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CIS 5560

Lecture 8
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s24/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/


Announcements
• HW 4 out after lecture 

• Due Tuesday, Feb 20 at 1PM on Gradescope

• Covers PRFs, IND-CPA
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Recap of last lecture
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Semantic Security for Many Msgs
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Challenger

1.
2.
3.

4. 

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

ci
b′￼

mi,0, mi,1

For every PPT Eve, there exists a negligible fn , 


                             

ε

Pr 𝖤𝗏𝖾(cq) = b

k ← 𝒦
b ← {0,1}

For i in 1,…, q :
(mi,0, mi,1) ← 𝖤𝗏𝖾(ci−1)

ci = 𝖤𝗇𝖼(k, mi,b)

<
1
2

+ε(n)



Alternate (Stronger?) definition
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Challenger

1.

2.
3.

4. 

k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

ci = 𝖤𝗇𝖼(k, mi)

b′￼

mi

(m0, m1)
c

Also called “IND-CPA”: Indistinguishability under Chosen-Plaintext Attacks

Equivalent to previous definition: just set mi,0 = mi,1 = mi



Pseudorandom Functions

 Generate a random -bit key . 𝐆𝐞𝐧(1𝑛): 𝑛 𝑘

 is a poly-time algorithm that outputs  𝐄𝐯𝐚𝐥(𝑘, 𝑥) Fk(x)

Collection of functions ℱℓ = {Fk : {0,1}ℓ → {0,1}m}k∈{0,1}n

• indexed by a key  𝑘
• : key length, : input length,  output length.𝑛 ℓ 𝑚:

• Independent parameters, all poly(sec-param) = poly( ) 𝑛

• #functions in    (singly exponential in )ℱℓ ≤ 2𝑛 𝑛

6



Security: Cannot distinguish from random function
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Pr [Afk(1n) = 1 | k ← {0,1}ℓ] − Pr [AF(1n) = 1 | F ← 𝖥𝗇𝗌] ≤ 𝗇𝖾𝗀𝗅(n) .



: Generate a random -bit key  that defines  𝖦𝖾𝗇(1n) 𝑛 k

: 𝖤𝗇𝖼(k, m) Pick a random  and  
let the ciphertext be the pair   

𝑥
𝑐  (x, y = Fk(x) ⊕ m)

:𝖣𝖾𝖼(k, c = (x, y))

Fk : {0,1}ℓ → {0,1}m
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Output Fk(x) ⊕ c

Randomized encryption w/ PRFs
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Indistinguishable distributions
Definition: Two distributions  and  are computationally indistinguishable  
                   if for every efficient distinguisher


                    


Denoted by 


Eg: PRG security says that   

Eg: Single msg security says that


  

X Y

Pr[D(x) = 1 | x ← X ] − Pr[D(y) = 1 | y ← Y ] = 𝗇𝖾𝗀𝗅(n)

X ≈ Y

X := {G(x) |x ← {0,1}n} ≈ Y := {y |y ← {0,1}m}

{c ← 𝖤𝗇𝖼(k, m0) | k ← 𝒦} ≈ {c ← 𝖤𝗇𝖼(k, m1) | k ← 𝒦}



Single msg security says that the following dists are indistinguishable.

 and 


How to do this? Let’s create more (supposedly) indistinguishable distributions:



{c ← 𝖤𝗇𝖼(k, m0) | k ← 𝒦} {c ← 𝖤𝗇𝖼(k, m1) | k ← 𝒦}

H0 = {c := (r, m0 ⊕ Fk(r) | r ← {0,1}n; k ← 𝒦}

H5 = {c := (r, m1 ⊕ Fk(r) | r ← {0,1}n; k ← 𝒦} 10

Proof by hybrid argument
: 𝖤𝗇𝖼(k, m) Pick a random  and output   𝑥 (x, y = Fk(x) ⊕ m)
:𝖣𝖾𝖼(k, c = (x, y)) Output Fk(x) ⊕ c










H1 = {c := (r, m0 ⊕ R(r) | r ← {0,1}n; R ← 𝖥𝗇𝗌}
H2 = {c := (r, m0 ⊕ r′￼| r ← {0,1}n; r′￼← {0,1}n}
H3 = {c := (r, m1 ⊕ r′￼| r ← {0,1}n; r′￼← {0,1}n}
H4 = {c := (r, m1 ⊕ R(r) | r ← {0,1}n; R ← 𝖥𝗇𝗌}

 by PRF security≈

 defn of random fn≈

 one time pad≈

 defn of random fn≈

 by PRF security≈



The key steps in a hybrid argument are:

1. Construct a sequence of poly many distributions b/w the two target distributions.

2. Argue that each pair of neighboring distributions are indistinguishable.

3. Conclude that the target distributions are indistinguishable via contradiction:


A. Assume the target distributions are distinguishable

B. Must be the case that an intermediate pair of distributions is distinguishable 
C. This contradicts 2 above. 
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Hybrid argument



B. Must be the case that an intermediate pair of distributions is distinguishable
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Hybrid argument

Lemma: Let  be advantage of distinguishing 
 

𝑝0, 𝑝1, 𝑝2, …, 𝑝𝑚
(H0, H1), (H1, H2), …, (Hn−1, Hn)

If  there is an index  such that  .p0 − pm ≥ ϵ 𝑖 pi − pi+1 ≥ ϵ/m

Proof: 

pm − p0 = (pm − pm−1) + (pm−1 − pm−2) + ⋯ + (p1 − p0) ≥ ϵ

At least one of the  terms has to be at least  (averaging).𝑚 𝜀/𝑚
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Construction 2:  rand ctr-mode

m[0] m[1] …

Fk(r | |0) Fk(r | |1) …

m[L]

Fk(r | |L)

⊕

c[0] c[1] … c[L]

r

r

 -  chosen at random for every message


note:  parallelizable

r

msg

ciphertext

F: PRF defined over  where  and (K, X, Y ) X = {0,1}2n Y = {0,1}n

(counter counts mod )2𝑛

(e.g.,  n=128)



Today’s Lecture
• PRPs and block cipher modes of operation

• PRGs → PRFs

• Message Integrity
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Also called a Block Cipher
A block cipher is a pair of efficient algs. (E, D):

15

E, D CT Block
n bits

PT Block
n bits

Key k bits

Canonical examples:

1. AES:     n=128 bits,   k = 128, 192, 256 bits

2. 3DES:   n= 64 bits,    k = 168 bits    (historical)
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Running example

• Example PRPs:    3DES,   AES,   …


   AES128:   K × X  →  X        where      K = X = {0,1}128  


	 DES:   K × X  →  X        where      X = {0,1}64 ,  K = {0,1}56


	 3DES:   K × X  →  X      where      X = {0,1}64 ,  K = {0,1}168


• Functionally, any PRP where K and X are large is also a PRF.

– A PRP is a PRF where X=Y and is efficiently invertible



17

Incorrect use of a PRP

Electronic Code Book (ECB):


Problem:   

– if    m1=m2     then   c1=c2

PT:

CT:

m1 m2

c1 c2

Apply Ek( ⋅ )
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In pictures
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ECB is not Semantically Secure even for 1 msg

ECB is not semantically secure for messages that contain  
two or more blocks.

Two blocks
Chal.

b∈{0,1}

Adv. 𝒜
k←K

(c1,c2) ← E(k, mb)

m0 = “Hello  World” 
m1 = “Hello  Hello”

If  c1=c2 output 1,  else output 0

Then  AdvSS[ , ECB] = 1 𝒜
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Secure Construction 1:   CBC with random nonce

Cipher block chaining with a random IV        (IV = nonce)

 

E(k,⋅) E(k,⋅) E(k,⋅)

m[0] m[1] m[2] m[3]IV

⊕ ⊕⊕

E(k,⋅)

⊕

c[0] c[1] c[2] c[3]IV

ciphertext

note:   CBC where attacker can predict the IV is not CPA-secure.  HW.
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CBC:    CPA Analysis
CBC Theorem:     For any L>0, 
	 If E is a secure PRP over (K,X) then  
	 ECBC is a sem. sec. under CPA over (K, XL, XL+1).


	 	 In particular,  for a q-query adversary A attacking ECBC 

	 there exists a PRP adversary B  s.t.:


	 	    AdvCPA[A, ECBC] ≤  2⋅AdvPRP[B, E]  +  2 q2 L2 / |X|


Note:    CBC is only secure as long as   q2⋅L2    |X|≪
# messages enc. with key max msg length



• PRPs and block cipher modes of operation

• PRGs → PRFs

• MACs, if we have time



Theorem: Let G:  be a PRG. Then, for every 
polynomial m(n), there is a PRG G’: 

{0,1}𝑛  → {0,1}𝑛+1

{0,1}𝑛  → {0,1}𝑚(𝑛) .

Let’s Look Back at Length Extension…



 𝐺1(𝐺1(𝐺1
(𝑠))) 𝐺0(𝐺1(𝐺1(𝑠)))

 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

𝐺0(𝑠)  𝐺1(𝑠)

Construction: Let G(s) =  where  is 1 bit 
and  is n bits .

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠)
𝐺1(𝑠)

Let’s Look Back at Length Extension…

𝑠 Problem: Accessing the  
output bit takes time .

𝑖𝑡h

≈ 𝑖



Goldreich-Goldwasser-Micali PRF
Theorem: Let G be a PRG. Then, for every polynomials  = (n),  

(n), there exists a PRF family .
ℓ ℓ 𝑚

= 𝑚 ℱℓ = {𝑓𝑠:{0,1}ℓ → {0,1}𝑚}𝑠∈{0,1}𝑛

Note: We will focus on .  
The output length could be made smaller (by truncation) or larger 
(by expansion with a PRG).

𝑚 = ℓ

What is the standard way to improve 



 𝐺1(𝐺1(𝐺1
(𝑠))) 𝐺0(𝐺1(𝐺1(𝑠)))

 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

𝐺0(𝑠)  𝐺1(𝑠)

Construction: Let G(s) =  where  is 1 bit 
and  is n bits .

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠)
𝐺1(𝑠)

Let’s Look Back at Length Extension…

𝑠 Problem: Accessing the  
output bit takes time .

𝑖𝑡h

≈ 𝑖

What data structure does 
this remind you of?

Ans: a list!
No wonder it’s linear time!

What is the standard technique
to do better?



 𝐺1(𝐺1(𝑠)) 𝐺0(𝐺1(𝑠))

Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) =  where  and  are 
both n bits each.

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠) 𝐺1(𝑠)

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠)  𝐺1(𝑠)

𝑠

 𝐺0(𝐺0(…𝐺0(𝑠))  𝐺1(𝐺1(…𝐺1(𝑠)) 𝑮𝒙ℓ
(𝑮

𝒙ℓ−𝟏
(…𝑮𝒙𝟏

(𝒔))

D
epth 

 ℓ

Each path/leaf labeled by  corresponds to   𝑥 ∈ {0,1}ℓ 𝑓𝑠(𝑥) .



Goldreich-Goldwasser-Micali PRF
Construction: Let G(s) =  where  and  are 
both n bits each.

𝐺0(𝑠) | |𝐺1(𝑠) 𝐺0(𝑠) 𝐺1(𝑠)

The pseudorandom function family  is defined by a collection 
of functions  where:

ℱℓ
𝑓𝑠

𝑓𝑠(𝑥1𝑥2…𝑥ℓ) = 𝑮𝒙ℓ
(𝑮

𝒙ℓ−𝟏
(…𝑮𝒙𝟏

(𝒔)) 

-bit inputℓ

⧫  defines  pseudorandom bits.𝑓𝑠 2ℓ

⧫ The  bit can be computed using  evaluations of the 
PRG G (as opposed to  evaluations as before.) 

𝑥𝑡h ℓ
𝑥 ≈ 2ℓ



PRG Repetition Lemma

Lemma: Let G be a PRG. Then, for every polynomial L=L(n), the 
following two distributions are computationally indistinguishable:

(𝑮(𝒔𝟏), 𝑮(𝒔𝟐), …, 𝑮(𝒔𝑳)) ≈ (𝒖𝟏, 𝒖𝟐, …, 𝒖𝑳)

Proof:

If there is a ppt distinguisher between the two distributions with 
distinguishing advantage , then there is a ppt distinguisher for 
G with advantage .

𝜀
≥ 𝜀/𝐿

By Hybrid Argument.



 𝑓 ← ℱℓ

Distinguisher D 

The pseudorandom world 

𝑥 𝑓(𝑥)

The random world 

f ← 𝖥𝗇𝗌

Distinguisher D 

𝑥 𝑓(𝑥)

0/1 0/1

By contradiction. Assume there is a ppt  and a poly function  s.t. D 𝑝

GGM PRF: Proof of Security

Pr [Afk(1n) = 1 | k ← {0,1}ℓ] − Pr [AF(1n) = 1 | F ← 𝖥𝗇𝗌] ≥ 1/p(n) .



The pseudorandom world:

Hybrid 0 

𝑥 𝑓(𝑥)

Problem:  
Hybrid argument on leaves 

doesn’t work. Why?

D 

𝑠

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠)  𝐺1(𝑠)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 …   𝒃𝒙 …   𝒃𝟐ℓ

 𝐺𝑥ℓ
(𝐺

𝑥ℓ−1
(…(𝑠)))



The pseudorandom world:

Hybrid 0 

𝑥 𝑓(𝑥)

Key Idea:  
Hybrid argument by levels 

of the tree 

D 

𝑠

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠)  𝐺1(𝑠)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 …   𝒃𝒙 …   𝒃𝟐ℓ

 𝐺𝑥ℓ
(𝐺

𝑥ℓ−1
(…(𝑠)))



The pseudorandom world:

Hybrid 0 

𝑥 𝑓(𝑥)

Hybrid 1

D D 

𝑥 𝑓(𝑥)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 . .   𝒃𝒙 …   𝒃𝟐ℓ

 𝐺1(𝐺0(𝑠))

𝑠0  𝑠1

 and  are random 𝒔𝟎 𝒔𝟏
𝑠

 𝐺1(𝐺0(𝑠)) 𝐺0(𝐺0(𝑠))

𝐺0(𝑠)  𝐺1(𝑠)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 …   𝒃𝒙 …   𝒃𝟐ℓ

 𝐺𝑥ℓ
(𝐺

𝑥ℓ−1
(…(𝑠)))



Hybrid 2

D 

𝑥 𝑓(𝑥)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 . .   𝒃𝒙 …   𝒃𝟐ℓ

𝑠00  𝑠10

  are random 𝒔𝟎𝟎, … 𝒔𝟏𝟏

Hybrid 1

D 

𝑥 𝑓(𝑥)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 . .   𝒃𝒙 …   𝒃𝟐ℓ

 𝐺1(𝐺0(𝑠))

𝑠0  𝑠1

 and  are random 𝒔𝟎 𝒔𝟏

𝑠01  𝑠11



The random world:

Hybrid   ℓ

D 

𝑥 𝑓(𝑥)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 . .   𝒃𝒙 …   𝒃𝟐ℓ

…
  𝒃𝟏   𝒃𝟐   𝒃𝟐ℓ



Hybrid 𝒊

D 

𝑥 𝑓(𝑥)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 . .   𝒃𝒙 …   𝒃𝟐ℓ

𝑠𝟎𝒊

  are random 𝒔𝟎𝒊, … 𝒔𝟏𝒊

 𝑠𝟏𝒊

Q: Are the hybrids 
efficiently computable?

A: Yes! Lazy Evaluation.



Hybrid 𝒊

D 

𝑥 𝑓(𝑥)

  𝒃𝟏   𝒃𝟐   𝒃𝟑 . .   𝒃𝒙 …   𝒃𝟐ℓ

𝑠𝟎𝒊

  are random 𝒔𝟎𝒊, … 𝒔𝟏𝒊

 𝑠𝟏𝒊
By a hybrid argument:

Let 𝑝𝑖 = Pr[𝑓 ← 𝐻𝑖:𝐷𝑓(1𝑛) = 1]

We know: 𝑝0 − 𝑝ℓ ≥ ε

For some  𝑖: 𝑝𝑖 − 𝑝𝑖+1 ≥ ε/ℓ



Hybrid 𝒊

  𝒃𝟏   𝒃𝟐   𝒃𝟑 . .   𝒃𝒙 …   𝒃𝟐ℓ

𝑠𝟎𝒊  𝑠𝟏𝒊

Hybrid 𝒊 + 𝟏

  𝒃𝟏   𝒃𝟐   𝒃𝟑 . .   𝒃𝒙 …   𝒃𝟐ℓ

𝑠𝟎𝒊  𝑠𝟏𝒊𝐺0(𝑠𝟎𝒊) 𝐺1(𝑠𝟎𝒊) 𝐺0(𝑠𝟏𝒊)
𝐺1(𝑠𝟏𝒊)

A distinguisher with advantage  between the hybrids 
implies a distinguisher with advantage  for the PRG.

ε/ℓ
≥ ε/𝑞ℓ

(where  is the number of queries that  makes)𝑞 𝐷

(use the PRG repetition lemma)



GGM PRF

Theorem: Let G be a PRG. Then, for every polynomials , there 
exists a PRF family .

ℓ, 𝑚
ℱℓ = {𝑓𝑠:{0,1}ℓ → {0,1}𝑚}𝑠∈{0,1}𝑛

⧫ Expensive:  invocations of a PRG.ℓ

⧫ Sequential: bit-by-bit,  sequential invocations of a PRG.ℓ

⧫ Loss in security reduction: break PRF with advantage 
 break PRG with advantage , where  is an 

arbitrary polynomial = #queries of the PRF distinguisher.  
     Tighter reduction? Avoid the loss?

𝜀 ⟹ 𝜀/𝑞ℓ 𝑞

Some nits:



The authentication problem

Alice Bob

m

 k  k

𝑚

This is known as a man-in-the-middle attack.

How can Bob check if the message is indeed from Alice?

𝑚′￼

Can also alter/
inject more 
messages!



The authentication problem

Alice Bob

m

 k  k
Can also alter/
inject more 
messages!

(𝑚,  𝑡) or (𝑚,  𝑡)  ⊥

We want Alice to generate a tag for the message m 
which is hard to generate without the secret key k.



Wait… Does encryption not solve this?

Alice Bob

m

K  ey 𝑘 Key  𝑘

𝐸𝑛𝑐(𝑘,  𝑚)



Wait… Does encryption not solve this?

Alice Bob

m

k k

 𝑚 ⊕ 𝑘

One-time pad (and encryption schemes in 
general) are malleable.

 𝑚′￼⊕ 𝑘

Can toggle 
between m 
and m’



Alice Bob

m
) (𝑟, 𝑓𝑘(𝑟) ⊕ 𝑚  (𝑟, 𝑓𝑘(𝑟) ⊕ 𝑚′￼)

Can toggle 
between m 
and m’

One-time pad (and encryption schemes in 
general) are malleable.


Privacy and Integrity are very different goals!

Wait… Does encryption not solve this?

k k



A triple of algorithms (Gen, MAC, Ver):

• Gen : Produces a key .

• MAC : Outputs a tag  (may be deterministic).

• Ver : Outputs Accept or Reject.


Correctness:   
Security: Hard to forge. Intuitively, it should be hard to 
come up with a new pair (m’, t’) such that Ver accepts.

(1𝑛) k ← 𝒦
(𝑘,  𝑚) 𝑡

(𝑘,  𝑚,  𝑡)

Pr[𝖵𝖾𝗋(k, m, 𝖬𝖠𝖢(k, m) = 1] = 1

Message Authentication Codes (MACs)



What is the power of the adversary?

Alice Bob

m
(𝑚,  𝑀𝐴𝐶(𝑘,  𝑚))  

or 

(𝑚,  𝑀𝐴𝐶(𝑘,  𝑚))
⊥

• Can see many pairs 


• Can access a MAC oracle 

– Obtain tags for message of choice.


This is called a chosen message attack (CMA).

(𝑚,  𝑀𝐴𝐶(𝑘,  𝑚)) .
𝑀𝐴𝐶(𝑘,    ∙  )



• Total break: The adversary should not be able to 
recover the key k.


• Universal break: The adversary can generate a 
valid tag for every message.


• Existential break: The adversary can generate a 
new valid tag t for some message m.  

We will require MACs to be secure against the 
existential break!!

Defining MAC Security



Existentially Unforgeable against Chosen Message Attacks

EUF-CMA Security

𝑚1

t1 = 𝖬𝖠𝖢(k, m1)
𝑚2

t2 = 𝖬𝖠𝖢(k, m2)

…

(𝑚,  𝑡)

𝑘 ← 𝐾

Accept if  
for all , and 

(𝑚,  𝑡) ≠ (𝑚𝑖,  𝑡𝑖)
𝑖

𝖵𝖾𝗋(k, m, t) = 1

Want:  

where  is the set of queries  that  makes.

Pr((𝑚,  𝑡) ← 𝐴𝑀𝐴𝐶(𝑘,   ∙ )(1𝑛),  𝑉𝑒𝑟(𝑘,  𝑚,  𝑡) = 1,  (𝑚,  𝑡) ∉ 𝑄)) = 𝑛𝑒𝑔𝑙(𝑛) .
𝑄 {(𝑚𝑖,  𝑡𝑖)}𝑖

𝐴



Constructing a MAC

Alice Bob

m
(m, 𝖬𝖠𝖢(k, m))

Gen : Produces a PRF key .

MAC : Output .

Ver : Accept if , reject otherwise.

(1𝑛) 𝑘 ← 𝐾
(𝑘,  𝑚) 𝑓𝑘(𝑚)

(𝑘,  𝑚,  𝑡) 𝑓𝑘(𝑚) = 𝑡

Security: Our earlier unpredictability lemma 
about PRFs essentially proves that this is 
secure!
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• The adversary could send an old valid (m, tag) at a 
later time.


– In fact, our definition of security does not rule this 
out.


• In practice: 
– Append a time-stamp to the message. Eg. (m, T, 

MAC(m, T)) where T = 21 Sep 2022, 1:47pm.

– Sequence numbers appended to the message (this 

requires the MAC algorithm to be stateful).

Dealing with Replay Attacks


