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CIS 5560

Lecture 5
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s24/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/


Announcements
• HW 2 is out; due Monday, Feb 5 at 5PM on Gradescope


• Covers PRGs, OWFs, and semantic security

• Get started today and make use of office hours!


• New Office Hours:

• Alireza: Tuesday 5-6PM Levine 3rd floor bump space

• Jack: Wednesday 2-3:30PM Living 6th floor bump 

space 
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Recap of last lecture
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PRG Indistinguishability
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Challenger

1.
2.

4. 

s ← {0,1}n

y := G(s)

b ?= PRG

Distinguisher

y

b

Pr[D(G(Un)) = 1] − Pr[D(Um) = 1] = ε(n)



PRG Next-Bit Unpredictability
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Challenger

1.
2.

4. 

s ← {0,1}n

y := G(s)

b ?= yi

Distinguisher

y1, …, yi−1

b

Pr [A(y1, . . . , yi−1) = yi
s ← {0,1}n

y ← G(s)] = 1/2 + ε(n)



Def 1 and Def 2 are Equivalent

Theorem:  
A PRG G is indistinguishable if and only if it 
is next-bit unpredictable.



One-way Functions: The Definition

One-way Permutations:
One-to-one one-way functions with  𝑚(𝑛) = 𝑛 .

• Can always find an inverse with unbounded time

• … but should be hard with probabilistic 

polynomial time
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A function (family)  where  is 
one-way if for every p.p.t. adversary , the following holds:


{Fn}n∈ℕ F( ⋅ ) : {0,1}n → {0,1}m(n)

A

Pr Fn(x′￼) = y
x ← {0,1}n

y := Fn(x)
x′￼← A(1n, y)

= negl(n)



OWF Security Attempt #2
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Challenger

1.
2.

4. 

x ← {0,1}n

y = f (x)

y ?= f (x′￼)

Eve

y

x′￼



Today’s Lecture
• PRG Indistinguishability → PRG Unpredictability

• One way functions and permutations

• OWPs → PRGs
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How to get PRG from OWF?



1. Output 

𝖯𝖱𝖦(k)

Fn(k)

OWF → PRG, Attempt #1

(Assume )m(n) > n

Does this work?



1. Output 

𝖯𝖱𝖦(k)

Fn(k)

OWF → PRG, Attempt #1
Consider  constructed from another OWF :


1. Compute 


2. Output 

Fn(x) F′￼n

y := F′￼n(x)
y′￼:= (y0, 1,y1, 1,…, yn, 1)

Is  one-way?F

Yes!

Is  unpredictable?𝖯𝖱𝖦

No!



Our problem: 

OWFs don’t tell us anything about 
how their outputs are distributed.


They are only hard to invert!



1. Output 

𝖯𝖱𝖦(k)

F(k)

OWP → PRG, Attempt #1

Does this work?
No, it’s not expanding!

Let  be a one-way permutationF : {0,1}n → {0,1}n

Consider the following PRG candidate

But how are outputs distributed?

Claim: Output of  is uniformly distributedF



Claim: Output of OWP is uniformly distributed

Proof: Assume for contradiction that this is not the case. 


This means that there exists some  such that 





This means that , 


which in turn means that  is not a permutation!

y

Pr[F(x) = y |x ← {0,1}n] > 1/2n

{x |F(x) = y}

2n
>

1
2n

F



Our problem: 

OWFs don’t tell us anything about how 
their outputs are distributed.


Solution: use OWP iiiiii   
Problem: no expansion



1.Output 

𝖯𝖱𝖦(k)

F(k) | | B(k)

OWP → PRG, Attempt #2

What properties do we need of ?B

Let  be a one-way permutationF : {0,1}n → {0,1}n

Imagine there existed  such that 
the following was a PRG

B : {0,1}n → {0,1}

1. One-way: can’t find  from 

2. Pseudorandom:  looks like a random bit

3. Unpredictable:  is unpredictable given 

k B(k)
B(k)

B(k) F(k)



Hardcore Bits

HARDCORE PREDICATE

For any   
is a hardcore predicate if for every efficient 

, there is a negligible function  s.t.

𝐹 :{0,1}𝑛 → {0,1}𝑚, 𝐵:{0,1}𝑛 → {0,1}

𝐴 𝜇

Pr [b = B(x)
x ← {0,1}n

b ← A(F(x))] = 1/2 + μ(n)



Hardcore Predicate (in pictures)

x

Easy to  

compute

Easy to  compute

F(x)

B(x)

Hard to  
compute



Existence of hardcore predicates

Let  be a one-way function. 
Define .


Then  is a hardcore predicate for 


F : {0,1}n → {0,1}n

H(x | |r) := F(x) | |r

B(x | |r) := ⟨x, r⟩ H

Goldreich-Levin Theorem



Existence of hardcore predicates

Define  to be the RSA OWF.


Then  is a hardcore predicate for 


FN,e(x) := xe mod N

𝗅𝗌𝖻(x) F

Hardcore predicate for RSA



OWP → PRG



OWP  PRG⇒

Let  be a one-way permutation, and let  be 
a hardcore predicate for .

𝐹 𝐵
𝐹

Theorem

Then,  is a PRG.G(x) := F(x) | | B(x)

Proof (next slide): Use next-bit unpredictability.



OWP  PRG⇒
Theorem:  is a PRG assuming  is a one-way permutation.𝐺 𝐹

Proof: Assume for contradiction that  is not a PRG. 
Therefore, there is a next-bit predictor , and index , and a 
polynomial  such that

𝐺
P 𝑖

p

Pr [P(y1, . . . , yi−1) = yi
x ← {0,1}n

y ← G(x)] = 1/2 + 1/p(n)

Observation: The index  has to be . Do you see why? 𝑖 𝑛 + 1

Hint:  and we 
know  is uniformly distributed

G(x) := F(x) | |B(x)
F(x)



OWP  PRG⇒
Theorem:  is a PRG assuming  is a one-way permutation.𝐺 𝐹

Proof: Assume for contradiction that  is not a PRG. 
Therefore, there is a next-bit predictor , and polynomial  
such that

𝐺
P p

Pr [P(y1, . . . , yn) = yn+1
x ← {0,1}n

y ← G(x)] = 1/2 + 1/p(n)



OWP  PRG⇒
Theorem:  is a PRG assuming  is a one-way permutation.𝐺 𝐹

Proof: Assume for contradiction that  is not a PRG. 
Therefore, there is a next-bit predictor , and polynomial  
such that

𝐺
P p

Pr [P(F(x)) = B(x)
x ← {0,1}n

y ← G(x)] = 1/2 + 1/p(n)

So,  can figure out  and break hardcore property! 
QED.

P B(x)



• So far: PRG with 1-bit expansion 
• Resulting secret-key encryption:


• Key can be 1 bit shorter than message

• Not much better than OTP!


Can we do better?



PRG length extension. 

Theorem: If there is a PRG  that stretches by one 
bit, there is one that stretches by poly many bits

♦New Proof Technique: Hybrid Arguments.



Before we go there, a puzzle…

Lemma: Let  be real numbers s.t. 𝑝0, 𝑝1, 𝑝2, …, 𝑝𝑚

𝒑𝒎 − 𝒑𝟎 ≥ 𝜺 .
Then, there is an index  such that  .𝑖 𝒑𝒊 − 𝒑𝒊−𝟏 ≥ 𝜺/𝐦

Proof: 

)𝑝𝑚 − 𝑝0 = (𝑝𝑚 − 𝑝𝑚−1) + (𝑝𝑚−1 − 𝑝𝑚−2) + … + (𝑝1 − 𝑝0
≥ 𝜀

At least one of the  terms has to be at least  
(averaging).

𝑚 𝜀/𝑚



Length extension: One bit to Many bits

Let  be a PRGG : {0,1}n → {0,1}n+1

Goal: use  to generate many pseudorandom bits. G



Gseed = s0

y1 = G(s0)

Construction of G′￼(s0)

Length extension: One bit to Many bits

Let  be a PRGG : {0,1}n → {0,1}n+1

Goal: use  to generate many pseudorandom bits. G



Gseed = s0

y1 = b1 | |s1

Construction of G′￼(s0)

Length extension: One bit to Many bits

Let  be a PRGG : {0,1}n → {0,1}n+1

Goal: use  to generate many pseudorandom bits. G



Gseed = s0

s1

b1

G
s2

b2

… G
sm−1

bm−1

G

bm

Construction of G′￼(s0)

Length extension: One bit to Many bits

Let  be a PRGG : {0,1}n → {0,1}n+1

Goal: use  to generate many pseudorandom bits. G



Gseed = s0

s1

b1

G
s2

b2

… G

bm−1

G

bm

sm−1 sm

Construction of G′￼(s0)

Length extension: One bit to Many bits

Proof of Security (exercise): 

Use next-bit (or previous-bit?) unpredictability!



Next class
• PRFs: How to get PRGs with “exponentially-large” output
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