CIS 5560

Cryptography Lecture 26

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

Announcements

- HW11 due Wednesday May 1 at 11:59PM on Gradescope
- Final Exam May 10 9AM-11AM
- Will create and provide a cheat sheet
- Will share sample problems

Recap of Last Lecture

- Secure Multi-party Computation
- Secret Sharing
- Oblivious Transfer

Seminitgnest Security:

- Alice should not learn anything more than x and $F_A(x, y)$.
- Bob should not learn anything more than y and $F_B(x, y)$.

Shamir's t-out-of-n Secret Sharing Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1) polynomial (mod p) whose constant term is the secret *b*.

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p

2. Compute the shares:

 $s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$

Correctness: can recover secret from any *t* shares.

Security: the distribution of any t - 1 shares is independent of the secret.

Note: need p to be larger than the number of parties n.

Oblivious Transfer (OT)

- Sender holds two bits/strings x_0 and x_1 .
- Receiver holds a choice bit *b*.
- Receiver should learn x_b, sender should learn nothing.
 (We will consider honest-but-curious adversaries; formal definition in a little bit...)

OT Protocol 1: Trapdoor Permutations

For concreteness, let's use the RSA trapdoor permutation.

$OT \implies Secret-Shared-AND$

Alice outputs γ .

Bob gets $x_1b + x_0(1 \oplus b) = (x_1 \oplus x_0)b + x_0 = \alpha\beta \oplus \gamma := \delta$

"OT is Complete"

Theorem: OT can solve not just ANDs and money, but *any* two-party (and multi-party) problem efficiently.

Defining Security: The Ideal/Real Paradigm

There exists a PPT simulator SIM_A such that for any x and y: $SIM_A(x, F(x, y)) \cong View_A(x, y)$

There exists a PPT simulator SIM_B such that for any x and y: $SIM_B(y, F(x, y)) \cong View_B(x, y)$

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: OT can solve *any* two-party computation problem.

Computing Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR (+ mod 2) and AND (× mod 2) gates.

Want: If you can compute XOR and AND *in the appropriate sense*, you can compute everything.

Computing Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

Base Case: Input wires

Computing the XOR gate $x \oplus x'$ Alice has α and Bob has β s.t. $\alpha \oplus \beta = x$ ╋ Alice has α' and Bob has β' s.t. $\alpha' \oplus \beta' = x'$

Alice computes $\alpha \oplus \alpha'$ and Bob computes $\beta \oplus \beta'$.

So, we have:
$$(\alpha \oplus \alpha') \oplus (\beta \oplus \beta')$$

= $(\alpha \oplus \beta) \oplus (\alpha' \oplus \beta') = x \oplus x'$

Computing the AND gate

Alice has α and Bob has β s.t. $\alpha \oplus \beta = x$

Alice has α' and Bob has β' s.t. $\alpha' \oplus \beta' = x'$

Desired output (to maintain invariant): Alice wants α'' and Bob wants β'' s.t. $\alpha'' \oplus \beta'' = xx'$

Computing the AND gate

Computing Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

Finally, Alice and Bob exchange the shares at the output wire, and XOR the shares together to obtain the output.

Security by Composition

Theorem:

If protocol Π securely realizes a function g in the "f-hybrid model" and protocol Π' securely realizes f, then $\Pi \circ \Pi'$ securely realizes g.

Imagine that the parties have access to an ss-AND angel.

Imagine that the parties have access to an ss-AND angel.

Input wires: can be simulated given Alice's input

Simulator for Alice's view:

AND gate: simulate given Alice's input shares & outputs from the ss-AND angel.

Simulator for Alice's view:

Output wire: need to know both Alice and Bob's output shares.

Bob's output share = Alice's output share \oplus function output

Simulator knows the function output, and can compute Bob's output share given Alice's output share.

In summary: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves **any** two-party computation problem against semi-honest adversaries.

In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves any **multi-party** computation problem against semi-honest adversaries.

MPC Outline

Secret-sharing Invariant: For each wire of the circuit, **the n parties have a bit each**, whose XOR is the value at the wire.

Base case: input wires.

XOR gate: given input shares $(\alpha_1, ..., \alpha_n)$ s.t. $\bigoplus_{i=1}^n \alpha_i = a$ and $(\beta_1, ..., \beta_n)$ s.t. $\bigoplus_{i=1}^n \beta_i = b$, compute the shares of the output of the XOR gate:

$$(\alpha_1 + \beta_1, \dots, \alpha_n + \beta_n)$$

AND gate: given input shares as above, compute the shares of the output of the XOR gate:

$$(o_1, \ldots, o_n)$$
 s.t $\bigoplus_{i=1}^n o_i = ab$ **Exercise!**

Course Summary

- We started with a simple goal: secure communication
- Led to discussions about
 - pseudorandomness
 - indistinguishability
 - hardness of computation
- New primitives and security notions:
 - SKE (IND-CPA)
 - MACs (EUF-CMA)
 - AE (Ciphertext Integrity)

- PKE
- Signatures
- Hash functions (CRH)

Course Summary

- With these tools, we started looking at new goals
 - Proving things about hidden data: ZK
 - Computing over hidden data: MPC
- New models:
 - Interactive Proofs
- New security paradigms:
 - Simulation

Can do much more with crypto!

- Efficient proofs about data (zk optional):
 - Non-interactive ZK
 - Private cryptocurrencies
 - Succinct proofs of computation
- *Efficient* computation on hidden data:
 - Homomorphic encryption
 - Threshold cryptography
- Secure retrieval of outsourced data:
 - "Oblivious" RAM
 - Deployed at Signal for Private Key Discovery
 - Private Information Retrieval

If any of these topics interest you, come speak to me after!

Thank you for a fantastic semester!