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CIS 5560

Lecture 1
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s24/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/


Course Staff
Instructor: Pratyush Mishra (me!)


prat@upenn.edu

TAs:


Jack Hourigan (hojack@upenn.edu)

Tushar Mopuri (tmopuri@upenn.edu)

Alireza Shirzad (alrshir@upenn.edu)


Matan Shtepel (matan.shtepel@gmail.com)


2

mailto:prat@upenn.edu
mailto:hojack@upenn.edu
mailto:tmopuri@upenn.edu
mailto:alrshir@upenn.edu
mailto:matan.shtepel@gmail.com


Course Format
• Lecture: Tues/Thurs 1:45-3:15PM Fagin Hall 118

• Grading: 

• Participation: 5% 

• HW: 40%

• Midterm: 25%

• Final: 30%


• Important dates: 
• Midterm: 03/14/24

• Final: TBD 3



Homeworks
• Usually, 1 per week

• Released on Tuesdays

• Due Monday 5PM

• Drop 2 lowest scores

• Mostly proof-based, with perhaps one programming 

oriented homework
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Important Links
• Class website (WIP): pratyushmishra.com/classes/cis-5560-s24
• EdStem: edstem.org/us/courses/53008

• Canvas: canvas.upenn.edu/courses/1771710/

• Gradescope: gradescope.com/courses/704354
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What is Cryptography?
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Confidential Communication

Alice Bob

Eavesdropper “Eve”

m

Alice wants to send a message  to Bob without revealing it to Eve.  

Tool: Encryption schemes 
Eg: Caesar Cipher (broken!!), AES, DES, RSA, etc

m



Confidential Communication with Integrity

Alice Bob

Malicious Eavesdropper “Eve”

m

Eve can tamper with messages now 
Alice wants to send a message  to Bob without Eve changing it. 

Tool: Message Authentication Codes

m



Communication with Authenticity

Alice Bob

Adversary Eve

m

Eve can tamper with messages now 
Bob wants guarantee that only Alice sent . 

Tool: Digital signatures

m



Anonymous Communication

Eve should not be able to tell who is talking to whom 

Tool: dining cryptographer networks, onion encryption, etc



Computation on Secret Data

Eve’s server should run computation without learning Alice’s data 

Tool: Homomorphic encryption, multiparty computation

Enc(query)

Enc(result)

search 
query



Proofs about Secret Data

Eve’s server should be convinced about Alice’s claim without 
learning Alice’s secrets. 

Tool: Zero knowledge proofs

Enc(m)

II know secret key 
for ciphertext
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Authenticated Encryption

ZK proofs
Public-key encryption

Fully homomorphic encryption

Crypto is a magical land!



How do we get there? Not magic, but science!

The three steps in cryptography:


• Precisely specify threat model


• Propose a construction


• Prove that breaking construction under threat model    
will solve an underlying hard problem
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Things to remember
Cryptography is:


– A tremendous tool

– The basis for many security mechanisms


Cryptography is not:

– The solution to all security problems

– Reliable unless implemented and used properly

– Something you should try to invent yourself


•  many many examples of broken ad-hoc designs
15



Discrete Probability Primer
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• Probability distribution  over a finite set  is a function  
 such that 


• Support of  is set   s.t.  

• An event is a set ; 


• Union bound: For events  and , 


• A random variable  is a fn  that induces a dist. on 


• Events  and  are independent if 


• RVs  and  are ind. if 

P S
P : S → [0,1] ∑x∈S P(x) = 1

P 𝖲𝗎𝗉𝗉(P) ⊆ S ∀x ∈ 𝖲𝗎𝗉𝗉(P), P(x) ≠ 0

A ⊆ S Pr[A] = ∑x∈A P(x) ∈ [0,1]

A1 A2 Pr[A1 ∪ A2] ≤ Pr[A1] + Pr[A2]

X X : S → V V

A B Pr[A and B] = Pr[A] ⋅ Pr[B]

X Y Pr[X = a and Y = b] = Pr[X = a] ⋅ Pr[Y = b]
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•  

• Example distribution: Uniform: for all 


• Example event: . 


• Example RV: . Here , and induced distribution is  



• Example independent RVs:  and  

S = {0,1}2

x ∈ S, P(x) = 1/ |S |

A = {x ∈ S | 𝗅𝗌𝖻(x) = 1} Pr[A] = 1/2

X = 𝗅𝗌𝖻 V = {0,1}
Pr[X = 0] = 1/2 ; Pr[X = 1] = 1/2

X = 𝗅𝗌𝖻 Y = 𝗆𝗌𝖻
Pr[X(x) = 0 and Y(x) = 0] = Pr[x = 00] =

1
4

= Pr[X(x) = 0] Pr[Y(x) = 0]
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Randomized algorithms
• Deterministic algorithm: 

• Randomized algorithm:  where 


• Output is a random variable 

y ← A(m)
y ← A(m; R) R $← {0,1}n

y $← A(m)
19

Uniform RV
• A Uniform RV is  that induces a uniform dist on .

• That is, for all , 

R : S → S S
x ∈ S Pr[R = x] = 1/ |S |



An important property of XOR
Thm:  is an RV over  ,   is a uniform ind. RV over   

	 Then  is uniform var. on 


Proof:    (for n=1) 

    Pr[ Z=0 ] = 

Y {0,1}n X {0,1}n

Z := Y ⊕ X {0,1}n
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Our First Definition:

Symmetric Key 

Encryption
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Secure Communication

Alice Bob

Eavesdropper “Eve”

m

Alice wants to send a message  to Bob without revealing it to Eve. m

22



Secure Communication

Key k Key k

Eavesdropper “Eve”

m

SETUP: Alice and Bob meet beforehand to agree on a secret key k.
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Key Notion: Secret-key Encryption	  
(or Symmetric-key Encryption)

Key k Key k

 𝑚

Three (possibly randomized) polynomial-time algorithms:

o Key Generation Algorithm: 𝖦𝖾𝗇(1k) → k

o Encryption Algorithm: 𝖤𝗇𝖼(k, m) → c

o Decryption Algorithm: 𝖣𝖾𝖼(k, c) → m

Ciphertext c ← 𝖤𝗇𝖼(k, m)
m ← 𝖣𝖾𝖼(k, c)

Has to be randomized (why?)

24



Key Property 1: Correctness

Key k Key k

 𝑚

o ,  
o Most basic property: if Bob gets incorrect answer, 

scheme is useless!

∀k ∈ 𝖲𝗎𝗉𝗉(𝖦𝖾𝗇), ∀m ∈ ℳ 𝖣𝖾𝖼(k, 𝖤𝗇𝖼(k, m)) = m

Ciphertext c ← 𝖤𝗇𝖼(k, m)
m ← 𝖣𝖾𝖼(k, c)

Message space (probability distribution)  ℳ

Key space  𝒦

Ciphertext space  𝒞
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The Worst-case Adversary

⧫ An arbitrary computationally unbounded algorithm EVE.*

⧫ Knows Alice and Bob’s algorithms ,  and  but 
does not know the key nor their internal randomness.  
	 (Kerckhoff’s principle or Shannon’s maxim)

𝖦𝖾𝗇 𝖤𝗇𝖼 𝖣𝖾𝖼

⧫ Can see the ciphertexts going through the channel       
(but cannot modify them… we will come to that later)

Security Definition: What is she trying to learn?
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What is a secure encryption scheme?
Attacker’s abilities:    CT only attack       (for now) 

Possible security requirements:   

    attempt #1:  attacker cannot recover secret key 

 would be secure  

    attempt #2:  attacker cannot recover all of plaintext 

 would be secure 

    Shannon’s idea:  CT should reveal no “info” about PT  

𝖤𝗇𝖼(k, m) = m

𝖤𝗇𝖼(k, (m1, m2)) = 𝖤𝗇𝖼(k, m1) | | m2
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Pr[M = m |𝖤𝗇𝖼(𝒦, m) = c] = Pr[M = m]
beforeafter

Shannon’s Perfect Secrecy Definition

Key k ← 𝒦 Key k  ← 𝒦

𝑚 ← ℳ
𝑐 ← Enc(𝑘, 𝑚)

Message space (probability distribution)  ℳ

Key space  𝒦
Ciphertext space  𝒞

∀m ∈ 𝗌𝗎𝗉𝗉(ℳ), ∀c ∈ 𝒞, M is a RV ∼ ℳ

What Eve knows after looking at  
=  

What Eve knew before looking at 

c

c
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Pr[M = m |𝖤𝗇𝖼(𝒦, m) = c] = Pr[M = m]
beforeafter

Shannon’s Perfect Secrecy Definition

∀m ∈ 𝗌𝗎𝗉𝗉(ℳ), ∀c ∈ 𝒞, M is a RV ∼ ℳ

What Eve knows after looking at  
=  

What Eve knew before looking at 

c

c

✓ CT reveals no info about PT
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But this def is difficult to work with: 
How to prove that ciphertext reveals no info?



,∀m, m′￼∈ 𝗌𝗎𝗉𝗉(ℳ)    𝑐 ∈  Supp(𝒞):

World 0: World 1:

𝑐 = 𝐸(𝑘, 𝑚) 𝑐′￼= 𝐸(𝑘, 𝑚′￼)

is a distinguisher that gets  and 
tries to guess which world she’s in

c

k ← 𝒦

Alternate Def: Perfect Indistinguishability

Pr[𝖤𝗇𝖼(𝒦, m) = c] = Pr[𝖤𝗇𝖼(𝒦, m′￼) = c]
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k ← 𝒦



The Two Definitions are Equivalent

THEOREM: An encryption scheme  
satisfies perfect secrecy IFF it satisfies perfect 
indistinguishability.

(𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼)

PROOF (next class): Simple use of conditional prob.
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Perfect Secrecy is Achievable

The One-time Pad Construction:

: Choose an -bit string k at random, i.e. 𝖦𝖾𝗇 𝑛 k ← {0,1}n

 with : Output 𝖤𝗇𝖼(k, m) ℳ = {0,1}n c = m ⊕ k

: Output 𝖣𝖾𝖼(k, c) m = c ⊕ k
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Perfect Secrecy is Achievable

Correctness: c ⊕ k = m ⊕ k ⊕ k = m

The One-time Pad Construction:

: Choose an -bit string k at random, i.e. 𝖦𝖾𝗇 𝑛 k ← {0,1}n

 with : Output 𝖤𝗇𝖼(k, m) ℳ = {0,1}n c = m ⊕ k

: Output 𝖣𝖾𝖼(k, c) m = c ⊕ k
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Perfect Secrecy is Achievable

Claim: One-time Pad achieves Perfect Indistinguishability (and 
therefore perfect secrecy). 

Proof: For any  𝑚, 𝑐 ∈ {0,1}𝑛,

Pr[𝖤𝗇𝖼(K, m) = c] = Pr[k ⊕ m = c] = Pr[k = c ⊕ m] = 1/2n

The One-time Pad Construction:

: Choose an -bit string k at random, i.e. 𝖦𝖾𝗇 𝑛 k ← {0,1}n

 with : Output 𝖤𝗇𝖼(k, m) ℳ = {0,1}n c = m ⊕ k

: Output 𝖣𝖾𝖼(k, c) m = c ⊕ k
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Perfect Secrecy is Achievable

Claim: One-time Pad achieves Perfect Indistinguishability (and 
therefore perfect secrecy). 

Proof: For any  m, m′￼, c ∈ {0,1}n

So,  .Pr[𝖤𝗇𝖼(K, m) = c] = Pr[𝖤𝗇𝖼(K, m′￼) = c]
QED.

The One-time Pad Construction:

: Choose an -bit string k at random, i.e. 𝖦𝖾𝗇 𝑛 k ← {0,1}n

 with : Output 𝖤𝗇𝖼(k, m) ℳ = {0,1}n c = m ⊕ k

: Output 𝖣𝖾𝖼(k, c) m = c ⊕ k
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Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption scheme, 
	 	 	  |𝒦 | ≥ |ℳ |
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So, what are we to do?
RELAX the definition:  
	 EVE is an arbitrary computationally bounded algorithm.

Pseudorandomness

ZK proofs
Public-key encryption

+ number theory/geometry/combinatorics

the promised crypto land

Fully homomorphic encryption
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To Summarize…

• Secure Communication: a quintessential problem in 
cryptography.

• We saw two equivalent definitions of security: 
	 Shannon’s perfect indistinguishability and perfect secrecy

• One-time pad achieves perfect secrecy.

• A Serious Limitation: Any perfectly secure encryption scheme 
needs keys that are at least as long as the messages.

• Next Lecture: Overcoming the limitation with Computationally 
Bounded Adversaries.
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