
1

CIS 5560

Lecture 5
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Announcements
• HW 2 is out; due Monday, Feb 5 at 5PM on Gradescope

• Covers PRGs, OWFs, and semantic security

• Get started today and make use of office hours!

• New Office Hours:

• Alireza: Tuesday 5-6PM Levine 3rd floor bump space

• Jack: Wednesday 2-3:30PM Living 6th floor bump

space

2

Recap of last lecture

3

PRG Indistinguishability

4

Challenger

1.
2.

4.

s ← {0,1}n

y := G(s)

b ?= PRG

Distinguisher

y

b

Pr[D(G(Un)) = 1] − Pr[D(Um) = 1] = ε(n)

PRG Next-Bit Unpredictability

5

Challenger

1.
2.

4.

s ← {0,1}n

y := G(s)

b ?= yi

Distinguisher

y1, …, yi−1

b

Pr [A(y1, . . . , yi−1) = yi
s ← {0,1}n

y ← G(s)] = 1/2 + ε(n)

Def 1 and Def 2 are Equivalent

Theorem:  
A PRG G is indistinguishable if and only if it
is next-bit unpredictable.

One-way Functions: The Definition

One-way Permutations:
One-to-one one-way functions with 𝑚(𝑛) = 𝑛 .

• Can always find an inverse with unbounded time

• … but should be hard with probabilistic

polynomial time

7

A function (family) where is
one-way if for every p.p.t. adversary , the following holds:

{Fn}n∈ℕ F(⋅) : {0,1}n → {0,1}m(n)

A

Pr Fn(x′￼) = y
x ← {0,1}n

y := Fn(x)
x′￼← A(1n, y)

= negl(n)

OWF Security Attempt #2

8

Challenger

1.
2.

4.

x ← {0,1}n

y = f (x)

y ?= f (x′￼)

Eve

y

x′￼

Today’s Lecture
• PRG Indistinguishability → PRG Unpredictability

• One way functions and permutations

• OWPs → PRGs

9

How to get PRG from OWF?

1. Output

𝖯𝖱𝖦(k)

Fn(k)

OWF → PRG, Attempt #1

(Assume)m(n) > n

Does this work?

1. Output

𝖯𝖱𝖦(k)

Fn(k)

OWF → PRG, Attempt #1
Consider constructed from another OWF :

1. Compute

2. Output

Fn(x) F′￼n

y := F′￼n(x)
y′￼:= (y0, 1,y1, 1,…, yn, 1)

Is one-way?F

Yes!

Is unpredictable?𝖯𝖱𝖦

No!

Our problem:

OWFs don’t tell us anything about
how their outputs are distributed.

They are only hard to invert!

1. Output

𝖯𝖱𝖦(k)

F(k)

OWP → PRG, Attempt #1

Does this work?
No, it’s not expanding!

Let be a one-way permutationF : {0,1}n → {0,1}n

Consider the following PRG candidate

But how are outputs distributed?

Claim: Output of is uniformly distributedF

Claim: Output of OWP is uniformly distributed

Proof: Assume for contradiction that this is not the case.

This means that there exists some such that

This means that ,

which in turn means that is not a permutation!

y

Pr[F(x) = y |x ← {0,1}n] > 1/2n

{x |F(x) = y}

2n
>

1
2n

F

Our problem:

OWFs don’t tell us anything about how
their outputs are distributed.

Solution: use OWP iiiiii
Problem: no expansion

1.Output

𝖯𝖱𝖦(k)

F(k) | | B(k)

OWP → PRG, Attempt #2

What properties do we need of ?B

Let be a one-way permutationF : {0,1}n → {0,1}n

Imagine there existed such that
the following was a PRG

B : {0,1}n → {0,1}

1. One-way: can’t find from

2. Pseudorandom: looks like a random bit

3. Unpredictable: is unpredictable given

k B(k)
B(k)

B(k) F(k)

Hardcore Bits

HARDCORE PREDICATE

For any
is a hardcore predicate if for every efficient

, there is a negligible function s.t.

𝐹 :{0,1}𝑛 → {0,1}𝑚, 𝐵:{0,1}𝑛 → {0,1}

𝐴 𝜇

Pr [b = B(x)
x ← {0,1}n

b ← A(F(x))] = 1/2 + μ(n)

Hardcore Predicate (in pictures)

x

Easy to

compute

Easy to compute

F(x)

B(x)

Hard to
compute

Existence of hardcore predicates

Let be a one-way function.
Define .

Then is a hardcore predicate for

F : {0,1}n → {0,1}n

H(x | |r) := F(x) | |r

B(x | |r) := ⟨x, r⟩ H

Goldreich-Levin Theorem

Existence of hardcore predicates

Define to be the RSA OWF.

Then is a hardcore predicate for

FN,e(x) := xe mod N

𝗅𝗌𝖻(x) F

Hardcore predicate for RSA

OWP → PRG

OWP PRG⇒

Let be a one-way permutation, and let be
a hardcore predicate for .

𝐹 𝐵
𝐹

Theorem

Then, is a PRG.G(x) := F(x) | | B(x)

Proof (next slide): Use next-bit unpredictability.

OWP PRG⇒
Theorem: is a PRG assuming is a one-way permutation.𝐺 𝐹

Proof: Assume for contradiction that is not a PRG.
Therefore, there is a next-bit predictor , and index , and a
polynomial such that

𝐺
P 𝑖

p

Pr [P(y1, . . . , yi−1) = yi
x ← {0,1}n

y ← G(x)] = 1/2 + 1/p(n)

Observation: The index has to be . Do you see why? 𝑖 𝑛 + 1

Hint: and we
know is uniformly distributed

G(x) := F(x) | |B(x)
F(x)

OWP PRG⇒
Theorem: is a PRG assuming is a one-way permutation.𝐺 𝐹

Proof: Assume for contradiction that is not a PRG.
Therefore, there is a next-bit predictor , and polynomial
such that

𝐺
P p

Pr [P(y1, . . . , yn) = yn+1
x ← {0,1}n

y ← G(x)] = 1/2 + 1/p(n)

OWP PRG⇒
Theorem: is a PRG assuming is a one-way permutation.𝐺 𝐹

Proof: Assume for contradiction that is not a PRG.
Therefore, there is a next-bit predictor , and polynomial
such that

𝐺
P p

Pr [P(F(x)) = B(x)
x ← {0,1}n

y ← G(x)] = 1/2 + 1/p(n)

So, can figure out and break hardcore property!
QED.

P B(x)

• So far: PRG with 1-bit expansion
• Resulting secret-key encryption:

• Key can be 1 bit shorter than message

• Not much better than OTP!

Can we do better?

PRG length extension.

Theorem: If there is a PRG that stretches by one
bit, there is one that stretches by poly many bits

♦New Proof Technique: Hybrid Arguments.

Before we go there, a puzzle…

Lemma: Let be real numbers s.t. 𝑝0, 𝑝1, 𝑝2, …, 𝑝𝑚

𝒑𝒎 − 𝒑𝟎 ≥ 𝜺 .
Then, there is an index such that .𝑖 𝒑𝒊 − 𝒑𝒊−𝟏 ≥ 𝜺/𝐦

Proof:

)𝑝𝑚 − 𝑝0 = (𝑝𝑚 − 𝑝𝑚−1) + (𝑝𝑚−1 − 𝑝𝑚−2) + … + (𝑝1 − 𝑝0
≥ 𝜀

At least one of the terms has to be at least
(averaging).

𝑚 𝜀/𝑚

Length extension: One bit to Many bits

Let be a PRGG : {0,1}n → {0,1}n+1

Goal: use to generate many pseudorandom bits. G

Gseed = s0

y1 = G(s0)

Construction of G′￼(s0)

Length extension: One bit to Many bits

Let be a PRGG : {0,1}n → {0,1}n+1

Goal: use to generate many pseudorandom bits. G

Gseed = s0

y1 = b1 | |s1

Construction of G′￼(s0)

Length extension: One bit to Many bits

Let be a PRGG : {0,1}n → {0,1}n+1

Goal: use to generate many pseudorandom bits. G

Gseed = s0

s1

b1

G
s2

b2

… G
sm−1

bm−1

G

bm

Construction of G′￼(s0)

Length extension: One bit to Many bits

Let be a PRGG : {0,1}n → {0,1}n+1

Goal: use to generate many pseudorandom bits. G

Gseed = s0

s1

b1

G
s2

b2

… G

bm−1

G

bm

sm−1 sm

Construction of G′￼(s0)

Length extension: One bit to Many bits

Proof of Security (exercise):

Use next-bit (or previous-bit?) unpredictability!

Next class
• PRFs: How to get PRGs with “exponentially-large” output

35

