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CIS 5560

Lecture 4
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s24/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/


Announcements
• HW 2 is out; due Monday, Feb 5 at 5PM on Gradescope


• Covers PRGs, OWFs, and semantic security

• Get started today and make use of office hours!


• Cryptography related CIS Colloquium today after class

• See what high level cryptography research looks like!

• Bonus point on this week’s homework if you attend!
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Recap of last lecture
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Key Notion: Secret-key Encryption	 

(or Symmetric-key Encryption)

Three (possibly randomized) polynomial-time algorithms:

o Key Generation Algorithm: 𝖦𝖾𝗇(1k) → k

o Encryption Algorithm: 𝖤𝗇𝖼(k, m) → c

o Decryption Algorithm: 𝖣𝖾𝖼(k, c) → m 4

Key k Key k

 𝑚
Ciphertext c ← 𝖤𝗇𝖼(k, m)

m ← 𝖣𝖾𝖼(k, c)

Message space (probability distribution)  ℳ

Key space  𝒦

Ciphertext space  𝒞



Semantic Security
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Challenger

1.
2.
3.

4. 

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′￼

Eve

c

b′￼

Ans: we’ll let Eve choose the messages!

m0, m1



PRG  Semantically Secure Encryption⟹
(or, How to Encrypt n+1 bits using an n-bit key)

 outputs 𝐷𝑒𝑐(𝑘, 𝑐) G(k) ⊕ c = G(k) ⊕ G(k) ⊕ m = m

o :

o Sample an -bit string at random.

𝖦𝖾𝗇(1k) → k
n

o :

o Expand  to an -bit string using PRG: 

o Output 

𝖤𝗇𝖼(k, m) → c
k n + 1 s = G(k)

c = s ⊕ m
o :


o Expand  to an -bit string using PRG: 

o Output 

𝖣𝖾𝖼(k, c) → m
k n + 1 s = G(k)

m = s ⊕ c

Correctness:
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World 0 
     




Pr[D outputs "PRG" | y is pseudorandom]

= Pr[𝖤𝗏𝖾 outputs b′￼= b | y is pseudorandom]
= ρ ≥ 1/2 + 1/p(n)

Therefore, 


Pr[D outputs "PRG" | y is pseudorandom] − Pr[D outputs "PRG" | y is random]

≥ 1/𝑝(𝑛)

World 1 
     




Pr[D outputs "PRG" | y is random]

= Pr[𝖤𝗏𝖾 outputs b′￼= b | y is random]
= ρ′￼= 1/2

Distinguisher :

1. Get two messages , from Eve and 

sample a bit 

2. Compute  

3. If , output “PRG”

4.Otherwise, output “Random”

D(y)
m0, m1

b
b′￼← 𝖤𝗏𝖾(y ⊕ mb)

b′￼= b
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Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework  
(e.g. “appropriately chosen functions composed appropriately 
many times look random”)

2. Come up with a candidate construction

3. Do extensive cryptanalysis. 
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Constructing PRGs: Two Methodologies
The Foundational Methodology (much of this course)

Reduce to simpler primitives.

OWF

well-studied, average-case hard, problems

“Science wins either way” –Silvio Micali

PRG

PRF

Hashing

Digital 
Signatures
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Today’s Lecture
• PRG Indistinguishability → PRG Unpredictability

• One way functions and permutations

• OWPs → PRGs
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PRG Indistinguishability
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Challenger

1.
2.

4. 

s ← {0,1}n

y := G(s)

b ?= PRG

Distinguisher

y

b

Pr[D(G(Un)) = 1] − Pr[D(Um) = 1] = ε(n)



PRG Next-Bit Unpredictability
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Challenger

1.
2.

4. 

s ← {0,1}n

y := G(s)

b ?= yi

Distinguisher

y1, …, yi−1

b

Pr [A(y1, . . . , yi−1) = yi
s ← {0,1}n

y ← G(s)] = 1/2 + ε(n)



PRG Def 2: Next-bit Unpredictability
Definition [Next-bit Unpredictability]:  
A deterministic polynomial-time computable function G: {0,1}n 

 {0,1}m is next-bit unpredictable if:

for every PPT algorithm P (called a next-bit predictor) and 
every  if there is a negligible function  such 
that:

→

𝑖 ∈ {1,…, 𝑚}, 𝝁
𝐏𝐫[ 𝒚 ← 𝑮(𝑼𝒏):𝑷(𝒚𝟏𝒚𝟐…𝒚𝒊−𝟏) = 𝒚𝒊] =

𝟏
𝟐

+  𝝁(𝒏)

Notation:  are the bits of the m-bit 
string .

𝒚𝟏, 𝒚𝟐, …𝒚𝒎
𝒚



Def 1 and Def 2 are Equivalent

Theorem:  
A PRG G is indistinguishable if and only if it 
is next-bit unpredictable.



Def 1 and Def 2 are Equivalent

Theorem:  
A PRG G passes all PPT distinguishers if and 
only if it passes PPT next-bit distinguishers.



NBU and Indistinguishability
⧫ Next-bit Unpredictability (NBU): Seemingly much weaker 

requirement. Only says that next bit predictors, a 
particular type of distinguishers, cannot succeed.

⧫ Yet, surprisingly, Next-bit Unpredictability (NBU) = 
Indistinguishability.

⧫ NBU often much easier to use.



1. Indistinguishability  NBU⟹

Suppose for contradiction that there is a p.p.t. predictor , a 
polynomial function  and an  s.t. 

𝑃
𝑝 𝑖 ∈ {1,…, 𝑚}

Pr[ 𝑦 ← 𝐺(𝑈𝑛):𝑃(𝑦1𝑦2…𝑦𝑖−1) = 𝑦𝑖] ≥
1
2

+ 1/𝑝(𝑛)

Proof: by contradiction.

Then, I claim that  essentially gives us a distinguisher D!𝑃

Consider  which gets an m-bit string  and does the following: 𝐷 𝑦

1. Run  on the -bit prefix . 𝑃 (𝑖 − 1) 𝑦1𝑦2…𝑦𝑖−1

2. If  returns the -th bit , then output 1 (“PRG”) else output 0 
(“Random”).

𝑃 𝑖 𝑦𝑖

If  is p.p.t. so is . 𝑷 𝑫



1. Indistinguishability  NBU⟹

Consider  which gets an m-bit string  and does the following: 𝐷 𝑦

1. Run  on the -bit prefix . 𝑃 (𝑖 − 1) 𝑦1𝑦2…𝑦𝑖−1

2. If  returns the -th bit , then output 1 (= “PRG”) else 
output 0 (= “Random”).

𝑃 𝑖 𝑦𝑖

We want to show: there is a polynomial  s.t.  𝑝′￼

|  Pr[𝑦 ← 𝐺(𝑈𝑛):  𝐷(𝑦)  = 1 ] 
– Pr[𝑦 ← 𝑈𝑚:  𝐷(𝑦)  = 1 ]  | ≥ 1/𝑝′￼(𝑛)



1. Indistinguishability  NBU⟹
Consider  which gets an m-bit string  and does the following: 𝐷 𝑦

1. Run  on the -bit prefix . 𝑃 (𝑖 − 1) 𝑦1𝑦2…𝑦𝑖−1

=  Pr[𝑦 ← 𝐺(𝑈𝑛):  𝑃(𝑦1𝑦2…𝑦𝑖−1) = 𝑦𝑖] 

≥
1
2

+ 1/𝑝(𝑛)

Pr[𝑦 ← 𝐺(𝑈𝑛):  𝐷(𝑦)  = 1 ] 

(by construction of D)

(by assumption on P)

2. If  returns the -th bit , then output 1 (= “PRG”) else 
output 0 (= “Random”).

𝑃 𝑖 𝑦𝑖



1. Indistinguishability  NBU⟹
Consider  which gets an m-bit string  and does the following: 𝐷 𝑦

1. Run  on the -bit prefix . 𝑃 (𝑖 − 1) 𝑦1𝑦2…𝑦𝑖−1

≥
1
2

+ 1/𝑝(𝑛)Pr[𝑦 ← 𝐺(𝑈𝑛):  𝐷(𝑦)  = 1 ] 

2. If  returns the -th bit , then output 1 (= “PRG”) else 
output 0 (= “Random”).

𝑃 𝑖 𝑦𝑖

Pr[𝑦 ← 𝑈𝑚:  𝐷(𝑦) = 1 ]
=  Pr[𝑦 ← 𝑈𝑚:  𝑃(𝑦1𝑦2…𝑦𝑖−1) = 𝑦𝑖] 

=
1
2

(by construction of D)

(since y is random)



1. Indistinguishability  NBU⟹
Consider  which gets an m-bit string  and does the 
following: 

𝐷 𝑦

1. Run  on the -bit prefix . 𝑃 (𝑖 − 1) 𝑦1𝑦2…𝑦𝑖−1

≥
1
2

+ 1/𝑝(𝑛)Pr[𝑦 ← 𝐺(𝑈𝑛):  𝐷(𝑦)  = 1 ] 

2. If  returns the -th bit , then output 1 (= “PRG”) else 
output 0 (= “Random”).

𝑃 𝑖 𝑦𝑖

Pr[𝑦 ← 𝑈𝑚:  𝐷(𝑦) = 1 ] =
1
2

So,  
      

|  Pr[𝑦 ← 𝐺(𝑈𝑛):  𝐷(𝑦)  = 1 ] 
– Pr[𝑦 ← 𝑈𝑚:  𝐷(𝑦)  = 1 ]  | ≥ 1/𝑝(𝑛)



Today’s Lecture
• PRG Indistinguishability → PRG Unpredictability

• How to construct PRGs? 

• One way functions and permutations 
• OWPs → PRGs
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One-way Functions (Informally)
F

domain
range

Easy to  
compute

Hard to  
invert

23

Source of all hard problems in cryptography!



What is a good definition?



OWF Security Attempt #1
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Challenger

1.
2.

4. 

x ← {0,1}n

y = f (x)

x ?= x′￼

Eve

y

x′￼



One-way Functions (Take 1)

A function (family)  where  is 
one-way if for every p.p.t. adversary , the following holds:


{Fn}n∈ℕ F( ⋅ ) : {0,1}n → {0,1}m(n)

A

Pr [A(1n, y) = x
x ← {0,1}n

y := Fn(x)] = negl(n)

Consider  for all . 𝑭𝒏(𝒙) = 𝟎 x
This is one-way according to the above definition.  
In fact, impossible to find the inverse even if  has 
unbounded time.

𝐴

Conclusion: not a useful/meaningful definition. 26



OWF Security Attempt #2
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Challenger

1.
2.

4. 

x ← {0,1}n

y = f (x)

x ?= x′￼

Eve

y

x′￼

Does it have to be the exact input?



One-way Functions (Take 1)

A function (family)  where  is 
one-way if for every p.p.t. adversary , the following holds:


{Fn}n∈ℕ F( ⋅ ) : {0,1}n → {0,1}m(n)

A

Pr [A(1n, y) = x
x ← {0,1}n

y := Fn(x)] = negl(n)
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The Right Definition: Impossible to find an inverse efficiently.



OWF Security Attempt #2
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Challenger

1.
2.

4. 

x ← {0,1}n

y = f (x)

y ?= f (x′￼)

Eve

y

x′￼



One-way Functions: The Definition

One-way Permutations:
One-to-one one-way functions with  𝑚(𝑛) = 𝑛 .

• Can always find an inverse with unbounded time

• … but should be hard with probabilistic 

polynomial time
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A function (family)  where  is 
one-way if for every p.p.t. adversary , the following holds:


{Fn}n∈ℕ F( ⋅ ) : {0,1}n → {0,1}m(n)

A

Pr Fn(x′￼) = y
x ← {0,1}n

y := Fn(x)
x′￼← A(1n, y)

= negl(n)



How to get PRG from OWF?



1. Output 

𝖯𝖱𝖦(k)

Fn(k)

OWF → PRG, Attempt #1

(Assume )m(n) > n

Does this work?



1. Output 

𝖯𝖱𝖦(k)

Fn(k)

OWF → PRG, Attempt #1
Consider  constructed from another OWF :


1. Compute 


2. Output 

Fn(x) F′￼n

y := F′￼n(x)
y′￼:= (y0, 1,y1, 1,…, yn, 1)

Is  one-way?F

Yes!

Is  unpredictable?𝖯𝖱𝖦

No!



Our problem: 

OWFs don’t tell us anything about 
how their outputs are distributed.


They are only hard to invert!



Hardcore Bits

If  is a one-way function, we know it’s hard to compute 
a pre-image of  for a randomly chosen . 

𝐹
𝐹(𝑥) 𝑥

How about computing partial information about an 
inverse?

Exercise: There are one-way functions for which it is 
easy to compute the first half of the bits of an inverse.



Hardcore Bits

HARDCORE PREDICATE (Definition)

For any function (family)  a function 
 is a hardcore predicate if for every p.p.t. 

adversary , there is a negligible function  s.t.

𝐹 :{0,1}𝑛 → {0,1}𝑚,
𝐵:{0,1}𝑛 → {0,1}

𝐴 𝜇

Pr[𝑥 ← {0,1}𝑛; 𝑦 = 𝐹(𝑥):𝐴(𝑦) = 𝐵(𝑥)] ≤
1
2

+  𝜇(𝑛)



Hardcore Predicate (in pictures)

x

Eas
y to  

compute

Easy to  compute

F(x)

B(x)

Hard to  
compute



Next class
• How to get randomness from OWF output


• How to use this to get PRGs

• How to extend the length of PRGs

• How to get PRGs with “exponentially-large” output

38


