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Course Format

 Lecture: Tues/Thurs 1:45-3:15PM Fagin Hall 118
- Grading:

- Participation: 5%

« HW: 40%

- Midterm: 25%

 Final: 30%

- Important dates:

- Midterm: 03/14/24

- Final: TBD



Homeworks

« Usually, 1 per week

* Released on Tuesdays
* Due Monday 5PM

* Drop 2 lowest scores

« Mostly proof-based, with perhaps one programming
oriented homework



Important Links

« Class website wr: pratyushmishra.com/classes/cis-5560-s24
« EdStem: edstem.org/us/courses/53008
« Canvas: canvas.upenn.edu/courses/1771710/

- Gradescope: gradescope. com/courses/704354



http://pratyushmishra.com/classes/cis-5560-s24/
https://edstem.org/us/courses/53008/discussion/
https://canvas.upenn.edu/courses/1771710/
https://www.gradescope.com/courses/704354

What is Cryptography??



Confidential Communication

T 2

Alice Y Bob

"

Eavesdropper “Eve”

Alice wants to send a message m to Bob without revealing it to Eve.

Tool: Encryption schemes
Eg: Caesar Cipher (broken!!), AES, DES, RSA, etc



Confidential Communication with Integrity

T 2

Alice Y Bob

)

Malicious Eavesdropper “Eve”

Eve can tamper with messages now
Alice wants to send a message m to Bob without Eve changing it.

Tool: Message Authentication Codes



Communication with Authenticity

T 2

Alice Y Bob

'

Adversary Eve

Eve can tamper with messages now
Bob wants guarantee that only Alice sent m.

Tool: Digital signatures



Anonymous Communication

Eve should not be able to tell who is talking to whom

Tool: dining cryptographer networks, onion encryption, etc



Computation on Secret Data
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Eve’s server should run computation without learning Alice’s data

Tool: Homomorphic encryption, multiparty computation



Proofs about Secret Data
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Eve’s server should be convinced about Alice’s claim without
learning Alice’s secrets.

Tool: Zero knowledge proofs



Crypto is a magical land!

Fully homomorphic encryption
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How do we get there? Not magic, but science!

The three steps in cryptography:
* Precisely specify threat model
* Propose a construction

* Prove that breaking construction under threat model
will solve an underlying hard problem



Things to remember

Cryptography is:
— A tremendous tool
— The basis for many security mechanisms

Cryptography is not:
— The solution to all security problems
— Reliable unless implemented and used properly

— Something you should try to invent yourself
« many many examples of broken ad-hoc designs



Discrete Probability Primer



- Probability distribution P over a finite set § is a function
P : S — [0,1] such that ers Px) =1

« Support of P is set Supp(P) C S s.t. Vx € Supp(P), P(x) # 0

- AneventisasetA C S;Pr[A] =} _ P(x) € [0,1]

+ Union bound: For events A; and A,, Pr[A; U A,] < Pr[A,] + Pr[A,]
* Arandom variable X isafn X : § — Vthatinduces a dist. on V

 Events A and B are independent if Pr[A and B| = Pr[A] - Pr[B]
* RVsXand Yareind. if Pr[X =aand Y = b] = Pr[X = a] - Pr[Y = b]



. S =1{0,1}?
- Example distribution: Uniform: for all x € S, P(x) = 1/| 5|
- Exampleevent: A = {x € § | Isb(x) =1}.Pr[A] =1/2

- Example RV: X = Isb. Here V = {0,1}, and induced distribution is
PriX=0]=1/2; PriX=1]=1/2

- Example independent RVs: X = Isband Y = msb
Pr[X(x) = 0 and Y(x) = 0] = Pr[x = 00] = % = Pr[X(x) = 0] Pr[Y(x) = 0]



Uniform RV

e AUniform RVis R : S — S that induces a uniform dist on .
« Thatis, forallx € S,Prf[R=x] =1/]|§]|

Randomized algorithms

« Deterministic algorithm: y <« A(m)
« Randomized algorithm: y « A(m; R) where R & {0,1}"

» QOutput is a random variable y <$; A(m)



An important property of XOR
Thm: Yis an RV over {0,1}", X is a uniform ind. RV over {0,1}"

Then Z := Y & X is uniform var. on {0,1 }"

Proof: (for n=1) AL x__%»:
O | Po Loz
Pr[ Z=0 ] ;P*[(YJ)‘(Q”) or (&/)’(‘,‘)]'4 Ly _LE_
= P\r[(x/)’} =[0,ﬂ)l-f' f’r (Ky/::({/(/:l - Z Z __f:'_/z —
- Po P ] :o ( |P/2
T Z V| o|Py/2
- 1N 1P/ &= .




Our First Definition:
Symmetric Key
Encryption



Secure Communication

T 2

Alice Y Bob

"

Eavesdropper “Eve”

Alice wants to send a message m to Bob without revealing it to Eve.
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Secure Communication

"
Key—k Y Key k

"

Eavesdropper “Eve”

SETUP: Alice and Bob meet beforehand to agree on a secret key k.
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Key Notion: Secret-key Encryption

(or Symmetric-key Encryption)
0

<

Key k Key k

m <« Dec(k,c)

Ciphertext ¢ <« Enc(k, m) Q

Three (possibly randomized) polynomial-time algorithms:

o Key Generation Algorithm: Gen(1%) — k
Has to be randomized (why?)

o Encryption Algorithm: Enc(k,m) — ¢

o Decryption Algorithm: Dec(k,c) - m
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Key Property 1: Correctness

m Message space (probability distribution) /A
Ciphertext ¢ <« Enc(k, m) Q

Q m <« Dec(k,c)
— Ciphertext space €

Key k Key k

Key space %

o Vk € Supp(Gen),Vm € M, Dec(k,Enc(k,m)) =m
o Most basic property: if Bob gets incorrect answer,
scheme is useless!
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The Worst-case Adversary “@'

¢ An arbitrary computationally unbounded algorithm EVE.*

¢ Knows Alice and Bob’s algorithms Gen, Enc and Dec but
does not know the key nor their internal randomness.
(Kerckhoff’s principle or Shannon’s maxim)

¢ Can see the ciphertexts going through the channel
(but cannot modify them... we will come to that later)

Security Definition: What is she trying to learn?
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What is a secure encryption scheme?

Attacker’s abilities: CT only attack (for now)

Possible security requirements:
attempt #1:. attacker cannot recover secret key

Enc(k, m) = m would be secure

attempt #2: attacker cannot recover all of plaintext
Enc(k, (m;,m,)) = Enc(k,m,) || m, would be secure

Shannon’s idea: CT should reveal no “info” about PT
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Shannon’s Perfect Secrecy Definition

Message space (probability distribution)
m e M ge space (p y )
¢ < Enc(k, m) Q
Q Ciphertext :Epace €

Key space v 4 \4 Key k < K

b

What Eve knows after looking at ¢

What Eve knew before looking at ¢
Vm € supp(M),Nc € €,MisaRV ~ M/

Pr[M = m|Enc(XE,m) = c] = Pr[M = m]

after before 28




Shannon’s Perfect Secrecy Definition

What Eve knows after looking at ¢

What Eve knew before looking at ¢
Vm € supp(M),VNc € €,MisaRV ~ A

PrIM = m|Enc(H#,m) = c] = Pr[]M = m]

after before

v CT reveals no info about PT

But this def is difficult to work with:
How to prove that ciphertext reveals no info?



Alternate Def: Perfect Indistinguishability

Vm,m’ € supp(M), c € Supp(€):
Pr[Enc(#,m) = c] = Pr[Enc(H,m’) = c]

4 World O: )
k — H
\C = E(k, m) )

/Worldlz )
k — A
L= E(k,m )/

is a distinguisher that gets c and

“ ! E tries to guess which world she’s in
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The Two Definitions are Equivalent

THEOREM: An encryption scheme (Gen, Enc, Dec)

satisfies perfect secrecy IFF it satisfies perfect
indistinguishability.

PROOF (next class): Simple use of conditional prob.
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Perfect Secrecy is Achievable

The One-time Pad Construction:
Gen: Choose an n-bit string k at random, i.e. k < {0,1}"
Enc(k,m) with # = {0,1}": Outputc =m @ k

Dec(k, c): Outputm =c @ k
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Perfect Secrecy is Achievable

The One-time Pad Construction:
Gen: Choose an n-bit string k at random, i.e. k < {0,1}"
Enc(k,m) with # = {0,1}": Outputc =m @ k

Dec(k, c): Outputm =c @ k

Correctness:c Bk =m PkPk =m
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Perfect Secrecy is Achievable

The One-time Pad Construction:
Gen: Choose an n-bit string k at random, i.e. k < {0,1}"
Enc(k,m) with # = {0,1}": Outputc =m @ k

Dec(k, c): Outputm =c @ k

Claim: One-time Pad achieves Perfect Indistinguishability (and
therefore perfect secrecy).

Proof: For any m,c € {0,1}",

Pr[Enc(K,m) =c]|=Prlk @ m =c]=Prlk =c @ m] = 1/2"
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Perfect Secrecy is Achievable

The One-time Pad Construction:
Gen: Choose an n-bit string k at random, i.e. k < {0,1}"
Enc(k,m) with # = {0,1}": Outputc =m @ k

Dec(k, c): Outputm =c @ k

Claim: One-time Pad achieves Perfect Indistinguishability (and
therefore perfect secrecy).

Proof: Forany m,m’,c € {0,1}"
So, Pr[Enc(K, m) = c] = Pr[Enc(K,m’) = c].
QED.
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Perfect Secrecy has its Price

THEOREM: For any perfectly secure encryption scheme,
PARAV/A
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So, what are we to do?

RELAX the definition:

EVE is an arbitrary computationally bounded algorithm.

‘ + number theory/geometry/combinatorics

the promised crypto land 4
‘." ‘;,. Fully homomorphic encryption

a
.

28 Pseudorandomness &

\
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To Summarize...

Secure Communication: a quintessential problem in
cryptography.

We saw two equivalent definitions of security:
Shannon’s perfect indistinguishability and perfect secrecy

One-time pad achieves perfect secrecy.

A Serious Limitation: Any perfectly secure encryption scheme
needs keys that are at least as long as the messages.

Next Lecture: Overcoming the limitation with Computationally
Bounded Adversaries.



