
CIS 5560

Lecture 26
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s24/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/


Announcements
• HW11 due Wednesday May 1 at 11:59PM on Gradescope

• Final Exam May 10 9AM-11AM

• Will create and provide a cheat sheet

• Will share sample problems

2



Recap of Last Lecture
• Secure Multi-party Computation

• Secret Sharing

• Oblivious Transfer

3



Secure Two-Party Computation

• Alice should not learn anything more than  and   𝑥 𝐹𝐴(𝑥, 𝑦) .

• Bob should not learn anything more than  and   𝑦 𝐹𝐵(𝑥, 𝑦) .

Semi-honest Security:Security:

Bob

Input: 𝒚

Output:  𝐹𝐴(𝑥, 𝑦)

Alice

Input: 𝒙

Output:  𝐹𝐵(𝑥, 𝑦)

4



Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1) 
polynomial (mod p) whose constant term is the secret 𝑏 .

  
	 where  are uniformly random mod  
𝑓(𝑥) = 𝑎𝑡−1𝑥𝑡−1 + … + 𝑎1𝑥 + 𝑏

𝑎𝑖 𝑝

2.   Compute the shares   :
𝑠1 = 𝑓(1), 𝑠2 = 𝑓(2), …, 𝑠𝑖 = 𝑓(𝑖), …, 𝑠𝑛 = 𝑓(𝑛)

Correctness: can recover secret from any  shares. 𝑡

Security: the distribution of  shares is 
independent of the secret.

𝑎𝑛𝑦 𝑡 − 1

Note: need p to be larger than the number of parties n. 5



Oblivious Transfer (OT)

Receiver

Choice bit: 𝒃
𝑥0
𝑥1

• Sender holds two bits/strings  and .𝑥0 𝑥1

• Receiver holds a choice bit .𝑏

• Receiver should learn , sender should learn nothing. 𝑥𝑏

(We will consider honest-but-curious adversaries; formal 
definition in a little bit…)

Sender

6



OT Protocol 1: Trapdoor Permutations

Pick  and 
RSA exponent  

𝑁 = 𝑃𝑄
𝑒 .

𝑁, 𝑒

Choose random  and  
set 

𝑟𝑏
𝑠𝑏 = 𝑟𝑒

𝑏  mod 𝑁

For concreteness, let’s use the RSA trapdoor permutation.

Choice bit: 𝑏Input bits: (𝑥0, 𝑥1)

Choose random 𝑠1−𝑏

𝑠0, 𝑠1

𝑥0⨁𝐻𝐶𝐵(𝑟0)
Compute  and 
XOR  using 
hardcore bits

𝑟0, 𝑟1
𝑥0, 𝑥1

𝑥1⨁𝐻𝐶𝐵(𝑟1)
Bob can recover 

 but not   𝑥𝑏 𝑥1−𝑏
7



OT  Secret-Shared-AND⟹
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}Alice gets random , Bob gets 

random  s.t. .
𝛾

𝛿 γ ⊕ δ = αβ

x0 = γ
x1 = a ⊕ γ

Choice bit 𝑏 = 𝛽
Run an OT protocol

Bob gets x1b + x0(1 ⊕ b)

Output: 𝛾 Output: 𝛿

= (x1 ⊕ x0)b + x0 = αβ ⊕ γ := δ

Alice outputs .𝛾

8



“OT is Complete”

Theorem: OT can solve not just ANDs and money, but 
any two-party (and multi-party) problem efficiently. 

9



Defining Security: 
The Ideal/Real Paradigm

10



Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙REAL 
WORLD:

IDEAL 
WORLD: 𝒙

𝒚

𝑭(𝒙, 𝒚)
𝑭(𝒙, 𝒚)

≈



Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator  such that for any 
 and : 

𝑆𝐼𝑀𝐴
𝑥 𝑦
𝑆𝐼𝑀𝐴(𝑥, 𝐹(𝑥, 𝑦)) ≅ 𝑉𝑖𝑒𝑤𝐴(𝑥, 𝑦)



Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator  such that for any 
 and : 

𝑆𝐼𝑀𝐵
𝑥 𝑦
𝑆𝐼𝑀𝐵(𝑦, 𝐹(𝑥, 𝑦)) ≅ 𝑉𝑖𝑒𝑤𝐵(𝑥, 𝑦)



Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:  
OT can solve any two-party computation problem. 

14



Computing Arbitrary Functions

+X

X

For us, programs = functions = Boolean circuits with 
XOR ( ) and AND ( ) gates.+ 𝑚𝑜𝑑 2 ×  𝑚𝑜𝑑 2

Want: If you can compute XOR and AND in the 
appropriate sense, you can compute everything.

𝑎 𝑏 𝑎′￼ 𝑏′￼

)𝑎𝑏(𝑎′￼+ 𝑏′￼

𝑎𝑏 𝑎′￼+ 𝑏′￼

15



+X

X

Secret-sharing Invariant: For each wire of the circuit, Alice 
and Bob each have a bit whose XOR is the value at the wire.

𝑎
0 𝑏

0 𝑎′￼

𝑏′￼0
0

Base Case: Input wires

XOR gate:  
Locally XOR the shares

𝑎′￼

𝑏′￼

⊕
⊕

AND gate?? 

Computing Arbitrary Functions

16



Computing the XOR gate
Alice has  and Bob has  s.t. 𝛼 𝛽

+

𝑥 𝑥′￼

𝑥 ⊕ 𝑥′￼

𝛼 ⊕ 𝛽 = 𝑥

Alice has  and Bob has  s.t. 𝛼′￼ 𝛽′￼ 𝛼′￼⊕ 𝛽′￼= 𝑥′￼

Alice computes  and Bob computes 𝜶 ⊕ 𝜶′￼ 𝜷 ⊕ 𝜷′￼.

So, we have:   
	 	

(𝛼 ⊕ 𝛼′￼ ) ⊕ (𝛽 ⊕ 𝛽′￼)
= (𝛼 ⊕ 𝛽) ⊕ (𝛼′￼⊕ 𝛽′￼) = x ⊕ x′￼

17



Computing the AND gate

×

𝑥 𝑥′￼

𝑥𝑥′￼

Desired output (to maintain invariant):   
Alice wants  and Bob wants  s.t. 𝜶′￼′￼ 𝜷′￼′￼ 𝜶′￼′￼⊕ 𝜷′￼′￼= 𝑥𝑥′￼

Alice has  and Bob has  s.t. 𝛼 𝛽 𝛼 ⊕ 𝛽 = 𝑥

Alice has  and Bob has  s.t. 𝛼′￼ 𝛽′￼ 𝛼′￼⊕ 𝛽′￼= 𝑥′￼

18



𝑥𝑥′￼= (𝛼 ⊕ 𝛽)(𝛼′￼⊕ 𝛽′￼)
= 𝛼𝛼′￼⊕ 𝛽𝛼′￼⊕ 𝛼𝛽′￼⊕ 𝛽𝛽′￼

𝛽𝛼′￼
ss-AND

𝛾𝑏𝛾𝑎

𝛾𝑎


⊕
𝛾𝑏 𝛽′￼𝛼

ss-AND

𝛿𝑏𝛿𝑎

𝛿𝑎


⊕
𝛿𝑏

𝛼′￼′￼= 𝛼𝛼′￼⊕ 𝛾𝑎 ⊕ 𝛿𝑎 𝛽′￼′￼= 𝛽𝛽′￼⊕ 𝛾𝑏 ⊕ 𝛿𝑏

×

𝑥 𝑥′￼

𝑥𝑥′￼

Computing the AND gate

19



+×

×

Computing Arbitrary Functions
Secret-sharing Invariant: For each wire of the circuit, Alice 
and Bob each have a bit whose XOR is the value at the wire.

𝑎 𝑏 𝑎′￼ 𝑏′￼

Finally, Alice and Bob exchange the shares at the output wire, 
and XOR the shares together to obtain the output.

𝛼
𝛽

𝛼 ⊕ 𝛽 = 𝑎𝑏(𝑎′￼⊕ 𝑏′￼)

20



Security by Composition
Theorem:  
If protocol  securely realizes a function  in 
the “ -hybrid model” and  protocol  securely 
realizes , then  securely realizes . 

Π 𝑔
𝑓 Π′￼

𝑓 Π ∘ Π′￼ 𝑔

-angel 𝑓

Protocol for  in the -hybrid model 𝑔 𝑓 Protocol for 𝑓

+

21



Security: Intuition (ss-AND hybrid model)
Imagine that the parties have access to an ss-AND angel.

𝒂
𝒃

𝛾 𝛿

 𝛾 ⨁𝛿 = ab

22



Imagine that the parties have access to an ss-AND angel.

+X

X

𝑎
0 𝑏

0 𝑎′￼

𝑏′￼0
0

Simulator for Alice’s view:

𝑎′￼

𝑏′￼

Input wires: can be 
simulated given Alice’s input

XOR gate: simulate given 
Alice’s input shares 

23

Security: Intuition (ss-AND hybrid model)



+X

X

𝑎
0 𝑏

0 𝑎′￼

𝑏′￼0
0

Simulator for Alice’s view:

𝑎′￼

𝑏′￼

AND gate: simulate given Alice’s input shares 
& outputs from the ss-AND angel.

Alice’s share  
= 𝑎 ∙ 0 + 𝑠𝑠𝑎𝑛𝑑(𝑎, 𝑏) + 𝑠𝑠𝑎𝑛𝑑(0,0)𝛾𝑎𝑙𝑖𝑐𝑒

𝛿𝑎𝑙𝑖𝑐𝑒

 and  are random, 
independent of  
𝛾𝑎𝑙𝑖𝑐𝑒 𝛿𝑎𝑙𝑖𝑐𝑒

𝑏 24

Security: Intuition (ss-AND hybrid model)



+X

X

𝑎
0 𝑏

0 𝑎′￼

𝑏′￼0
0

Simulator for Alice’s view:

𝑎′￼

𝑏′￼

Output wire: need to know both Alice and Bob’s output 
shares.

Bob’s output share = Alice’s 
output share  function output⊕

Simulator knows the 
function output, and 
can compute Bob’s 
output share given 
Alice’s output share. 

25

Security: Intuition (ss-AND hybrid model)



In summary: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:  
Assuming OT exists, there is a protocol that 
solves any two-party computation problem 
against semi-honest adversaries. 

26



In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson’87]:  
Assuming OT exists, there is a protocol that 
solves any multi-party computation problem 
against semi-honest adversaries. 

27



MPC Outline
Secret-sharing Invariant: For each wire of the circuit, the n 
parties have a bit each, whose XOR is the value at the wire.

Base case: input wires.

XOR gate: given input shares  s.t.  and 
 s.t. , compute the shares of the output of 

the XOR gate:  

(𝛼1, …, 𝛼𝑛) ⊕𝑛
𝑖=1 𝛼𝑖 = 𝑎

(𝛽1, …, 𝛽𝑛) ⊕𝑛
𝑖=1 𝛽𝑖 = 𝑏

(𝛼1 + 𝛽1, …, 𝛼𝑛 + 𝛽𝑛)
AND gate: given input shares as above, compute the shares of 
the output of the XOR gate:  

(𝑜1, …, 𝑜𝑛) s . t ⊕𝑛
𝑖=1 𝑜𝑖 = 𝑎𝑏 Exercise!

28



Course Summary

29

• We started with a simple goal: secure communication

• Led to discussions about 


• pseudorandomness

• indistinguishability

• hardness of computation


• New primitives and security notions:

• SKE (IND-CPA)

• MACs (EUF-CMA)

• AE (Ciphertext Integrity)


• PKE 

• Signatures

• Hash functions (CRH)



Course Summary

30

• With these tools, we started looking at new goals

• Proving things about hidden data: ZK

• Computing over hidden data: MPC


• New models:

• Interactive Proofs 

• New security paradigms:

• Simulation



Can do much more with crypto!

31

• Efficient proofs about data (zk optional):

• Non-interactive ZK

• Private cryptocurrencies

• Succinct proofs of computation


• Efficient computation on hidden data:

• Homomorphic encryption

• Threshold cryptography


• Secure retrieval of outsourced data:

• “Oblivious” RAM


• Deployed at Signal for Private Key Discovery

• Private Information Retrieval



If any of these topics interest 
you, come speak to me after!

32

Thank you for a  
fantastic semester!


