CIS 5560

Cryptography
Lecture 4

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Announcements

- HW 2 is out; due Monday, Feb 5 at 5PM on Gradescope
« Covers PRGs, OWFs, and semantic security

- Get started today and make use of office hours!

- Cryptography related CIS Colloquium today after class

- See what high level cryptography research looks like!
« Bonus point on this week’s homework if you attend!

Recap of last lecture

Key Notion: Secret-key Encryption

(or Symmetric-key Encryption)
m Message space (probability distribution) /A

iphertex En
ﬂ‘ : <Cp ertexte = C(k,m); Q m « Dec(k, ¢)
— Ciphertext space €

Key k Key k

Key space %

Three (possibly randomized) polynomial-time algorithms:

o Key Generation Algorithm: Gen(1%) — k

o Encryption Algorithm: Enc(k,m) — ¢

o Decryption Algorithm: Dec(k,c) » m

Semantic Security

-

_

Eve

1

~

mg, my

b/

J

/ Challenger \

1.k H
2.b < {0,1}
3. ¢ := Enc(k, my)

4.h = b’

_ J

Ans: we’ll let Eve choose the messages!

PRG — Semantically Secure Encryption

(or, How to Encrypt n+1 bits using an n-bit key)

o Gen(1¥) — k:

o Sample an n-bit string at random.

o Enc(k,m) — c:
o Expand k to an n + 1-bit string using PRG: s = G (k)
o Outputc =s @ m

o Dec(k,c) — m:
o Expand k to an n + 1-bit string using PRG: s = G (k)
o Outputm =s @ c
Correctness:

Dec(k,c)outputs G(k) Dc=Gk) D Gk)Dm =m

Distinguisher D(y):

1. Get two messages m,,, m, from Eve and

sample a bit b

2.Compute b’ < Eve(y @ my)

3.1f b’ = b, output “PRG”

4.0therwise, output “Random”

Pr[D outputs "PRG" | y is pseudorandom]
= Pr[Eve outputs b’ = b| y is pseudorandom)]
=p>1/2+ 1/p(n)

World 0

Therefore,
Pr[D outputs "PRG" | y is pseudorandom] — Pr[D outputs "PRG" | y is random] ‘

> 1/p(n)

World 1

Pr[D outputs "PRG" | y is random]
= Pr[Eve outputs b’ = b| y is random]

=p' =1/2

. 7

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. “appropriately chosen functions composed appropriately
many times look random?”)

2. Come up with a candidate construction

3. Do extensive cryptanalysis.

Constructing PRGs: Two Methodologies

The Foundational Methodology (much of this course)

Reduce to simpler primitives.

“Science wins either way” -Silvio Micali

Digital
Signatures PRF

%
:\ PRG /
Hashing N5 AN
/

N OWF

A

well-studied, average-case hard, problems

Today’s Lecture

- PRG Indistinguishability = PRG Unpredictability
« One way functions and permutations
- OWPs — PRGs

PRG Indistinguishability

/ Distinguisher \

1

_ J

/ Challenger \

1.5 <« {0,1}"
2.y :=G(s)

4. b = PRG

_ J

‘ PrD(G(U,)) = 1] - Pr[D(U,) = 1] ‘ = £(n)

PRG Next-Bit Unpredictability

/ Distinguisher \ / Challenger \
1.5 <« {0,1}"
Vi eeos Vit 2.y :=G(s)
<
@ b . 4. b ~ Y;
_ J _ J
Pr |A _y PO
LAY, - Yim) = Y v G| =T &(n)

PRG Def 2: Next-bit Unpredictability

Definition [Next-bit Unpredictability]:
A deterministic polynomial-time computable function G: {0,1}n
— {0,1}m is next-bit unpredictable if:

for every PPT algorithm P (called a next-bit predictor) and
everyi € {1,...,m}, if there is a negligible function | such

that: 1
a Pr[y < G(U,):P(y1y,...:1) = y,-] =5+ KM

Notation: Vi, yz, oYy, are the bits of the m-bit

string Y.

Def 1 and Def 2 are Equivalent

Theorem:
A PRG G is indistinguishable if and only if it
IS next-bit unpredictable.

Def 1 and Def 2 are Equivalent

Theorem:
A PRG G passes all PPT distinguishers if and
only if it passes PPT next-bit distinguishers.

NBU and Indistinguishability

¢ Next-bit Unpredictability (NBU): Seemingly much weaker
requirement. Only says that next bit predictors, a
particular type of distinguishers, cannot succeed.

¢ Yet, surprisingly, Next-bit Unpredictability (NBU) =
Indistinguishability.

¢ NBU often much easier to use.

1. Indistinguishability = NBU

Proof: by contradiction.

Suppose for contradiction that there is a p.p.t. predictor P, a
polynomial function pand ani € {1,...,m} s.t.

1
Prl y < G(Un):P(ylyz...yi_l) = y,.] > > + 1/p(n)

Then, | claim that P essentially gives us a distinguisher D!

Consider D which gets an m-bit string y and does the following:
1. Run Pon the (i — 1)-bit prefix y,y,...y,_;-

2. If Preturns the i-th bit y,, then output 1 (“PRG”) else output O
(“Random?”).

If Pis p.p.t. sois D.

1. Indistinguishability = NBU

Consider D which gets an m-bit string y and does the following:
1. Run Pon the (i — 1)-bit prefix y,y,...y,_;.

2. If Preturns the i-th bit y,, then output 1 (= “PRG”) else
output 0 (= “Random”).

We want to show: there is a polynomial p’ s.t.

| Prly < G(U,): D(y) =1]
—Prly <« Um: D(y) =1] | = 1/p'(n)

1. Indistinguishability —> NBU

Consider D which gets an m-bit string y and does the following:
1. Run Pon the (i — 1)-bit prefix y,y,...y,_;.

2. If Preturns the i-th bit y,, then output 1 (= “PRG”) else
output 0 (= “Random”).

Prly <« G(U,): D(y) =11
= Pr[y « G(Un): P(ylyz...yi_l) = y;] (by construction of D)

> % + 1/p(n) (by assumption on P)

1. Indistinguishability —> NBU

Consider D which gets an m-bit string y and does the following:
1. Run Pon the (i — 1)-bit prefix y,y,...y,_;.

2. If Preturns the i-th bit y,, then output 1 (= “PRG”) else
output 0 (= “Random”).

1
Priy <« G(U,): D(y) =11 27+ 1/p(n)

Pr[y «<U,: D(y) =1]
= Prly «< U,: P(ylyz...yl-_l) = y] (by construction of D)
1

= — (since y is random)

2

1. Indistinguishability —> NBU

Consider D which gets an m-bit string y and does the
following:
1. Run Ponthe (i — 1)-bit prefix y;¥,...y;_q
2. If Preturns the i-th bit y;, then output 1 (= “PRG”) else
output O (= “Random?”).

Prly <« G(U,): D(y) =11 2=+ 1/p(n)

Pr[y <U,: D(y) =1] -

[\.)|>—t[\) p—

So, | Prly <« G(U,): D(y) =1]
—Prly <« Um: D(y) =1] | = 1/p(n)

Today’s Lecture

- PRG Indistinguishability = PRG Unpredictability

« How to construct PRGs?

- One way functions and permutations
- OWPs — PRGs

One-way Functions (Informally)

F

Easy to
compute

Hard to
invert

domain
range

Source of all hard problems in cryptography!

23

What is a good definition?

OWEF Security Attempt #1

-

_

Eve

1

~

J

/ Challenger \

1.x «< {0,1}"
2.y =f(x)

?
4. x = x

_ J

One-way Functions (Take 1)

A function (family) {F,},.cn Where F(-) : {0,1}" — {0,1}"™ is
one-waly if for every p.p.t. adversary A, the following holds:

x <« {0,1}"

] = negl(n)

Consider F,(x) = 0 for all x.

This is one-way according to the above definition.
In fact, impossible to find the inverse even if A has
unbounded time.

Conclusion: not a useful/meaningful definition.

26

OWEF Security Attempt #2

/ Eve \ / Challenger \
1.x «< {0,1}"
2.y =f(x)
) \4. x=x

Does it have to be the exact input?

One-way Functions (Take 1)

A function (family) {F,},.cn Where F(-) : {0,1}" — {0,1}"™ is
one-waly if for every p.p.t. adversary A, the following holds:

x <« {0,1}"

] = negl(n)

The Right Definition: Impossible to find an inverse efficiently.

28

OWEF Security Attempt #2

-

_

Eve

1

~

J

/ Challenger \

1.x < {0,1}"
2.y =f(x)

4.y = f(x')
_ J

One-way Functions: The Definition

A function (family) {F,},.cn Where F(-) : {0,1}" — {0,1}"™ is
one-waly if for every p.p.t. adversary A, the following holds:

Pr|F,(x)=y

x < {0,1}"]
y:=F,(x)

x < A(1",y)

= negl(n)

« Can always find an inverse with unbounded time
* ... but should be hard with probabilistic

polynomial time

One-way Permutations:
One-to-one one-way functions with m(n) = n.

30

How to get PRG from OWF?

OWF — PRG, Attempt #1

PRG(k)
1. Output F, (k)

(Assume m(n) > n)

Does this work?

OWF — PRG, Attempt #1

Consider F, (x) constructed from another OWF F: PRG(k)
1.Compute y := F}(x) 1. Output F, (k)
2.Output y’ := (yy, Ly, 1,..0,y,, 1)

Is ' one-way?

Yes!

Is PRG unpredictable?

No!

Our problem:

OWFs don’t tell us anything about
how their outputs are distributed.

They are only hard to invert!

Hardcore Bits

If I'is a one-way function, we know it’s hard to compute
a pre-image of F(x) for a randomly chosen Xx.

How about computing partial information about an
inverse?

Exercise: There are one-way functions for which it is
easy to compute the first half of the bits of an inverse.

Hardcore Bits

HARDCORE PREDICATE (Definition)

For any function (family) F:{0,1}" — {0,1}", a function
B:{0,1}" —» {0,1} is a hardcore predicate if for every p.p.t.

adversary A, there is a negligible function u s.t.
1
Prx < {0.1)"5y = F:A(y) = B®)| <=+ utn)

Hardcore Predicate (in pictures)

F(X)

0
‘J‘, e v
@"&5 0\) 1
00‘09 i
! Hardto
X i compute
1
\4
N
Cogy . b B(X)

pllte

Next class

- How to get randomness from OWF output
- How to use this to get PRGs
- How to extend the length of PRGs
- How to get PRGs with “exponentially-large” output

