CIS 5560

Cryptography
Lecture 26

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Announcements

- HW11 due Wednesday May 1 at 11:59PM on Gradescope

 Final Exam May 10 9AM-11AM
* WIll create and provide a cheat sheet

» Will share sample problems

Recap of Last Lecture

- Secure Multi-party Computation
« Secret Sharing
- Oblivious Transfer

Secure Two-Party Computation

Input: x Input: y
P
ﬂ _> ‘ q
Alice Bob
Output: FA<x, y) Output: FB(X, y)

Semiditgnest Security:

+ Alice should not learn anything more than x and F,(x, y) .

« Bob should not learn anything more than y and FB(x, y) :

Shamir’s t-out-of-n Secret Sharing

Key ldea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1)
polynomial (mod p) whose constant term is the secret b.

f)=a_x"'+... +ax+b
where g; are uniformly random mod p

2. Compute the shares:
si=f),s,=f2),....s;, = f(i),....,s, = f(n)
Correctness: can recover secret from any ¢ shares.

Security: the distribution of any t — 1 shares is
independent of the secret.

Note: need p to be larger than the number of parties n.

Oblivious Transfer (OT)

] ixf | Choice bit: b
L —
Sender Receiver

 Sender holds two bits/strings x; and x;.
* Receiver holds a choice bit b.

* Receiver should learn x,, sender should learn nothing.

(We will consider honest-but-curious adversaries; formal
definition in a little bit...)

OT Protocol 1: Trapdoor Permutations

For concreteness, let's use the RSA trapdoor permutation.

f .

Input bits: (Xq, X;) Choice bit: b

Pick N = PO and N,e
RSA exponent e. >

Choose random r, and
— 7€
Sor S set s, = r, mod N

Choose random s,_,
Compute ry, r; and

XOR X, x; using Xo@ HCB(r,
hardcore bits

» Bob can recover
) X, but not x;_,

OT = Secret-Shared-AND
Aloe getsrandom 7, Bob get
i)

Output: ¥ Output: O

— Run an OT protocol
=7 < » Choice bit b = f
x1=a®y

Alice outputs v.

Bob getS xlb +XO(1 @ b) = (.xl @XO)b +XO = aﬂ @ Yy = o)

“OT is Complete”

Theorem: OT can solve not just ANDs and money, but
any two-party (and multi-party) problem efficiently.

"

Y

Defining Security:
The Ideal/Real Paradigm

Secure Two-Party Computation

REAL Input: X
WORLD:

e Z e g

Secure Two-Party Computation

Input: X

ﬂ A——p

Alice

There exists a PPT simulator S 1M 4 such that for any
X and y:

STM 4(x, F(x,y)) = View(x, y)

Secure Two-Party Computation

Input: X

ﬂ A——p

Alice

There exists a PPT simulator S 1M g such that for any
X and y:

SIMp(y, F(x,y)) = Viewpg(x, y)

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
OT can solve any two-party computation problem.

"

{@®]

=

Y

Computing Arbitrary Functions

For us, programs = functions = Boolean circuits with
XOR (+ mod 2) and AND (X mod 2) gates.

ab(a’+ b’ 8

-
o

Want: If you can compute XOR and AND in the
appropriate sense, you can compute everything.

Computing Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice
and Bob each have a bit whose XOR is the value at the wire.

XOR gate:
AND gate?? Locally XOR the shares
a
b &
QL a @ ®0
30 b (0 ®b'

Base Case: Input wires

16

Computing the XOR gate

1 X D x’

Alice has & and Bob has ﬂs.t. a®pf=x /\
[+]
/ / X XI

Alice has & and Bob has ﬁ st.a’'@ p'=x’

Alice computes a @ a’ and Bob computes g @ f'.

So, we have: (a® a')@ (S & F)
=(a®p)B(d®f) =xBX

Computing the AND gate
Alice has @ and Bob has fist. a @ B = x

. / / / / /
Alice has & and Bob has ﬁ st.a’' @ f'=x x x'

Desired output (to maintain invariant):
Alice wants a'’ and Bob wants ' s.t. a” @ " = xx’

Computing the AND gate
xx'=(a@® f)a' @ f) N
o, 05 0

L o o 8
Vb Op

/

X X

f g8

a'=ad’®y, &0, P'=pFDy, D,

Computing Arbitrary Functions

Secret-sharing Invariant. For each wire of the circuit, Alice
and Bob each have a bit whose XOR is the value at the wire.

Finally, Alice and Bob exchange the shares at the output wire,
and XOR the shares together to obtain the output.

LY s@p=ab@eb)
op

Security by Composition
Theorem:
If protocol I1 securely realizes a function g in

the “ f-hybrid model” and protocol I’ securely
realizes f, then II o II’ securely realizes g.

Protocol for g in the f-hybrid model Protocol for f

21

Security: Intuition (ss-AND hybrid model)

Imagine that the parties have access to an ss-AND angel.

o - 6\
y \

Security: Intuition (ss-AND hybrid model)

Imagine that the parties have access to an ss-AND angel.

Simulator for Alice’s view: XOR gate: simulate given
Alice’s input shares

‘2

fla a 0

Input wires: can be
simulated given Alice’s input

Security: Intuition (ss-AND hybrid model)

Simulator for Alice’s view:

AND gate: simulate given Alice’s input shares
& outputs from the ss-AND angel.

X /
(@) Alice’s shars a f)

=a.0*ynlinp 0.0)
5alice [.]
il a a 0
Yatice @Nd 0,:., @re random,

independent of b

Security: Intuition (ss-AND hybrid model)

Simulator for Alice’s view:
Output wire: need to know both Alice and Bob’s output

shares.

Bob’s output share = Alice’s

output share @ function output X a f)
Simulator knows the

function output, and | + I
can compute Bob’s [

output share given fLa a 0

Alice’s output share.

In summary: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming OT exists, there is a protocol that
solves any two-party computation problem
against semi-honest adversaries.

In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson’87]:
Assuming OT exists, there is a protocol that
solves any multi-party computation problem
against semi-honest adversaries.

MPC Outline

Secret-sharing Invariant: For each wire of the circuit, the n
parties have a bit each, whose XOR is the value at the wire.

Base case: input wires.

XOR gate: given input shares (al, oo an) st. @_, o, =aand
(/31, s ﬂn) s.t. @°_, f; = b, compute the shares of the output of
the XOR gate:

(al + 6. q,+ ﬁn)

AND gate: given input shares as above, compute the shares of
the output of the XOR gate:

(01, ey on) S.t @?:1 0; = ab Exercise!

28

Course Summary

- We started with a simple goal: secure communication

 Led to discussions about

« pseudorandomness
* Indistinguishability
« hardness of computation

« New primitives and security notions:

- SKE (IND-CPA) - PKE
- MACs (EUF-CMA) - Signatures
« AE (Ciphertext Integrity) « Hash functions (CRH)

Course Summary

« With these tools, we started looking at new goals

« Proving things about hidden data: ZK
« Computing over hidden data: MPC

« New models:

e |nteractive Proofs

« New security paradigms:

« Simulation

Can do much more with crypto!

Efficient proofs about data (zk optional):
« Non-interactive ZK

Private cryptocurrencies
Succinct proofs of computation

Efficient computation on hidden data:
Homomorphic encryption
Threshold cryptography

- Secure retrieval of outsourced data:
“Oblivious” RAM
Deployed at Signal for Private Key Discovery

Private Information Retrieval

If any of these topics interest
you, come speak to me after!

Thank you for a
fantastic semester!

