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Announcements

- HW 4 out after lecture
- Due Tuesday, Feb 20 at 1PM on Gradescope
« Covers PRFs, IND-CPA



Recap of last lecture



Semantic Security for Many Msgs

/ Eve \ / Challenger \
1.k A
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For every PPT Eve, there exists a negligible fn &, )
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b < {0,1}
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Alternate (Stronger?) definition

/ Eve \ / Challenger \

m; . 1.k H
<
(m()a m)
- > 12.b < {0,1)}
< = 3. ¢ := Enc(k, my)
>

_ Y, b=

Also called “IND-CPA”: Indistinguishability under Chosen-Plaintext Attacks

Equivalent to previous definition: just set m; , = m; | = m,



Pseudorandom Functions

Collection of functions F, = {F, : {0,1}* = {0,1}"} (0.1}

indexed by a key k
n: key length, : input length, m: output length.

Independent parameters, all poly(sec-param) = poly(n)

- #functions in &, < 2" (singly exponential in n)

Gen(1"): Generate a random n-bit key k.

Eval(k, x) is a poly-time algorithm that outputs F(x)




Security: Cannot distinguish from random function

[Pr[Af(1") = 1 | k < (0,1)7] = Pr[AT(1") = 1 | F < Fns] | < negl(n).



Randomized encryption w/ PRFs

Gen(1"): Generate a random n-bit key k that defines
F,: {01} = {0,1}™

Enc(k,m): Pick arandom x and
let the ciphertext ¢ be the pair (x,y = F(x) & m)

Dec(k, c = (x,y)):

Output Fi.(x) & ¢



Indistinguishable distributions

Definition: Two distributions X and Y are computationally indistinguishable
if for every efficient distinguisher

[PHD@) =1 | x < X]=PrD() = 1 | y < Y]| = negl(n)

Denoted by X =~ Y

Eg: PRG security says that X := {G(x)|x < {0,1}"} = Y = {y|y « {0,1}"}
Eg: Single msg security says that
{c < Enc(k,my) | k <« H} = {c < Enclk,m)) | k « H}



Proof by hybrid argument

Enc(k,m): Pick arandom x and output (x,y = Fi(x) & m)
Dec(k,c = (x,y)): Output F(x) & c

Single msg security says that the following dists are indistinguishable.
{c < Enc(k,my) | k < H}and {c < Enc(k,m)) | k <« F'}

How to do this? Let’s create more (supposedly) indistinguishable distributions:

Hy = {c:=(r,my® F(r) | r < {0,1}"k « K}

H ={c=0my®@R(r) | r < {0,1}";R « Fns}

Hy={c:=0my®r | r < {0,1}"r < {0,1}"] .
~ one time pad

[—]3 = {c = (I", ml @ r’ |  — {0,1}”’ r’ <« {O,l}n}

H,={c:=(r,m ®RG) | r < {0,1})";R « Fns} ~ deM ofrandomn

Hs={c:=(r,m ®F,r) | r < {0,1})sk « ) ~ by PRFsecurity 10

~ by PRF security

~ defn of random fn



Hybrid argument

The key steps in a hybrid argument are:
1. Construct a sequence of poly many distributions b/w the two target distributions.
2. Argue that each pair of neighboring distributions are indistinguishable.
3. Conclude that the target distributions are indistinguishable via contradiction:
A. Assume the target distributions are distinguishable

B. Must be the case that an intermediate pair of distributions is distinguishable
C. This contradicts 2 above.
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Hybrid argument

B. Must be the case that an intermediate pair of distributions is distinguishable

Lemma: Let p,. py. ps. ... p,. be advantage of distinguishing
(H()a Hl)’ (Hla HZ)a cee (Hn—la Hn)

If py — p,, > € there is an index i such that p, — p;,. | > e/m.

Proof:

Pm —Po = (pm _pm—l) + (pm—l _pm—Z) + et (pl _pO) > €

At least one of the m terms has to be at least €/m (averaging). Y



Construction 2: rand ctr-mode

F: PRF defined over (K, X, Y) where X = {0,1}**and Y = {0,1}"

msg

r m][0] m[1]

Fi(r[10)

Fi(r[|1)

Fi(r[|L)

S

(e.g., n=128)

(counter counts mod 2"

r c[0]

c[1]

c[L]

ciphertext

r - chosen at random for every message

note: parallelizable
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Today’s Lecture

* PRPs and block cipher modes of operation
- PRGs — PRFs
- Message Integrity



Also called a Block Cipher

A block cipher is a pair of efficient algs. (E, D):

n bits

PT Block

Canonical examples:
n=128 bits, k =128, 192, 256 bits
2. 3DES: n= 64 bits,

1. AES:

Key

n bits
CT Block

k bits

k = 168 bits (historical)
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Running example

Example PRPs: 3DES, AES,

AES128: Kx X —= X where K=X={0,1}128
DES: KxX — X where X ={0,1}64, K={0,1}%6

3DES: KxX = X where X={0,1}64, K ={0,1}168

Functionally, any PRP where K and X are large is also a PRF,
— A PRP is a PRF where X=Y and is efficiently invertible
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Incorrect use of a PRP

Electronic Code Book (ECB):

P [T My T m ] | -~ |
~ Apply Ei(+)
Cr [T " Te T [T TS 7] | -~ |
Problem:

- if m=m, then c,=c,
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In pictures

Original penguin ECB encrypted penguin
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ECB is not Semantically Secure even for 1 msg

ECB is not semantically secure for messages that contain
two or more blocks.

befo,1)

\ Two blocks
Chal. m, = “Hello World” Adv. &f
kK m, = “Hello Hello”

(c,,c,) « Ek, m)

|
|

If c,=c, output 1, else output 0

Then Advg[&f, ECB] = 1



Secure Construction 1: CBC with random nonce

Cipher block chaining with a random IV (IV = nonce)
v m|[0] m[1] m[2] m([3]
E(k,) E(k,") E(k,-) E(k,-)
v c[0] c[1] c[2] c[3]
ciphertext

note: CBC where attacker can predict the IV is not CPA-secure. HW.



CBC: CPA Analysis

CBC Theorem: For any L>0,
If E is a secure PRP over (K,X) then
E-.~~ is a sem. sec. under CPA over (K, XL, XL+1),

CBC

In particular, for a g-query adversary A attacking E_g.

there exists a PRP adversary B s.t.:

AQV golA, Ecgol < 2-AdVoro[B, E] + @

S

Note: CBC is only secure as long as g@-LZ < [X|
\

# messages enc. with key max msg length
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- PRGs — PRFs
- MACs, if we have time



Let’s Look Back at Length Extension...

Theorem: Let G: {0,1}" — {0,1}""! be a PRG. Then, for every
polynomial m(n), there is a PRG G’: {0,1}" — {0,1}"™,




Let’s Look Back at Length Extension...
Construction: Let G(s) = G(s) | | G{(s) where G (s) is 1 bit
and G{(s) is n bits .

s Problem: Accessing the i’
/ \ output bit takes time = i.

Gy(s) G,(s)
7N\
Go(G (5)) G1(G,())
7N\

Gy(G1(G () GI(G,(G,()

h



Goldreich-Goldwasser-Micali PRF

Theorem: Let G be a PRG. Then, for every polynomials 7 = £(n), m
= m(n), there exists a PRF family %, = {£,:{0,1}* = {0,1}"} (0.1

Note: We will focusonm = Z.

The output length could be made smaller (by truncation) or larger
(by expansion with a PRG).

What is the standard way to improve




Let’s Look Back at Length Extension...
Construction: Let G(s) = G(s) | | G{(s) where G (s) is 1 bit

and G{(s) is n bits .

@ Problem: Accessing the i’

h

\ output bit takes time = i.

What data structure does

N

AN

.
e

this remind you of?

Ans: a list!
No wonder it’s linear time!

What is the standard technique
to do better?



Goldreich-Goldwasser-Micali PRF

Construction: Let G(s) = Gy(s) || G,(s) where G,(s) and G,(s) are
both n bits each.

S
Gy(s)
GO(G()(S)) GO(G] (S)) GI(GI(S))
Go(G(...Gy(s)) Gy (G (.G (5)) G(G (...Gy(s))

Each path/leaf labeled by x € {0,1} corresponds to f,(x).

2 uidaa



Goldreich-Goldwasser-Micali PRF

Construction: Let G(s) = Gy(s) || G,(s) where G,(s) and G,(s) are
both n bits each.

The pseudorandom function family &%, is defined by a collection
of functions f, where:

f(x1%y...x7) = G (G (.G ()

|

Y

£ -bit input
¢ £ defines 2 pseudorandom bits.

¢ The x™ bit can be computed using ¢ evaluations of the
PRG G (as opposed to x ~ 27 evaluations as before.)



PRG Repetition Lemma

Lemma: Let G be a PRG. Then, for every polynomial L=L(n), the
following two distributions are computationally indistinguishable:

(G(sl), G(sz), .. G(sp)) = (U, Uy, ..., uy)

Proof. By Hybrid Argument.

If there is a ppt distinguisher between the two distributions with
distinguishing advantage &, then there is a ppt distinguisher for
G with advantage > €/ L.




GGM PRF: Proof of Security

By contradiction. Assume there is a ppt D and a poly function p s.t.

‘Pr [AR(1m) = 1 | k < {0,1}¢] = Pr[AF(1") =1 | F < Fns] ‘ > 1/p(n) .



The pseudorandom world:
Hybrid O

S

Go(s) —

Gy (s)

Problem:
Hybrid argument on leaves
doesn’t work. Why?

O
Go(Gy()\ G(G(s))

O 000 O
fo(GY 1(...(s)))
b1 b2 b3 bx bzf

x‘ ‘ J(x)

D




The pseudorandom world:
Hybrid O

S

Go(s) —

Gy (s)

O Key Idea:
Gy(G (s G1(G(s)) Hybrid argument by levels
of the tree

O 000 O
fo(GY 1(...(s)))
b1 b2 b3 bx bzf

x‘ ‘ J(x)

D




The pseudorandom world:
Hybrid O

Hybrid 1

S

Go(s) G\(s)

O
Go(Gy()\ G(G(s))

O 000 O
fo(GY _‘(...(s)))
by by b3y ... b, -~ by

S0 and §1 are random
S0
S1

O
G1(G(9))

000 O

by by by .. by - by

x‘ ‘ J(x)

D

xt l f(x)

D




Hybrid 1

S0 and S are random

S0
51

O
G1(G(s))

000 O

Hybrid 2

by by by .. by - by

x' l J(x)

D

S00> - -- S11 are random

O 000 O




The random world:

Hybrid £
b, b, by«
O O 000 O O
by b, b; b, --- by
xt l J(x)




Hybrid i

Spis --- Sqpi are random

S()i

S1i
oOo0ooo00Q !

O 000 O

by by by .. by - by

xt l f(x)

Q: Are the hybrids
efficiently computable?

A: Yes! Lazy Evaluation.



Hybrid i

Spis --- Sqpi are random

SOi

S1i
oOo0ooo00Q !

O 000 O

by by by .. b, - by

xt l f(x)

Let p, = Pr[f < H;:D/(1") = 1]

We know: p,— p, > ¢

By a hybrid argument:

Forsome i: p,—p.., > €l?



(use the PRG repetition lemma)

A distinguisher with advantage €/ between the hybrids

implies a distinguisher with advantage > €/ qf for the PRG.

(where ¢ is the number of queries that D makes)

Hybrid i Hybrid i + 1
fgfg
G()(SO) G (s G (Sli) O O0O00 O
1(590) 08,
O 000 O O 000 O
by by by .. b, --- by b1 b, b; b, --- by




GGM PRF

Theorem: Let G be a PRG. Then, for every polynomials #, m, there
exists a PRF family #, = { £;:{0,1}* - {0,1}"} (0.1

Some nits:

¢ Expensive: ¢ invocations of a PRG.
¢ Sequential: bit-by-bit, # sequential invocations of a PRG.

¢ Loss in security reduction: break PRF with advantage
¢ = break PRG with advantage «/q¢, where g is an
arbitrary polynomial = #queries of the PRF distinguisher.

Tighter reduction? Avoid the loss?




The authentication problem

B ,
g 8

: Bob
Alice Can also alter/
k inject more k
messages!

This is known as a man-in-the-middle attack.
How can Bob check if the message is indeed from Alice?



The authentication problem

w
: (m, 1) w (m, t)or L \ Q

: Bob
Alice Can also alter/
k inject more k
messages!

We want Alice to generate a tag for the message m
which is hard to generate without the secret key k.



Wait... Does encryption not solve this?

@Q Enc(k, m) X Q

Alice Bob

Key k Key kK




Wait... Does encryption not solve this?

g m@kwm’eak X Q

Bob
Can toggle

between m k
and m’

One-time pad (and encryption schemes in
general) are malleable.



Wait... Does encryption not solve this?

@

Q AGLIDR GIAGLLY Q

Alice

Can toggle
between m
and m’

Bob

One-time pad (and encryption schemes in

general) are malleable.

Privacy and Integrity are very different goals!



Message Authentication Codes (MACs)

A triple of algorithms (Gen, MAC, Ver):

- Gen(1"): Produces a key k « .

« MAC(k, m): Outputs a tag ¢ (may be deterministic).
- Ver(k, m, t): Outputs Accept or Reject.

Correctness: Pr[Ver(k,m, MAC(k,m) = 1] =1

Security: Hard to forge. Intuitively, it should be hard to
come up with a new pair (m’, t’) such that Ver accepts.



What is the power of the adversary?

E)
. MAC(k. , MAC(k,
’ § o

Alice Bob

- Can see many pairs (m, MAC(k, m)) .

- Can access a MAC oracle MAC(k, ® )

— Obtain tags for message of choice.
This is called a chosen message attack (CMA).



Defining MAC Security

- Total break: The adversary should not be able to
recover the key k.

- Universal break: The adversary can generate a
valid tag for every message.

- Existential break: The adversary can generate a
new valid tag t for some message m.

We will require MACs to be secure against the
existential break!!



EUF-CMA Security

Existentially Unforgeable against Chosen Message Attacks

g S

t, = MAC(k, m,) k=K
my
t, = MAC(k, m,)
(m:t) Accept if (m, 1) # (m,, 1,)
. »  forall i, and
Ver(k,m,t) =1

Want: Pr((m, 1) « AMACK )(1"), Ver(k, m, 1) =1, (m, 1) & Q)) = negl(n).
where Q is the set of queries { (m t-) } that A makes.

(XA
1



Constructing a MAC

n
Q (m, MAC(k, m))

Alice
k k

-2

Bob

Gen(1"): Produces a PRF key k < K.
MAC(k, m): Output f,(m).
Ver(k, m, 1): Accept if f,(m) = t, reject otherwise.

Security: Our earlier unpredictability lemma
about PRFs essentially proves that this is
secure!



Dealing with Replay Attacks

- The adversary could send an old valid (m, tag) at a
later time.

— In fact, our definition of security does not rule this
out.

 In practice:

— Append a time-stamp to the message. Eg. (m, T,
MAC(m, T)) where T = 21 Sep 2022, 1:47pm.

— Sequence numbers appended to the message (this
requires the MAC algorithm to be stateful).



