
1

CIS 5560

Lecture 8
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Announcements
• HW 4 out after lecture

• Due Tuesday, Feb 20 at 1PM on Gradescope

• Covers PRFs, IND-CPA

2

Recap of last lecture

3

Semantic Security for Many Msgs

4

Challenger

1.
2.
3.

4.

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

ci
b′￼

mi,0, mi,1

For every PPT Eve, there exists a negligible fn ,

ε

Pr 𝖤𝗏𝖾(cq) = b

k ← 𝒦
b ← {0,1}

For i in 1,…, q :
(mi,0, mi,1) ← 𝖤𝗏𝖾(ci−1)

ci = 𝖤𝗇𝖼(k, mi,b)

<
1
2

+ε(n)

Alternate (Stronger?) definition

5

Challenger

1.

2.
3.

4.

k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

ci = 𝖤𝗇𝖼(k, mi)

b′￼

mi

(m0, m1)
c

Also called “IND-CPA”: Indistinguishability under Chosen-Plaintext Attacks

Equivalent to previous definition: just set mi,0 = mi,1 = mi

Pseudorandom Functions

 Generate a random -bit key . 𝐆𝐞𝐧(1𝑛): 𝑛 𝑘

 is a poly-time algorithm that outputs 𝐄𝐯𝐚𝐥(𝑘, 𝑥) Fk(x)

Collection of functions ℱℓ = {Fk : {0,1}ℓ → {0,1}m}k∈{0,1}n

• indexed by a key 𝑘
• : key length, : input length, output length.𝑛 ℓ 𝑚:

• Independent parameters, all poly(sec-param) = poly() 𝑛

• #functions in (singly exponential in)ℱℓ ≤ 2𝑛 𝑛

6

Security: Cannot distinguish from random function

7

Pr [Afk(1n) = 1 | k ← {0,1}ℓ] − Pr [AF(1n) = 1 | F ← 𝖥𝗇𝗌] ≤ 𝗇𝖾𝗀𝗅(n) .

: Generate a random -bit key that defines 𝖦𝖾𝗇(1n) 𝑛 k

: 𝖤𝗇𝖼(k, m) Pick a random and  
let the ciphertext be the pair

𝑥
𝑐 (x, y = Fk(x) ⊕ m)

:𝖣𝖾𝖼(k, c = (x, y))

Fk : {0,1}ℓ → {0,1}m

8

Output Fk(x) ⊕ c

Randomized encryption w/ PRFs

9

Indistinguishable distributions
Definition: Two distributions and are computationally indistinguishable
 if for every efficient distinguisher

Denoted by

Eg: PRG security says that

Eg: Single msg security says that

X Y

Pr[D(x) = 1 | x ← X] − Pr[D(y) = 1 | y ← Y] = 𝗇𝖾𝗀𝗅(n)

X ≈ Y

X := {G(x) |x ← {0,1}n} ≈ Y := {y |y ← {0,1}m}

{c ← 𝖤𝗇𝖼(k, m0) | k ← 𝒦} ≈ {c ← 𝖤𝗇𝖼(k, m1) | k ← 𝒦}

Single msg security says that the following dists are indistinguishable.

 and

How to do this? Let’s create more (supposedly) indistinguishable distributions:

{c ← 𝖤𝗇𝖼(k, m0) | k ← 𝒦} {c ← 𝖤𝗇𝖼(k, m1) | k ← 𝒦}

H0 = {c := (r, m0 ⊕ Fk(r) | r ← {0,1}n; k ← 𝒦}

H5 = {c := (r, m1 ⊕ Fk(r) | r ← {0,1}n; k ← 𝒦} 10

Proof by hybrid argument
: 𝖤𝗇𝖼(k, m) Pick a random and output 𝑥 (x, y = Fk(x) ⊕ m)
:𝖣𝖾𝖼(k, c = (x, y)) Output Fk(x) ⊕ c

H1 = {c := (r, m0 ⊕ R(r) | r ← {0,1}n; R ← 𝖥𝗇𝗌}
H2 = {c := (r, m0 ⊕ r′￼| r ← {0,1}n; r′￼← {0,1}n}
H3 = {c := (r, m1 ⊕ r′￼| r ← {0,1}n; r′￼← {0,1}n}
H4 = {c := (r, m1 ⊕ R(r) | r ← {0,1}n; R ← 𝖥𝗇𝗌}

 by PRF security≈

 defn of random fn≈

 one time pad≈

 defn of random fn≈

 by PRF security≈

The key steps in a hybrid argument are:

1. Construct a sequence of poly many distributions b/w the two target distributions.

2. Argue that each pair of neighboring distributions are indistinguishable.

3. Conclude that the target distributions are indistinguishable via contradiction:

A. Assume the target distributions are distinguishable

B. Must be the case that an intermediate pair of distributions is distinguishable
C. This contradicts 2 above.

11

Hybrid argument

B. Must be the case that an intermediate pair of distributions is distinguishable

12

Hybrid argument

Lemma: Let be advantage of distinguishing

𝑝0, 𝑝1, 𝑝2, …, 𝑝𝑚
(H0, H1), (H1, H2), …, (Hn−1, Hn)

If there is an index such that .p0 − pm ≥ ϵ 𝑖 pi − pi+1 ≥ ϵ/m

Proof:

pm − p0 = (pm − pm−1) + (pm−1 − pm−2) + ⋯ + (p1 − p0) ≥ ϵ

At least one of the terms has to be at least (averaging).𝑚 𝜀/𝑚

13

Construction 2: rand ctr-mode

m[0] m[1] …

Fk(r | |0) Fk(r | |1) …

m[L]

Fk(r | |L)

⊕

c[0] c[1] … c[L]

r

r

 - chosen at random for every message

note: parallelizable

r

msg

ciphertext

F: PRF defined over where and (K, X, Y) X = {0,1}2n Y = {0,1}n

(counter counts mod)2𝑛

(e.g., n=128)

Today’s Lecture
• PRPs and block cipher modes of operation

• PRGs → PRFs

• Message Integrity

14

Also called a Block Cipher
A block cipher is a pair of efficient algs. (E, D):

15

E, D CT Block
n bits

PT Block
n bits

Key k bits

Canonical examples:

1. AES: n=128 bits, k = 128, 192, 256 bits

2. 3DES: n= 64 bits, k = 168 bits (historical)

16

Running example

• Example PRPs: 3DES, AES, …

 AES128: K × X → X where K = X = {0,1}128

	 DES: K × X → X where X = {0,1}64 , K = {0,1}56

	 3DES: K × X → X where X = {0,1}64 , K = {0,1}168

• Functionally, any PRP where K and X are large is also a PRF.

– A PRP is a PRF where X=Y and is efficiently invertible

17

Incorrect use of a PRP

Electronic Code Book (ECB):

Problem:

– if m1=m2 then c1=c2

PT:

CT:

m1 m2

c1 c2

Apply Ek(⋅)

18

In pictures

19

ECB is not Semantically Secure even for 1 msg

ECB is not semantically secure for messages that contain  
two or more blocks.

Two blocks
Chal.

b∈{0,1}

Adv. 𝒜
k←K

(c1,c2) ← E(k, mb)

m0 = “Hello World”
m1 = “Hello Hello”

If c1=c2 output 1, else output 0

Then AdvSS[, ECB] = 1 𝒜

20

Secure Construction 1: CBC with random nonce

Cipher block chaining with a random IV (IV = nonce)

E(k,⋅) E(k,⋅) E(k,⋅)

m[0] m[1] m[2] m[3]IV

⊕ ⊕⊕

E(k,⋅)

⊕

c[0] c[1] c[2] c[3]IV

ciphertext

note: CBC where attacker can predict the IV is not CPA-secure. HW.

21

CBC: CPA Analysis
CBC Theorem: For any L>0, 
	 If E is a secure PRP over (K,X) then  
	 ECBC is a sem. sec. under CPA over (K, XL, XL+1).

	 	 In particular, for a q-query adversary A attacking ECBC 

	 there exists a PRP adversary B s.t.:

	 	 AdvCPA[A, ECBC] ≤ 2⋅AdvPRP[B, E] + 2 q2 L2 / |X|

Note: CBC is only secure as long as q2⋅L2 |X|≪
messages enc. with key max msg length

• PRPs and block cipher modes of operation

• PRGs → PRFs

• MACs, if we have time

Theorem: Let G: be a PRG. Then, for every
polynomial m(n), there is a PRG G’:

{0,1}𝑛 → {0,1}𝑛+1

{0,1}𝑛 → {0,1}𝑚(𝑛) .

Let’s Look Back at Length Extension…

 𝐺1(𝐺1(𝐺1
(𝑠))) 𝐺0(𝐺1(𝐺1(𝑠)))

 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

𝐺0(𝑠) 𝐺1(𝑠)

Construction: Let G(s) = where is 1 bit
and is n bits .

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠)
𝐺1(𝑠)

Let’s Look Back at Length Extension…

𝑠 Problem: Accessing the
output bit takes time .

𝑖𝑡h

≈ 𝑖

Goldreich-Goldwasser-Micali PRF
Theorem: Let G be a PRG. Then, for every polynomials = (n),

(n), there exists a PRF family .
ℓ ℓ 𝑚

= 𝑚 ℱℓ = {𝑓𝑠:{0,1}ℓ → {0,1}𝑚}𝑠∈{0,1}𝑛

Note: We will focus on .  
The output length could be made smaller (by truncation) or larger
(by expansion with a PRG).

𝑚 = ℓ

What is the standard way to improve

 𝐺1(𝐺1(𝐺1
(𝑠))) 𝐺0(𝐺1(𝐺1(𝑠)))

 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

𝐺0(𝑠) 𝐺1(𝑠)

Construction: Let G(s) = where is 1 bit
and is n bits .

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠)
𝐺1(𝑠)

Let’s Look Back at Length Extension…

𝑠 Problem: Accessing the
output bit takes time .

𝑖𝑡h

≈ 𝑖

What data structure does
this remind you of?

Ans: a list!
No wonder it’s linear time!

What is the standard technique
to do better?

 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) = where and are
both n bits each.

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠) 𝐺1(𝑠)

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠) 𝐺1(𝑠)

𝑠

 𝐺0(𝐺0(…𝐺0(𝑠)) 𝐺1(𝐺1(…𝐺1(𝑠)) 𝑮𝒙ℓ
(𝑮

𝒙ℓ−𝟏
(…𝑮𝒙𝟏

(𝒔))

D
epth

 ℓ

Each path/leaf labeled by corresponds to 𝑥 ∈ {0,1}ℓ 𝑓𝑠(𝑥) .

Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) = where and are
both n bits each.

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠) 𝐺1(𝑠)

The pseudorandom function family is defined by a collection
of functions where:

ℱℓ
𝑓𝑠

𝑓𝑠(𝑥1𝑥2…𝑥ℓ) = 𝑮𝒙ℓ
(𝑮

𝒙ℓ−𝟏
(…𝑮𝒙𝟏

(𝒔))

-bit inputℓ

⧫ defines pseudorandom bits.𝑓𝑠 2ℓ

⧫ The bit can be computed using evaluations of the
PRG G (as opposed to evaluations as before.)

𝑥𝑡h ℓ
𝑥 ≈ 2ℓ

PRG Repetition Lemma

Lemma: Let G be a PRG. Then, for every polynomial L=L(n), the
following two distributions are computationally indistinguishable:

(𝑮(𝒔𝟏), 𝑮(𝒔𝟐), …, 𝑮(𝒔𝑳)) ≈ (𝒖𝟏, 𝒖𝟐, …, 𝒖𝑳)

Proof:

If there is a ppt distinguisher between the two distributions with
distinguishing advantage , then there is a ppt distinguisher for
G with advantage .

𝜀
≥ 𝜀/𝐿

By Hybrid Argument.

 𝑓 ← ℱℓ

Distinguisher D

The pseudorandom world

𝑥 𝑓(𝑥)

The random world

f ← 𝖥𝗇𝗌

Distinguisher D

𝑥 𝑓(𝑥)

0/1 0/1

By contradiction. Assume there is a ppt and a poly function s.t. D 𝑝

GGM PRF: Proof of Security

Pr [Afk(1n) = 1 | k ← {0,1}ℓ] − Pr [AF(1n) = 1 | F ← 𝖥𝗇𝗌] ≥ 1/p(n) .

The pseudorandom world:

Hybrid 0

𝑥 𝑓(𝑥)

Problem:
Hybrid argument on leaves

doesn’t work. Why?

D

𝑠

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠) 𝐺1(𝑠)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 … 𝒃𝒙 … 𝒃𝟐ℓ

 𝐺𝑥ℓ
(𝐺

𝑥ℓ−1
(…(𝑠)))

The pseudorandom world:

Hybrid 0

𝑥 𝑓(𝑥)

Key Idea:
Hybrid argument by levels

of the tree

D

𝑠

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠) 𝐺1(𝑠)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 … 𝒃𝒙 … 𝒃𝟐ℓ

 𝐺𝑥ℓ
(𝐺

𝑥ℓ−1
(…(𝑠)))

The pseudorandom world:

Hybrid 0

𝑥 𝑓(𝑥)

Hybrid 1

D D

𝑥 𝑓(𝑥)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 . . 𝒃𝒙 … 𝒃𝟐ℓ

 𝐺1(𝐺0(𝑠))

𝑠0 𝑠1

 and are random 𝒔𝟎 𝒔𝟏
𝑠

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠) 𝐺1(𝑠)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 … 𝒃𝒙 … 𝒃𝟐ℓ

 𝐺𝑥ℓ
(𝐺

𝑥ℓ−1
(…(𝑠)))

Hybrid 2

D

𝑥 𝑓(𝑥)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 . . 𝒃𝒙 … 𝒃𝟐ℓ

𝑠00 𝑠10

 are random 𝒔𝟎𝟎, … 𝒔𝟏𝟏

Hybrid 1

D

𝑥 𝑓(𝑥)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 . . 𝒃𝒙 … 𝒃𝟐ℓ

 𝐺1(𝐺0(𝑠))

𝑠0 𝑠1

 and are random 𝒔𝟎 𝒔𝟏

𝑠01 𝑠11

The random world:

Hybrid ℓ

D

𝑥 𝑓(𝑥)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 . . 𝒃𝒙 … 𝒃𝟐ℓ

…
 𝒃𝟏 𝒃𝟐 𝒃𝟐ℓ

Hybrid 𝒊

D

𝑥 𝑓(𝑥)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 . . 𝒃𝒙 … 𝒃𝟐ℓ

𝑠𝟎𝒊

 are random 𝒔𝟎𝒊, … 𝒔𝟏𝒊

 𝑠𝟏𝒊

Q: Are the hybrids
efficiently computable?

A: Yes! Lazy Evaluation.

Hybrid 𝒊

D

𝑥 𝑓(𝑥)

 𝒃𝟏 𝒃𝟐 𝒃𝟑 . . 𝒃𝒙 … 𝒃𝟐ℓ

𝑠𝟎𝒊

 are random 𝒔𝟎𝒊, … 𝒔𝟏𝒊

 𝑠𝟏𝒊
By a hybrid argument:

Let 𝑝𝑖 = Pr[𝑓 ← 𝐻𝑖:𝐷𝑓(1𝑛) = 1]

We know: 𝑝0 − 𝑝ℓ ≥ ε

For some 𝑖: 𝑝𝑖 − 𝑝𝑖+1 ≥ ε/ℓ

Hybrid 𝒊

 𝒃𝟏 𝒃𝟐 𝒃𝟑 . . 𝒃𝒙 … 𝒃𝟐ℓ

𝑠𝟎𝒊 𝑠𝟏𝒊

Hybrid 𝒊 + 𝟏

 𝒃𝟏 𝒃𝟐 𝒃𝟑 . . 𝒃𝒙 … 𝒃𝟐ℓ

𝑠𝟎𝒊 𝑠𝟏𝒊𝐺0(𝑠𝟎𝒊) 𝐺1(𝑠𝟎𝒊) 𝐺0(𝑠𝟏𝒊)
𝐺1(𝑠𝟏𝒊)

A distinguisher with advantage between the hybrids
implies a distinguisher with advantage for the PRG.

ε/ℓ
≥ ε/𝑞ℓ

(where is the number of queries that makes)𝑞 𝐷

(use the PRG repetition lemma)

GGM PRF

Theorem: Let G be a PRG. Then, for every polynomials , there
exists a PRF family .

ℓ, 𝑚
ℱℓ = {𝑓𝑠:{0,1}ℓ → {0,1}𝑚}𝑠∈{0,1}𝑛

⧫ Expensive: invocations of a PRG.ℓ

⧫ Sequential: bit-by-bit, sequential invocations of a PRG.ℓ

⧫ Loss in security reduction: break PRF with advantage
 break PRG with advantage , where is an

arbitrary polynomial = #queries of the PRF distinguisher.
 Tighter reduction? Avoid the loss?

𝜀 ⟹ 𝜀/𝑞ℓ 𝑞

Some nits:

The authentication problem

Alice Bob

m

 k k

𝑚

This is known as a man-in-the-middle attack.

How can Bob check if the message is indeed from Alice?

𝑚′￼

Can also alter/
inject more
messages!

The authentication problem

Alice Bob

m

 k k
Can also alter/
inject more
messages!

(𝑚, 𝑡) or (𝑚, 𝑡) ⊥

We want Alice to generate a tag for the message m
which is hard to generate without the secret key k.

Wait… Does encryption not solve this?

Alice Bob

m

K ey 𝑘 Key 𝑘

𝐸𝑛𝑐(𝑘, 𝑚)

Wait… Does encryption not solve this?

Alice Bob

m

k k

 𝑚 ⊕ 𝑘

One-time pad (and encryption schemes in
general) are malleable.

 𝑚′￼⊕ 𝑘

Can toggle
between m
and m’

Alice Bob

m
) (𝑟, 𝑓𝑘(𝑟) ⊕ 𝑚 (𝑟, 𝑓𝑘(𝑟) ⊕ 𝑚′￼)

Can toggle
between m
and m’

One-time pad (and encryption schemes in
general) are malleable.

Privacy and Integrity are very different goals!

Wait… Does encryption not solve this?

k k

A triple of algorithms (Gen, MAC, Ver):

• Gen : Produces a key .

• MAC : Outputs a tag (may be deterministic).

• Ver : Outputs Accept or Reject.

Correctness:
Security: Hard to forge. Intuitively, it should be hard to
come up with a new pair (m’, t’) such that Ver accepts.

(1𝑛) k ← 𝒦
(𝑘, 𝑚) 𝑡

(𝑘, 𝑚, 𝑡)

Pr[𝖵𝖾𝗋(k, m, 𝖬𝖠𝖢(k, m) = 1] = 1

Message Authentication Codes (MACs)

What is the power of the adversary?

Alice Bob

m
(𝑚, 𝑀𝐴𝐶(𝑘, 𝑚))

or

(𝑚, 𝑀𝐴𝐶(𝑘, 𝑚))
⊥

• Can see many pairs

• Can access a MAC oracle

– Obtain tags for message of choice.

This is called a chosen message attack (CMA).

(𝑚, 𝑀𝐴𝐶(𝑘, 𝑚)) .
𝑀𝐴𝐶(𝑘, ∙)

• Total break: The adversary should not be able to
recover the key k.

• Universal break: The adversary can generate a
valid tag for every message.

• Existential break: The adversary can generate a
new valid tag t for some message m.

We will require MACs to be secure against the
existential break!!

Defining MAC Security

Existentially Unforgeable against Chosen Message Attacks

EUF-CMA Security

𝑚1

t1 = 𝖬𝖠𝖢(k, m1)
𝑚2

t2 = 𝖬𝖠𝖢(k, m2)

…

(𝑚, 𝑡)

𝑘 ← 𝐾

Accept if
for all , and

(𝑚, 𝑡) ≠ (𝑚𝑖, 𝑡𝑖)
𝑖

𝖵𝖾𝗋(k, m, t) = 1

Want:

where is the set of queries that makes.

Pr((𝑚, 𝑡) ← 𝐴𝑀𝐴𝐶(𝑘, ∙)(1𝑛), 𝑉𝑒𝑟(𝑘, 𝑚, 𝑡) = 1, (𝑚, 𝑡) ∉ 𝑄)) = 𝑛𝑒𝑔𝑙(𝑛) .
𝑄 {(𝑚𝑖, 𝑡𝑖)}𝑖

𝐴

Constructing a MAC

Alice Bob

m
(m, 𝖬𝖠𝖢(k, m))

Gen : Produces a PRF key .

MAC : Output .

Ver : Accept if , reject otherwise.

(1𝑛) 𝑘 ← 𝐾
(𝑘, 𝑚) 𝑓𝑘(𝑚)

(𝑘, 𝑚, 𝑡) 𝑓𝑘(𝑚) = 𝑡

Security: Our earlier unpredictability lemma
about PRFs essentially proves that this is
secure!

k k

• The adversary could send an old valid (m, tag) at a
later time.

– In fact, our definition of security does not rule this
out.

• In practice:
– Append a time-stamp to the message. Eg. (m, T,

MAC(m, T)) where T = 21 Sep 2022, 1:47pm.

– Sequence numbers appended to the message (this

requires the MAC algorithm to be stateful).

Dealing with Replay Attacks

