] 0000m[1]

Bad idea: pad m with 0’s

Is the resulting MAC secure?

Problem: pad(m) = pad(mll0)

Dan Boneh

CBC MAC padding
For security, padding must be invertible !

	 	 m0 ≠ m1 ⇒ pad(m0) ≠ pad(m1)

ISO: pad with “1000…00”. Add new dummy block if needed.

– The “1” indicates beginning of pad.
m[0] m[1] m[0] 100m[1]

m’[0] m’[1] m’[0] m’[1] 1000…000

Dan Boneh

CMAC (NIST standard)

Variant of CBC-MAC where key = (k, k1, k2)

• No final encryption step (extension attack thwarted by last keyed xor)

• No dummy block (ambiguity resolved by use of k1 or k2)

F(k,⋅) F(k,⋅)

m[0]

⊕
m[1] m[w]

F(k,⋅)

⊕
⋯

tag

100

k1

F(k,⋅) F(k,⋅)

m[0]

⊕
m[1] m[w]

F(k,⋅)

⊕
⋯

tag

k2

Dan Boneh

End of Segment

