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CIS 5560

Lecture 7
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s24/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/


Announcements
• HW 3 out after lecture 

• Due Tuesday, Feb 13 at 1PM on Gradescope

• Covers PRGs, OWFs


• Converting Matan’s OH to a Homework Party

• Work on homework problems with other students


• (Still have to write up your own answers!)

• TA(s) and I and will be around for answering questions

• Good way to meet other students in class and make 

friends =)
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Recap of last lecture
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Semantic Security for Many Msgs
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Challenger

1.
2.
3.

4. 

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

ci
b′￼

mi,0, mi,1

For every PPT Eve, there exists a negligible fn , 


                             

ε

Pr 𝖤𝗏𝖾(cq) = b

k ← 𝒦
b ← {0,1}

For i in 1,…, q :
(mi,0, mi,1) ← 𝖤𝗏𝖾(ci−1)

ci = 𝖤𝗇𝖼(k, mi,b)

<
1
2

+ε(n)



Alternate (Stronger?) definition
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Challenger

1.

2.
3.

4. 

k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

ci = 𝖤𝗇𝖼(k, mi)

b′￼

mi

(m0, m1)
c

Also called “IND-CPA”: Indistinguishability under Chosen-Plaintext Attacks

Equivalent to previous definition: just set mi,0 = mi,1 = mi



Stream Ciphers insecure under CPA
Problem: E(k,m) outputs same ciphertext for msg m.   

      Then:


So what?	 an attacker can learn that two encrypted files are  
	 	 the same,  two encrypted packets are the same, etc.


• Leads to significant attacks when message space M is small

Chal. Adv.
k←K

m0 , m1  ∈ M 
c ← E(k, mb)

m0 , m0 ∈ M
c0 ←E(k, m0)

output 0

if c = c0
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Problem: E(k,m) always outputs same ciphertext for msg m.   

      Then:


If secret key is to be used multiple times   ⇒
	 	 given the same plaintext message twice,  

encryption must produce different outputs.

Chal. Adv.
k←K

m0 , m1  ∈ M 
c ← E(k, mb)

m0 , m0 ∈ M
c0 ←E(k, m0)

output 0

if c = c0

Stream Ciphers insecure under CPA
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Today’s Lecture
• Deeper look at PRFs

• PRFs → multi-message encryption

• Hybrid argument

• PRGs → PRFs
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Pseudorandom Functions

 Generate a random -bit key . 𝐆𝐞𝐧(1𝑛): 𝑛 𝑘

 is a poly-time algorithm that outputs  𝐄𝐯𝐚𝐥(𝑘, 𝑥) Fk(x)

Collection of functions ℱℓ = {Fk : {0,1}ℓ → {0,1}m}k∈{0,1}n

• indexed by a key  𝑘
• : key length, : input length,  output length.𝑛 ℓ 𝑚:

• Independent parameters, all poly(sec-param) = poly( ) 𝑛

• #functions in    (singly exponential in )ℱℓ ≤ 2𝑛 𝑛
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How to define security?

Let’s try to build it up like the PRG security definition
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PRG Security
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Challenger

1.
2. If b = 0

1. Sample 
3. If b = 1

1. Sample 
2. Set 

4. 

b ← {0,1}

y ← {0,1}m

s ← {0,1}n

y := G(s)

b ?= b′￼

Adv 𝒜

y
b′￼

Pr[b = b′￼] = 1/2 + 𝗇𝖾𝗀𝗅(n)



PRG vs PRF
• So, for PRG security, we give the adversary either a 

random string or a pseudorandom string, and ask it to 
figure out which one it is


• Can the same strategy work for PRFs?
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PRF Security - Attempt 1
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Challenger

1.
2. If b = 0

1. Sample 
3. If b = 1

1. Sample 
2. Set 

4. 

b ← {0,1}

f ← 𝖥𝗇𝗌[X, Y ]

k ← 𝒦
f ( ⋅ ) = F(k, ⋅ )

b ?= b′￼

Adv 𝒜

f
b′￼

x

Pr[b = b′￼] = 1/2 + 𝗇𝖾𝗀𝗅(n)



PRF Security - Attempt 1
• What’s the problem with this?

• Hint: What does a random function look like?


• Is it efficiently evaluatable?

• Does it have a short description?

• It maps inputs to random values (example on board)


• Ans: we can’t easily send a random function! 
• So: how about we give the challenger “oracle” access
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Challenger

1.
2. If b = 0

1. Sample 
3. If b = 1

1. Sample 
2. Set 

4. Set 

5.  

b ← {0,1}

f ← 𝖥𝗇𝗌[X, Y ]

k ← 𝒦
f ( ⋅ ) := Fk( ⋅ )

y := f (x)

b ?= b′￼

Adv 𝒜

y

b′￼

x

Pr[b = b′￼] = 1/2 + 𝗇𝖾𝗀𝗅(n)

PRF Security - Attempt 2



PRF Security - Attempt 1
• Q: How many questions should the adversary be allowed 

to ask?

• 1

• 2

• poly(n)

• exp(n)


• Why is 1 insufficient?

• Why is exp(n) too many? 16

Can’t tell any information from 1 query

Adv will run in exponential time!
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Challenger

1.
2. If b = 0

1. Sample 
3. If b = 1

1. Sample 
2. Set 

4. Set 

5.  

b ← {0,1}

f ← 𝖥𝗇𝗌[X, Y ]

k ← 𝒦
f ( ⋅ ) := Fk( ⋅ )

y := f (x)

b ?= b′￼

Adv 𝒜

y

b′￼

x

Pr[b = b′￼] = 1/2 + 𝗇𝖾𝗀𝗅(n)

PRF Security - Attempt 2

Poly(n) queries



PRFs → multi-message encryption
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• State? (e.g. counter of num msgs)

• Randomness?

Ideas for multi-message encryption
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Stateful encryption w/ PRFs
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o :

o Sample an -bit string at random.

𝖦𝖾𝗇(1n) → k
n

o :

1. Interpret  as number  of messages encrypted so far.

2. Output 

𝖤𝗇𝖼(k, m, st) → c
st ℓ

c = Fk(ℓ) ⊕ m

o :

1. Interpret  as number  of messages encrypted so far.

o Output 

𝖣𝖾𝖼(k, c, st) → m
st ℓ

m = Fk(ℓ) ⊕ c



Does this work?
Ans: Yes! 

Pros: 
• Relies on existing tools 
• Generally fast 
• No need to run PRF from start! 
Cons: 
• Must maintain counter of encrypted messages 

• (Just like PRG solution)
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• State? (e.g. counter of num msgs)

• Randomness?

Ideas for multi-message encryption
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: Generate a random -bit key  that defines  𝖦𝖾𝗇(1n) 𝑛 k

: 𝖤𝗇𝖼(k, m) Pick a random  and  
let the ciphertext be the pair   

𝑥
𝑐  (x, y = Fk(x) ⊕ m)

:𝖣𝖾𝖼(k, c = (x, y))

Fk : {0,1}ℓ → {0,1}m

23

Output Fk(x) ⊕ c

Randomized encryption w/ PRFs



Does this work?
Ans: Yes! 
Proof: next 
Pros: 
• Relies on existing tools 
• Generally fast 
• No need to run PRF from start! 
Cons: 
• Need good randomness during encryption
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: 𝖤𝗇𝖼(k, m) Pick a random  and output   𝑥 (x, y = Fk(x) ⊕ m)
:𝖣𝖾𝖼(k, c = (x, y))
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Output Fk(x) ⊕ c

Security of Randomized Encryption

• Proof strategy: Focusing on 1msg security first                                                       

• We will introduce two new tools: 

• Indistinguishability of distributions

• The hybrid lemma/argument
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Indistinguishable distributions
Definition: Two distributions  and  are computationally indistinguishable  
                   if for every efficient distinguisher


                    


Denoted by 


Eg: PRG security says that   

Eg: Single msg security says that


  

X Y

Pr[D(x) = 1 | x ← X ] − Pr[D(y) = 1 | y ← Y ] = 𝗇𝖾𝗀𝗅(n)

X ≈ Y

X := {G(x) |x ← {0,1}n} ≈ Y := {y |y ← {0,1}m}

{c ← 𝖤𝗇𝖼(k, m0) | k ← 𝒦} ≈ {c ← 𝖤𝗇𝖼(k, m1) | k ← 𝒦}



Single msg security says that the following dists are indistinguishable.

 and 


How to do this? Let’s create more (supposedly) indistinguishable distributions:



{c ← 𝖤𝗇𝖼(k, m0) | k ← 𝒦} {c ← 𝖤𝗇𝖼(k, m1) | k ← 𝒦}

H0 = {c := (r, m0 ⊕ Fk(r) | r ← {0,1}n; k ← 𝒦}

H5 = {c := (r, m1 ⊕ Fk(r) | r ← {0,1}n; k ← 𝒦} 27

Proof by hybrid argument
: 𝖤𝗇𝖼(k, m) Pick a random  and output   𝑥 (x, y = Fk(x) ⊕ m)
:𝖣𝖾𝖼(k, c = (x, y)) Output Fk(x) ⊕ c










H1 = {c := (r, m0 ⊕ R(r) | r ← {0,1}n; R ← 𝖥𝗇𝗌}
H2 = {c := (r, m0 ⊕ r′￼| r ← {0,1}n; r′￼← {0,1}n}
H3 = {c := (r, m1 ⊕ r′￼| r ← {0,1}n; r′￼← {0,1}n}
H4 = {c := (r, m1 ⊕ R(r) | r ← {0,1}n; R ← 𝖥𝗇𝗌}

 by PRF security≈

 defn of random fn≈

 one time pad≈

 defn of random fn≈

 by PRF security≈



The key steps in a hybrid argument are:

1. Construct a sequence of poly many distributions b/w the two target distributions.

2. Argue that each pair of neighboring distributions are indistinguishable.

3. Conclude that the target distributions are indistinguishable via contradiction:


A. Assume the target distributions are distinguishable

B. Must be the case that an intermediate pair of distributions is distinguishable 
C. This contradicts 2 above. 
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Hybrid argument



B. Must be the case that an intermediate pair of distributions is distinguishable

29

Hybrid argument

Lemma: Let  be advantage of distinguishing 
 

𝑝0, 𝑝1, 𝑝2, …, 𝑝𝑚
(H0, H1), (H1, H2), …, (Hn−1, Hn)

If  there is an index  such that  .p0 − pm ≥ ϵ 𝑖 pi − pi+1 ≥ ϵ/m

Proof: 

pm − p0 = (pm − pm−1) + (pm−1 − pm−2) + ⋯ + (p1 − p0) ≥ ϵ

At least one of the  terms has to be at least  (averaging).𝑚 𝜀/𝑚



: 𝖤𝗇𝖼(k, m) Pick a random  and output   𝑥 (x, y = Fk(x) ⊕ m)
:𝖣𝖾𝖼(k, c = (x, y))
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Output Fk(x) ⊕ c

Security of Randomized Encryption

• Proof strategy: 

• 1msg security done.

• What about multi-msg security?
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Multi-msg security proof
Can be written as 


     


  

How to prove? 
Hybrid argument! 

 

{(𝖤𝗇𝖼(k, m0), 𝖤𝗇𝖼(k, m1), …, 𝖤𝗇𝖼(k, mn)) | k ← 𝒦}
≈ {(𝖤𝗇𝖼(k, m′￼0), 𝖤𝗇𝖼(k, m′￼1), …, 𝖤𝗇𝖼(k, m′￼n)) | k ← 𝒦}

H0 = {(𝖤𝗇𝖼(k, m0), 𝖤𝗇𝖼(k, m1), …, 𝖤𝗇𝖼(k, mn)) | k ← 𝒦}

Hn = {(𝖤𝗇𝖼(k, m′￼0), 𝖤𝗇𝖼(k, m′￼1), …, 𝖤𝗇𝖼(k, m′￼n)) | k ← 𝒦}






                                       …





H1 = {(𝖤𝗇𝖼(k, m′￼0), 𝖤𝗇𝖼(k, m1), …, 𝖤𝗇𝖼(k, mn)) | k ← 𝒦}
H2 = {(𝖤𝗇𝖼(k, m′￼0), 𝖤𝗇𝖼(k, m′￼1), …, 𝖤𝗇𝖼(k, mn)) | k ← 𝒦}

Hn−1 = {(𝖤𝗇𝖼(k, m′￼0), 𝖤𝗇𝖼(k, m1), …, 𝖤𝗇𝖼(k, mn)) | k ← 𝒦}

 single msg security≈

 single msg security≈

 single msg security≈
 single msg security≈

 single msg security≈



So far
Multi-msg security via randomized encryption 
Pros: 
• Relies on existing tools 
• Generally fast 
• No need to run PRF from start! 
Cons: 
• Ciphertext is ~2x larger:  

• Can only encrypt fixed-size  bit msg at a time 
• Thus, sending a message of, say,  bits, requires 

-sized ciphertext

(r, m ⊕ Fk(r))
n

10n
20n
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Multi-msg security for long msgs
New concept: modes of operation

Ideas?

Recall:
• Counter-based encryption
• Randomized encryption

Can we combine them?
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Construction 2:  rand ctr-mode

m[0] m[1] …

Fk(r | |0) Fk(r | |1) …

m[L]

Fk(r | |L)

⊕

c[0] c[1] … c[L]

r

r

 -  chosen at random for every message


note:  parallelizable

r

msg

ciphertext

F: PRF defined over  where  and (K, X, Y ) X = {0,1}2n Y = {0,1}n

(counter counts mod )2𝑛

(e.g.,  n=128)



Randomized counter mode:   random IV.


Counter-mode Theorem:     For any L>0, 
	 If F is a secure PRF over (K,X,Y) then  
	 ECTR is IND-CPA-secure.


	 	 In particular, for a q-query adversary  attacking ECTR 

	 there exists a PRF adversary   s.t.:


	 	    AdvCPA[ , ECTR] ≤  2⋅AdvPRF[ , F]  +  2 q2 L / |X|


Note:    ctr-mode only secure as long as   q2⋅L    |X|

A

B

A B

≪
35

rand ctr-mode:   CPA analysis



Multi-msg security via randomized encryption

Pros: 
• Pretty fast

• Ciphertext is ~ (1 + 1/L) larger → small for large L

• Parallelizable!

Cons: 
• PRFs somewhat difficult to find, kind of slow 

Good for us: Pseudorandom Permutations are 
easier to find! 36
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PRPs and PRFs
• Pseudo Random Function   (PRF)    defined over (K,X,Y):


	 	 	 F:  K × X  →  Y    

	 such that exists “efficient” algorithm to evaluate F(k,x)


• Pseudo Random Permutation   (PRP)    defined over (K,X):


	 	 	 E:   K × X  →  X     

	 such that: 

	 1. Exists “efficient” algorithm to evaluate  E(k,x)

	 	 2. The function   E( k, ⋅ )   is  one-to-one


	 	 3. Exists “efficient” inversion algorithm   D(k,x)



Also called a Block Cipher
A block cipher is a pair of efficient algs. (E, D):
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E, D CT Block
n bits

PT Block
n bits

Key k bits

Canonical examples:

1. AES:     n=128 bits,   k = 128, 192, 256 bits

2. 3DES:   n= 64 bits,    k = 168 bits    (historical)
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Running example

• Example PRPs:    3DES,   AES,   …


   AES128:   K × X  →  X        where      K = X = {0,1}128  


	 DES:   K × X  →  X        where      X = {0,1}64 ,  K = {0,1}56


	 3DES:   K × X  →  X      where      X = {0,1}64 ,  K = {0,1}168


• Functionally, any PRP where K and X are large is also a PRF.

– A PRP is a PRF where X=Y and is efficiently invertible
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Incorrect use of a PRP

Electronic Code Book (ECB):


Problem:   

– if    m1=m2     then   c1=c2

PT:

CT:

m1 m2

c1 c2

Apply Ek( ⋅ )
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In pictures

(courtesy B. Preneel)
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ECB is not Semantically Secure even for 1 msg

ECB is not semantically secure for messages that contain  
two or more blocks.

Two blocks
Chal.

b∈{0,1}

Adv. 𝒜
k←K

(c1,c2) ← E(k, mb)

m0 = “Hello  World” 
m1 = “Hello  Hello”

If  c1=c2 output 1,  else output 0

Then  AdvSS[ , ECB] = 1 𝒜
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Secure Construction 1:   CBC with random nonce

Cipher block chaining with a random IV        (IV = nonce)

 

E(k,⋅) E(k,⋅) E(k,⋅)

m[0] m[1] m[2] m[3]IV

⊕ ⊕⊕

E(k,⋅)

⊕

c[0] c[1] c[2] c[3]IV

ciphertext

note:   CBC where attacker can predict the IV is not CPA-secure.  HW.
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CBC:    CPA Analysis
CBC Theorem:     For any L>0, 
	 If E is a secure PRP over (K,X) then  
	 ECBC is a sem. sec. under CPA over (K, XL, XL+1).


	 	 In particular,  for a q-query adversary A attacking ECBC 

	 there exists a PRP adversary B  s.t.:


	 	    AdvCPA[A, ECBC] ≤  2⋅AdvPRP[B, E]  +  2 q2 L2 / |X|


Note:    CBC is only secure as long as   q2⋅L2    |X|≪
# messages enc. with key max msg length



Next
HW 
• Construct PRF from PRG! 

Next Class: 
• What happens if adversary can tamper with messages?
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