
1

CIS 5560

Lecture 6
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Announcements
• HW 3 out after lecture

• Due Tuesday, Feb 13 at 1PM on Gradescope

• Covers PRGs, OWFs, and PRFs

2

Recap of last lecture

3

PRG Next-Bit Unpredictability

4

Challenger

1.
2.

4.

s ← {0,1}n

y := G(s)

b ?= yi

Distinguisher

y1, …, yi−1

b

Pr [A(y1, . . . , yi−1) = yi
s ← {0,1}n

y ← G(s)] = 1/2 + ε(n)

Hardcore Bits

HARDCORE PREDICATE

For any
is a hardcore predicate if for every efficient

, there is a negligible function s.t.

𝐹 :{0,1}𝑛 → {0,1}𝑚, 𝐵:{0,1}𝑛 → {0,1}

𝐴 𝜇

Pr [b = B(x)
x ← {0,1}n

b ← A(F(x))] = 1/2 + μ(n)

OWP PRG⇒

Let be a one-way permutation, and let be
a hardcore predicate for .

𝐹 𝐵
𝐹

Theorem

Then, is a PRG.G(x) := F(x) | | B(x)

Gseed = s0

s1

b1

G
s2

b2

… G

bm−1

G

bm

sm−1 sm

Construction of G′￼(s0)

Length extension: One bit to Many bits
PRG length extension.

Theorem: If there is a PRG that stretches by
one bit, there is one that stretches by many bits

G

Today’s Lecture
• Encryption for many messages

• Definition

• Attempted construction from PRGs

• PRFs

• PRPs

• Block ciphers

8

So far: Secure Communication for 1 Message

Alice
Key k

Eavesdropper “Eve”

9

Alice wants to send a message to Bob without revealing it to Eve. m

Bob
Key k

c = 𝖤𝗇𝖼(k, m)

m m = 𝖣𝖾𝖼(k, c)

What about a secure conversation?

Alice
Key k

Eavesdropper “Eve”

10

Alice and Bob want to send many messages to each other,
without revealing any of them to Eve.
Requirement: Must use the same key!

Bob
Key k

c0

c1

cn

Simplification from Adversarial perspective

Alice
Key k

Eavesdropper “Eve”

11

Bob
Key k

c0

c1

cn

For analysis:
all messages are from

Alice

Semantic Security for 1 msg

12

Challenger

1.
2.
3.

4.

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

c

b′￼

m0, m1

Semantic Security for 1 msg

13

Challenger

1.
2.
3.

4.

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

c

b′￼

m0, m1

Slight tweak: are
sent after and are

sampled

m0, m1
k b

Semantic Security for many msgs?

14

Challenger

1.
2.
3.

4.

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

c

b′￼

m0, m1

Repeat experiment many times!

Semantic Security for Many Msgs

15

Challenger

1.
2.
3.

4.

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

ci
b′￼

mi,0, mi,1

For every PPT Eve, there exists a negligible fn ,

ε

Pr 𝖤𝗏𝖾(cq) = b

k ← 𝒦
b ← {0,1}

For i in 1,…, q :
(mi,0, mi,1) ← 𝖤𝗏𝖾(ci−1)

ci = 𝖤𝗇𝖼(k, mi,b)

<
1
2

+ε(n)

Alternate (Stronger?) definition

16

Challenger

1.

2.
3.

4.

k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

ci = 𝖤𝗇𝖼(k, mi)

b′￼

mi

(m0, m1)
c

Also called “IND-CPA”: Indistinguishability under Chosen-Plaintext Attacks

Equivalent to previous definition: just set mi,0 = mi,1 = mi

Semantic Security for Many Msgs

17

Challenger

1.
2.
3.

4.

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

ci
b′￼

mi,0, mi,1

For every PPT Eve and q, there exists a negligible fn , such that

ε

Pr 𝖤𝗏𝖾(cq) = b

k ← 𝒦
b ← {0,1}

For i in 1,…, q :
(mi,0, mi,1) ← 𝖤𝗏𝖾(ci−1)

ci = 𝖤𝗇𝖼(k, mi,b)

<
1
2

+ε(n)

o :

o Sample an -bit string at random.

𝖦𝖾𝗇(1k) → k
n

o :

o Expand to an -bit string using PRG:

o Output

𝖤𝗇𝖼(k, m) → c
k m(n) s = G(k)

c = s ⊕ m
o :

o Expand to an -bit string using PRG:

o Output

𝖣𝖾𝖼(k, c) → m
k m(n) s = G(k)

m = s ⊕ c

Construction Attempt #1: Stream Ciphers

Is this secure?

18

Stream Ciphers insecure under CPA
Problem: E(k,m) outputs same ciphertext for msg m.

 Then:

So what?	 an attacker can learn that two encrypted files are  
	 	 the same, two encrypted packets are the same, etc.

• Leads to significant attacks when message space M is small

Chal. Adv.
k←K

m0 , m1 ∈ M
c ← E(k, mb)

m0 , m0 ∈ M
c0 ←E(k, m0)

output 0

if c = c0

19

Problem: E(k,m) always outputs same ciphertext for msg m.

 Then:

If secret key is to be used multiple times ⇒
	 	 given the same plaintext message twice,  

encryption must produce different outputs.

Chal. Adv.
k←K

m0 , m1 ∈ M
c ← E(k, mb)

m0 , m0 ∈ M
c0 ←E(k, m0)

output 0

if c = c0

Stream Ciphers insecure under CPA

20

• State? (e.g. counter of num msgs)

• Randomness?

Ideas for multi-message encryption

21

Approach 1: Stateful encryption

22

o :

o Sample an -bit string at random.

𝖦𝖾𝗇(1n) → k
n

o :

1. Interpret as number of messages encrypted so far.

2. Run PRG:

3. Discard first bits of to get

4. Set

5. Output

𝖤𝗇𝖼(k, m, st) → c
st ℓ

s = G(k)
ℓ s s′￼

ℓ := ℓ + 1
c = s′￼⊕ m

o :

o Repeat steps 1 through 4 of

o Output

𝖣𝖾𝖼(k, c, st) → m
𝖤𝗇𝖼

m = s′￼⊕ c

Does this work?
Ans: Yes!

Exercise: reduce to PRG security

Pros:
• Relies on existing tools
• Generally fast
Cons:
• Must maintain counter of encrypted messages
• Must rerun PRG from start every time
• Sequential encryption/decryption 23

Key k (or seed s)

 𝑏1 𝑏2 𝑏3 … 𝑏5 … bℓ

⧫ With a PRG, accessing the -th bit takes time .

⧫ How to get efficient random access into output?

⧫ That is, we want some function such that

ℓ ℓ

F(ℓ) = ℓ-th bit

PRG 𝑮(𝒌)

24

Problem: PRGs are sequential

25

New tool:

Pseudorandom

Function

Pseudorandom Functions

 Generate a random -bit key . 𝐆𝐞𝐧(1𝑛): 𝑛 𝑘

 is a poly-time algorithm that outputs 𝐄𝐯𝐚𝐥(𝑘, 𝑥) Fk(x)

Collection of functions ℱℓ = {Fk : {0,1}ℓ → {0,1}m}k∈{0,1}n

• indexed by a key 𝑘
• : key length, : input length, output length.𝑛 ℓ 𝑚:

• Independent parameters, all poly(sec-param) = poly() 𝑛

• #functions in (singly exponential in)ℱℓ ≤ 2𝑛 𝑛

26

27

Secure PRFs
• Let F: K × X → Y be a PRF

	 	 Fns[X,Y]: the set of all functions from X to Y

	 	 SF = { F(k,⋅) s.t. k ∈ K } ⊆ Funs[X,Y]

• Intuition: a PRF is secure if  
	 a random function in Funs[X,Y] is indistinguishable from  
	 a random function in SF

SF

Size |K|

Fns[X,Y]

Size |Y||X|

Secure PRFs
• Let F: K × X → Y be a PRF

	 	 Fns[X,Y]: the set of all functions from X to Y

	 	 SF = { F(k,⋅) s.t. k ∈ K } ⊆ Funs[X,Y]

• Intuition: a PRF is secure if  
	 a random function in Fns[X,Y] is indistinguishable from  
	 a random function in SF

k ← K

f ← Fns[X,Y]
x ∈ X

f(x) or F(k,x) ?

???

PRF Security

29

Challenger

1.
2. If b = 0

1. Sample
2. Set

3. If b = 1
1. Sample
2. Set

4.

b ← {0,1}

f ← 𝖥𝗇𝗌[X, Y]
y := f (x)

k ← 𝒦
y := Fk(x)

b ?= b′￼

Adv 𝒜

y
b′￼

x

Pr[b = b′￼] = 1/2 + 𝗇𝖾𝗀𝗅(n)

PRF Security (Advantage defn)

30

Challenger

1.
2. If b = 0

1. Sample
2. Set

3. If b = 1
1. Sample
2. Set

4.

b ← {0,1}

f ← 𝖥𝗇𝗌[X, Y]
y := f (x)

k ← 𝒦
y := Fk(x)

b ?= b′￼

Adv 𝒜

y
b′￼

x

Pr[b′￼= 1 |b = 0] − Pr[b′￼= 1 |b = 1] = 𝗇𝖾𝗀𝗅(n)

An example
Let K = X = {0,1}n .

Consider the PRF: F(k, x) = k ⊕ x defined over (K, X, X)

Let’s show that F is insecure:

 Adversary :	 (1) choose arbitrary x0 ≠ x1 ∈ X

	 (2) query for y0 = f(x0) and y1 = f(x1)

	 (3) output `0’ if y0 ⊕ y1 = x0 ⊕ x1 , else `1’

𝒜

31

	 ⟹ AdvPRF[,F] (not negligible)𝒜 = 1 − (1/2𝑛)

Pr[EXP(0) = 0] 1= Pr[EXP(1) = 0] 1/2n=

PRP Security

32

Challenger

1.
2. If b = 0

1. Sample
2. Set

3. If b = 1
1. Sample
2. Set

4.

b ← {0,1}

f ← 𝖯𝖾𝗋𝗆𝗌[X]
y := f (x)

k ← 𝒦
y := Fk(x)

b ?= b′￼

Adv 𝒜

y
b′￼

x

Pr[b = b′￼] = 1/2 + 𝗇𝖾𝗀𝗅(n)

PRFs → multi-message encryption

33

• State? (e.g. counter of num msgs)

• Randomness?

Ideas for multi-message encryption

34

