CIS 5560

Cryptography
Lecture 3

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Announcements

- HW 1 is out; due Monday, Jan 29 at 5PM on Gradescope
- Covers OTPs and negligible functions (this class)
- Get started today and make use of office hours!

« Cryptography related CIS Colloquium on Tuesday (1/30)
after class

- See what high level cryptography research looks like!
« Bonus point on next week’s homework if you attend!

Recap of last lecture

Secure Communication

Y Key k

"

Eavesdropper “Eve”

0
X - - 8

Alice wants to send a message m to Bob without revealing it to Eve.

Key Notion: Secret-key Encryption

(or Symmetric-key Encryption)
m Message space (probability distribution) /A

iphertex En
ﬂ‘ : <Cp ertexte = C(k,m); Q m « Dec(k, ¢)
— Ciphertext space €

Key k Key k

Key space %

Three (possibly randomized) polynomial-time algorithms:

o Key Generation Algorithm: Gen(1%) — k

o Encryption Algorithm: Enc(k,m) — ¢

o Decryption Algorithm: Dec(k,c) » m

Life
The Axiom of Modern-€rypto

Feasible Computation = randomized polynomial-time* algorithms
(P-P-t. = Probabilistic polynomial-time)

(polynomial in a security parameter n)

* in recent years, quantum polynomial-time

Computational Indistinguishability

4)

World O:
k — A

¢ = Enc(k, m))

4)

World 1:
k — K

\C = Enc(k, ml) /

Eve is arbitrary PPT distinguisher.

! She needs to decide whether ¢ came from World O or World 1.

Pr | Eve(c) = b

For every PPT Eve, there exists a negligible fn ¢, st for all m, m;,

k « H | |
b < {0,1}]| < 5+8(n)<

¢ = Enc(k, m,)

Called
“advantage”

New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

Definition: A function £ : N — R is negligible if
for every polynomial function p,

there exists an ny, s.t.
for all n > ny:
1

p(n)

e(n) <

Key property: Events that occur with negligible probability look
to poly-time algorithms like they never occur.

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function
G:{0,1}" - {0,1}"is a PRG if:

(@) Itis expanding: m > n and

(b) for every PPT algorithm D (called a distinguisher) if there is a
negligible function ¢ such that:

Pr[D(G(U,)) = 1] = Pr[D(U,) = 11| = e(n)

Notation: U, (resp. U,) denotes the random distribution
on n-bit (resp. m-bit) strings; m is shorthand for m(n).

Today’s Lecture

- Semantic security
- PRGs — Semantically-secure encryption
« Constructions of PRGs

« Real-world schemes

 Theoretical constructions

Semantic Security

For every PPT Eve, th_ere exists a negligible fn g, st for all m, m,,

Pr

Eve(c) =b

k— % |
b < {0,1}

c := Enc(k,my)

1
< —4¢n
> (n)

Last time, we briefly discussed that we can view
this as a game between a “challenger” and the
adversary Eve. Let’s flesh that out.

Semantic Security

/ Challenger \

1.k« A
2.b < {0,1}
3. ¢ := Enc(k, my)

4.h = b’

J

Semantic Security

/ Eve \ / Challenger \

1.k H
2.b < {0,1}
3. ¢ := Enc(k, my)

<<
@ b’ 4.b = b
>

_ J _ J

We had a good question last time: how does Eve
even know what the choices for my,, m, are?

Semantic Security

-

_

Eve

1

~

mg, my

b/

J

/ Challenger \

1.k H
2.b < {0,1}
3. ¢ := Enc(k, my)

4.h = b’

_ J

Ans: we’ll let Eve choose the messages!

Semantic Security

For every PPT Eve, there exists a negligible fn & such that

|(m0, m,) < Eve

k — KA
b « {0,1}
€= Enc(k, m;)

1
Pr |Eve(c) = b < 5+8(lfl)

Semantic Security

For every PPT Eve, there exists a negligible fn £ such that

Pr

Eve(c) =b

|(m0, m;) < Eve

k — A
b < {0,1}

| €= Enc(k, my)

1
<—+
S+em)

Why is this the “right” definition?

Intuitively: even if Eve knows which
messages are candidate plaintexts,
ciphertext still reveals no information!

PRGs — Semantically Secure Encryption

PRG — Semantically Secure Encryption

(or, How to Encrypt n+1 bits using an n-bit key)

o Gen(1¥) — k:

o Sample an n-bit string at random.

o Enc(k,m) — c:
o Expand k to an n + 1-bit string using PRG: s = G (k)
o Outputc =s @ m

o Dec(k,c) — m:
o Expand k to an n + 1-bit string using PRG: s = G (k)
o Outputm =s @ c
Correctness:

Dec(k,c)outputs G(k) Dc=Gk) D Gk)Dm =m

18

PRG — Semantically Secure Encryption

Security: your first reduction!

Suppose for contradiction that there exists an Eve that breaks our scheme.

That, is assume that there is a p.p.t. Eve, and polynomial function p s.t.

Pr

Eve(c) = b

|(m0, m,;) < Eve

k — H
b < {0,1}

€= Enc(k, m;)

1
> E+1/p(n)

19

PRG — Semantically Secure Encryption

Security: your first reduction!

Assume that there is a p.p.t. Eve, a polynomial function p and m,, m; s.t.

Pr

Compare with Pr

Eve(c) =0

Eve(c) =0

| (mg, m;) < Eve

b < {0,1)

| €= G(k) & m,

| (imy, m;) < Eve
k'« {0,1}"*!
b« {0,1}

INC = k' @ my,

Let’'s ¢

all this p’

k < {0,1)"

J .
—_ Let’s call this p

O\

1
> E-l‘ 1/p(n)

20

Clearly, Eve can break security in
PRG case, but not in OTP world!

!

Eve can distinguish pseudorandom from random!

Idea: Use Eve to break PRG indistinguishability!

Distinguisher D(y):
1. Sample two messages m,,, m,, and a bit b
2.Compute b’ « Eve(y @ m,)

3.1f b’ = b, output “PRG”

4. Otherwise, output “Random”

World O
Pr[D outputs "PRG" | y is pseudorandom]
= Pr[Eve outputs b’ = b| y is pseudorandom)]
=p>1/2+ 1/p(n)

World 1

Pr[D outputs "PRG" | y is random]
= Pr[Eve outputs b’ = b| y is random]

=p' =1/2

Therefore,

Pr[D outputs "PRG" | y is pseudorandom] — Pr[D outputs "PRG" | y is random] ‘

> 1/p(n)

.22

PRG — Semantically Secure Encryption

Ol1:

02:

(or, How to Encrypt n+1 bits using an n-bit key)

Do PRGs exist?
(Exercise: If P=NP, PRGs do not exist.)

How do we encrypt longer messages or many
messages with a fixed key?

(Length extension: If there is a PRG that stretches by one
bit, there is one that stretches by polynomially many bits)

(Pseudorandom functions: PRGs with exponentially large
stretch and “random access” to the output.)

23

01 : Do PRGs exist?

24

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework

(e.g. “appropriately chosen functions composed appropriately
many times look random?”)

-y — —-

25

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework

(e.g. “appropriately chosen functions composed appropriately
many times look random?”)

2. Come up with a candidate construction

" ré Rijndael
— (now the Advanced
++ Encryption Standard)

26

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. “appropriately chosen functions composed appropriately
many times look random?”)

2. Come up with a candidate construction

3. Do extensive cryptanalysis.

27

Examples

- RC4: old PRG from 1987
« Proposed by Ron Rivest (of RSA fame)
- Fast and simple
« Used in TLS till 2013
- However lots of biases
 e.g. 2nd byte of output has 2/256 chance of being 0.

 In 2013, attack which made key recovery feasible with just
220 ciphertexts!

- Finally deprecated in 2015, 28 years after creation!

Constructing PRGs: Two Methodologies

The Foundational Methodology (much of this course)

Reduce to simpler primitives.

“Science wins either way” -Silvio Micali

Digital
Signatures PRF

%
:\ PRG /
Hashing N5 AN
/

N OWF

A

well-studied, average-case hard, problems

29

One-way Functions (Informally)

F

Easy to
compute

Hard to
invert

domain
range

Source of all hard problems in cryptography!

30

What is a good definition?

One-way Functions (Take 1)

A function (family) {F,},.cn Where F(-) : {0,1}" — {0,1}"™ is
one-waly if for every p.p.t. adversary A, the following holds:

x <« {0,1}"

] = negl(n)

Consider F,(x) = 0 for all x.

This is one-way according to the above definition.
In fact, impossible to find the inverse even if A has
unbounded time.

Conclusion: not a useful/meaningful definition.

32

One-way Functions (Take 1)

A function (family) {F,},.cn Where F(-) : {0,1}" — {0,1}"™ is
one-waly if for every p.p.t. adversary A, the following holds:

x <« {0,1}"

] = negl(n)

The Right Definition: Impossible to find an inverse efficiently.

33

One-way Functions: The Definition

A function (family) {F,},.cn Where F(-) : {0,1}" — {0,1}"™ is
one-waly if for every p.p.t. adversary A, the following holds:

Pr|F,(x)=y

x < {0,1}"]
y:=F,(x)

x < A(1",y)

= negl(n)

« Can always find an inverse with unbounded time
* ... but should be hard with probabilistic

polynomial time

One-way Permutations:
One-to-one one-way functions with m(n) = n.

34

How to get PRG from OWF?

OWF — PRG, Attempt #1

PRG(k)
1. Output F, (k)

(Assume m(n) > n)

Does this work?

OWF — PRG, Attempt #1

Consider F, (x) constructed from another OWF F: PRG(k)
1.Compute y := F}(x) 1. Output F, (k)
2.Output y’ := (yy, Ly, 1,..0,y,, 1)

Is ' one-way?

Yes!

Is PRG unpredictable?

No!

Our problem:

OWFs don’t tell us anything about
how their inputs are distributed

They are only hard to invert

Next class

- How to get randomness from OWF output
- How to use this to get PRGs
- How to extend the length of PRGs
- How to get PRGs with “exponentially-large” output

