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Announcements
• HW10 due Thursday Apr 25 at 11:59PM on Gradescope

• HW11 due Wednesday May 1 at 11:59PM on Gradescope
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Recap of Last Lecture
• Secure Multi-party Computation

• Secret Sharing

• Oblivious Transfer
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Secure Computation

Bob

Input: 𝒚

Output:  𝐹𝐴(𝑥, 𝑦)

Alice

Input: 𝒙

Output:  𝐹𝐵(𝑥, 𝑦)
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Secure Two-Party Computation

• Alice should not learn anything more than  and   𝑥 𝐹𝐴(𝑥, 𝑦) .

• Bob should not learn anything more than  and   𝑦 𝐹𝐵(𝑥, 𝑦) .

Semi-honest Security:Security:

Bob

Input: 𝒚

Output:  𝐹𝐴(𝑥, 𝑦)

Alice

Input: 𝒙

Output:  𝐹𝐵(𝑥, 𝑦)
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Secret Sharing
secret b

share 𝑠1 share 𝑠2 share 𝑠3 share 𝑠4 share 𝑠𝑛

𝑃1 𝑃2 𝑃3 𝑃4 𝑃𝑛Dealer

o Threshold (or t-out-of-n) SS [Shamir’79, Blakley’79]: 

❑  Any “authorized” subset of players can recover b.
❑  No other subset of players has any info about b.

“authorized” subset = has size t. ≥  

…

6



Shamir’s t-out-of-n Secret Sharing
Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1) 
polynomial (mod p) whose constant term is the secret 𝑏 .

  
	 where  are uniformly random mod  
𝑓(𝑥) = 𝑎𝑡−1𝑥𝑡−1 + … + 𝑎1𝑥 + 𝑏

𝑎𝑖 𝑝

2.   Compute the shares   :
𝑠1 = 𝑓(1), 𝑠2 = 𝑓(2), …, 𝑠𝑖 = 𝑓(𝑖), …, 𝑠𝑛 = 𝑓(𝑛)

Correctness: can recover secret from any  shares. 𝑡

Security: the distribution of  shares is 
independent of the secret.

𝑎𝑛𝑦 𝑡 − 1

Note: need p to be larger than the number of parties n. 7



Oblivious Transfer (OT)

Receiver

Choice bit: 𝒃
𝑥0
𝑥1

• Sender holds two bits/strings  and .𝑥0 𝑥1

• Receiver holds a choice bit .𝑏

• Receiver should learn , sender should learn nothing. 𝑥𝑏

(We will consider honest-but-curious adversaries; formal 
definition in a little bit…)

Sender
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𝛼 ∈ {0,1} 𝛽 ∈ {0,1}
Alice and Bob want to 

compute the AND .𝛼 ∧ 𝛽

𝑥0 = 0
𝑥1 = 𝛼

Choice bit 𝑏 = 𝛽
Run an OT protocol

Bob gets  if , and 0 if  𝛼 β = 1 β = 0

Here is a way to write the OT selection function: 𝒙𝟏𝒃 +  𝒙𝟎(𝟏 − 𝒃)
which, in this case is . = 𝛼𝛽

Why OT? Computing ANDs
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The Billionaires’ Problem
Net worth: $X Net worth: $Y

Who is richer?
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The Billionaires’ Problem

𝑋 𝑌

  
if and only if 

𝑓(𝑋, 𝑌 ) = 1
𝑋 > 𝑌

Unit Vector  = 1 in the  
location and 0 elsewhere

𝑢𝑋 𝑋𝑡h

10 0 0 ……

Vector  = 1 from the 
 location onwards
𝑣𝑌

(𝑌 + 1)𝑡h

10 1 1… 1 1 1

𝒇(𝑿, 𝒀 ) = ⟨𝒖𝑿, 𝒗𝒀⟩ =
𝑼

∑
𝒊=𝟏

𝒖𝑿[𝒊] ∧ 𝒗𝒀[𝒊]

Compute each AND individually and sum it up? 
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Today’s Lecture
• OT for AND of secret-shared bits

• Definition of MPC

• Definition of OT

• Construction of OT from Trapdoor Permutations

•
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Detour: OT  Secret-Shared-AND⟹
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}Alice gets random , Bob gets 

random  s.t. .
𝛾

𝛿 γ ⊕ δ = αβ

x0 = γ
x1 = a ⊕ γ

Choice bit 𝑏 = 𝛽
Run an OT protocol

Bob gets x1b + x0(1 ⊕ b)

Output: 𝛾 Output: 𝛿

= (x1 ⊕ x0)b + x0 = αβ ⊕ γ := δ

Alice outputs .𝛾
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The Billionaires’ Problem
  

if and only if 
𝑓(𝑋, 𝑌 ) = 1

𝑋 > 𝑌

Unit Vector 𝑢𝑋

10 0 0 ……

Vector 𝑣𝑌

10 1 1… 1 1 1

𝒇(𝑿, 𝒀 ) = ⟨𝒖𝑿, 𝒗𝒀⟩ =
𝑼

∑
𝒊=𝟏

𝒖𝑿[𝒊] ∧ 𝒗𝒀[𝒊]

1. Alice and Bob run many OTs to get  s.t.(𝛾𝑖, 𝛿𝑖) 𝛾𝑖⨁𝛿𝑖 =  𝒖
𝑿

[𝒊] ∧ 𝒗𝒀[𝒊]

2. Alice computes  and Bob computes  γ = ⊕i γi δ = ⊕i δi

Check (correctness): .γ ⊕ δ = ⟨uX, vY⟩ = f (X, Y )
3. Alice reveals  and Bob reveals 𝛾 𝛿 .
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The Billionaires’ Problem
  

if and only if 
𝑓(𝑋, 𝑌 ) = 1

𝑋 > 𝑌

Unit Vector 𝑢𝑋

10 0 0 ……

Vector 𝑣𝑌

10 1 1… 1 1 1

𝒇(𝑿, 𝒀 ) = ⟨𝒖𝑿, 𝒗𝒀⟩ =
𝑼

∑
𝒊=𝟏

𝒖𝑿[𝒊] ∧ 𝒗𝒀[𝒊]

1. Alice and Bob run many OTs to get  s.t.(𝛾𝑖, 𝛿𝑖) 𝛾𝑖⨁𝛿𝑖 =  𝒖
𝑿

[𝒊] ∧ 𝒗𝒀[𝒊]

2. Alice computes  and Bob computes  γ = ⊕i γi δ = ⊕i δi

3. Alice reveals  and Bob reveals 𝛾 𝛿 .
15Check (privacy): Alice & Bob get a bunch of random bits.



“OT is Complete”

Theorem: OT can solve not just ANDs and money, but 
any two-party (and multi-party) problem efficiently. 
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Defining Security: 
The Ideal/Real Paradigm
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Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙REAL 
WORLD:

IDEAL 
WORLD: 𝒙

𝒚

𝑭(𝒙, 𝒚)
𝑭(𝒙, 𝒚)

≈



Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator  such that for any 
 and : 

𝑆𝐼𝑀𝐴
𝑥 𝑦
𝑆𝐼𝑀𝐴(𝑥, 𝐹(𝑥, 𝑦)) ≅ 𝑉𝑖𝑒𝑤𝐴(𝑥, 𝑦)



Secure Two-Party Computation

Bob

Input: 𝒚

Alice

Input: 𝒙

There exists a PPT simulator  such that for any 
 and : 

𝑆𝐼𝑀𝐵
𝑥 𝑦
𝑆𝐼𝑀𝐵(𝑦, 𝐹(𝑥, 𝑦)) ≅ 𝑉𝑖𝑒𝑤𝐵(𝑥, 𝑦)



OT Definition

Receiver

Choice bit: 𝒃
𝑥0
𝑥1

Receiver Security: Sender should not learn b.

Sender

Define Sender’s view  = her random coins 
and the protocol messages.

𝑉𝑖𝑒𝑤𝑆(𝑥0, 𝑥1, 𝑏)
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OT Definition

Receiver

Choice bit: 𝒃
𝑥0
𝑥1

Receiver Security: Sender should not learn b.

Sender

There exists a PPT simulator  such that for any ,
 and : 

𝑆𝐼𝑀𝑆 𝑥0
𝑥1 𝑏

𝑆𝐼𝑀𝑆(𝑥0, 𝑥1) ≅ 𝑉𝑖𝑒𝑤𝑆(𝑥0, 𝑥1, 𝑏)
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OT Definition

Receiver

Choice bit: 𝒃
𝑥0
𝑥1

Sender Security: Receiver should not learn .𝑥1−𝑏

Sender

Define Receiver’s view  = his random coins 
and the protocol messages.

𝑉𝑖𝑒𝑤𝑅(𝑥0, 𝑥1, 𝑏)
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OT Definition

Receiver

Choice bit: 𝒃
𝑥0
𝑥1

Sender Security: Receiver should not learn .𝑥1−𝑏

Sender

There exists a PPT simulator  such that for any ,
 and : 

𝑆𝐼𝑀𝑅 𝑥0
𝑥1 𝑏

𝑆𝐼𝑀𝑅(𝑏, 𝑥𝑏) ≅ 𝑉𝑖𝑒𝑤𝑅(𝑥0, 𝑥1, 𝑏)
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OT Protocols
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OT Protocol 1: Trapdoor Permutations

Pick  and 
RSA exponent  

𝑁 = 𝑃𝑄
𝑒 .

𝑁, 𝑒

Choose random  and  
set 

𝑟𝑏
𝑠𝑏 = 𝑟𝑒

𝑏  mod 𝑁

For concreteness, let’s use the RSA trapdoor permutation.

Choice bit: 𝑏Input bits: (𝑥0, 𝑥1)

Choose random 𝑠1−𝑏

𝑠0, 𝑠1

𝑥0⨁𝐻𝐶𝐵(𝑟0)
Compute  and 
XOR  using 
hardcore bits

𝑟0, 𝑟1
𝑥0, 𝑥1

𝑥1⨁𝐻𝐶𝐵(𝑟1)
Bob can recover 

 but not   𝑥𝑏 𝑥1−𝑏
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OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥0, 𝑥1)

𝑠0, 𝑠1

𝑥0⨁𝐻𝐶𝐵(𝑟0)

How about Bob’s security  
(a.k.a. Why does Alice not learn Bob’s choice bit)?

𝑥1⨁𝐻𝐶𝐵(𝑟1)

Alice’s view is  one of which is chosen randomly 
from  and the other by raising a random number 
to the -th power. They look exactly the same!

𝑠0, 𝑠1
𝑍∗

𝑁
𝑒
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OT Protocol 1: Trapdoor Permutations
𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥0, 𝑥1)

𝑠0, 𝑠1

𝑥0⨁𝐻𝐶𝐵(𝑟0)

How about Bob’s security  
(a.k.a. Why does Alice not learn Bob’s choice bit)?

𝑥1⨁𝐻𝐶𝐵(𝑟1)

Exercise: Show how to construct the simulator.
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OT Protocol 1: Trapdoor Permutations

How about Alice’s security  
(a.k.a. Why does Bob not learn both of Alice’s bits)?

Assuming Bob is semi-honest, he chose  uniformly 
at random, so the hardcore bit of  is 
computationally hidden from him.

𝑠1−𝑏
𝑠1−𝑏 = 𝑟𝑑

1−𝑏

29

𝑁, 𝑒

Choice bit: 𝑏Input bits: (𝑥0, 𝑥1)

𝑠0, 𝑠1

𝑥0⨁𝐻𝐶𝐵(𝑟0)
𝑥1⨁𝐻𝐶𝐵(𝑟1)



Many More Constructions of OT

Theorem: OT protocols can be constructed based 
on the hardness of the Diffie-Hellman problem, 
factoring, quadratic residuosity, LWE, elliptic curve 
isogeny problem etc. etc.
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Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:  
OT can solve any two-party computation problem. 
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Computing Arbitrary Functions

+X

X

For us, programs = functions = Boolean circuits with 
XOR ( ) and AND ( ) gates.+ 𝑚𝑜𝑑 2 ×  𝑚𝑜𝑑 2

Want: If you can compute XOR and AND in the 
appropriate sense, you can compute everything.

𝑎 𝑏 𝑎′ 𝑏′ 

)𝑎𝑏(𝑎′ + 𝑏′ 

𝑎𝑏 𝑎′ + 𝑏′ 
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Recap: OT  Secret-Shared-AND⟹
𝛼 ∈ {0,1} 𝛽 ∈ {0,1}Alice gets random , Bob gets 

random  s.t. .
𝛾

𝛿 γ ⊕ δ = αβ

x0 = γ
x1 = a ⊕ γ

Choice bit 𝑏 = 𝛽
Run an OT protocol

Bob gets x1b + x0(1 ⊕ b)

Output: 𝛾 Output: 𝛿

= (x1 ⊕ x0)b + x0 = αβ ⊕ γ := δ

Alice outputs .𝛾
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+X

X

Secret-sharing Invariant: For each wire of the circuit, Alice 
and Bob each have a bit whose XOR is the value at the wire.

𝑎
0 𝑏

0 𝑎′ 

𝑏′ 0
0

Base Case: Input wires

XOR gate:  
Locally XOR the shares

𝑎′ 

𝑏′ 

⊕
⊕

AND gate?? 

Computing Arbitrary Functions
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Computing the XOR gate
Alice has  and Bob has  s.t. 𝛼 𝛽

+

𝑥 𝑥′ 

𝑥 ⊕ 𝑥′ 

𝛼 ⊕ 𝛽 = 𝑥

Alice has  and Bob has  s.t. 𝛼′ 𝛽′ 𝛼′ ⊕ 𝛽′ = 𝑥′ 

Alice computes  and Bob computes 𝜶 ⊕ 𝜶′ 𝜷 ⊕ 𝜷′ .

So, we have:   
	 	

(𝛼 ⊕ 𝛼′ ) ⊕ (𝛽 ⊕ 𝛽′ )
= (𝛼 ⊕ 𝛽) ⊕ (𝛼′ ⊕ 𝛽′ ) = x ⊕ x′ 
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Computing the AND gate

×

𝑥 𝑥′ 

𝑥𝑥′ 

Desired output (to maintain invariant):   
Alice wants  and Bob wants  s.t. 𝜶′ ′ 𝜷′ ′ 𝜶′ ′ ⊕ 𝜷′ ′ = 𝑥𝑥′ 

Alice has  and Bob has  s.t. 𝛼 𝛽 𝛼 ⊕ 𝛽 = 𝑥

Alice has  and Bob has  s.t. 𝛼′ 𝛽′ 𝛼′ ⊕ 𝛽′ = 𝑥′ 
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𝑥𝑥′ = (𝛼 ⊕ 𝛽)(𝛼′ ⊕ 𝛽′ )
= 𝛼𝛼′ ⊕ 𝛽𝛼′ ⊕ 𝛼𝛽′ ⊕ 𝛽𝛽′ 

𝛽𝛼′ 
ss-AND

𝛾𝑏𝛾𝑎

𝛾𝑎


⊕
𝛾𝑏 𝛽′ 𝛼

ss-AND

𝛿𝑏𝛿𝑎

𝛿𝑎


⊕
𝛿𝑏

𝛼′ ′ = 𝛼𝛼′ ⊕ 𝛾𝑎 ⊕ 𝛿𝑎 𝛽′ ′ = 𝛽𝛽′ ⊕ 𝛾𝑏 ⊕ 𝛿𝑏

×

𝑥 𝑥′ 

𝑥𝑥′ 

Computing the AND gate
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+×

×

Computing Arbitrary Functions
Secret-sharing Invariant: For each wire of the circuit, Alice 
and Bob each have a bit whose XOR is the value at the wire.

𝑎 𝑏 𝑎′ 𝑏′ 

Finally, Alice and Bob exchange the shares at the output wire, 
and XOR the shares together to obtain the output.

𝛼
𝛽

𝛼 ⊕ 𝛽 = 𝑎𝑏(𝑎′ ⊕ 𝑏′ )
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Security by Composition
Theorem:  
If protocol  securely realizes a function  in 
the “ -hybrid model” and  protocol  securely 
realizes , then  securely realizes . 

Π 𝑔
𝑓 Π′ 

𝑓 Π ∘ Π′ 𝑔

-angel 𝑓

Protocol for  in the -hybrid model 𝑔 𝑓 Protocol for 𝑓

+
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Security: Intuition (ss-AND hybrid model)
Imagine that the parties have access to an ss-AND angel.

𝒂
𝒃

𝛾 𝛿

 𝛾 ⨁𝛿 = ab

40



Imagine that the parties have access to an ss-AND angel.

+X

X

𝑎
0 𝑏

0 𝑎′ 

𝑏′ 0
0

Simulator for Alice’s view:

𝑎′ 

𝑏′ 

Input wires: can be 
simulated given Alice’s input

XOR gate: simulate given 
Alice’s input shares 

41

Security: Intuition (ss-AND hybrid model)



+X

X

𝑎
0 𝑏

0 𝑎′ 

𝑏′ 0
0

Simulator for Alice’s view:

𝑎′ 

𝑏′ 

AND gate: simulate given Alice’s input shares 
& outputs from the ss-AND angel.

Alice’s share  
= 𝑎 ∙ 0 + 𝑠𝑠𝑎𝑛𝑑(𝑎, 𝑏) + 𝑠𝑠𝑎𝑛𝑑(0,0)𝛾𝑎𝑙𝑖𝑐𝑒

𝛿𝑎𝑙𝑖𝑐𝑒

 and  are random, 
independent of  
𝛾𝑎𝑙𝑖𝑐𝑒 𝛿𝑎𝑙𝑖𝑐𝑒

𝑏 42

Security: Intuition (ss-AND hybrid model)



+X

X

𝑎
0 𝑏

0 𝑎′ 

𝑏′ 0
0

Simulator for Alice’s view:

𝑎′ 

𝑏′ 

Output wire: need to know both Alice and Bob’s output 
shares.

Bob’s output share = Alice’s 
output share  function output⊕

Simulator knows the 
function output, and 
can compute Bob’s 
output share given 
Alice’s output share. 

43

Security: Intuition (ss-AND hybrid model)



Secret-Shared AND protocol

Pick  
and RSA 
exponent  

𝑁 = 𝑃𝑄

𝑒 .
𝑁, 𝑒

Choose random  and  
set 

𝑟𝑏
𝑠𝑏 = 𝑟𝑒

𝑏  mod 𝑁

Using the RSA trapdoor permutation.

Input bit: 𝑏Input bit: a

Choose random 𝑠1−𝑏

𝑠0, 𝑠1

𝑥0⨁𝐻𝐶𝐵(𝑟0)
Compute  and 
one-time pad  
using hardcore bits

𝑟0, 𝑟1
𝑥0, 𝑥1

𝑥1⨁𝐻𝐶𝐵(𝑟1)

Let  be 
random and 

𝑥0

𝑥1 = 𝑥0⨁a .

Alice outputs  𝑥0 Bob outputs  𝑥𝑏 44



Secret-Shared AND protocol
Using the RSA trapdoor permutation.

Input bit: 𝑏Input bit: a

Exercise: Construct simulators for Alice and Bob.
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In summary: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson’87]:  
Assuming OT exists, there is a protocol that 
solves any two-party computation problem 
against semi-honest adversaries. 
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In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson’87]:  
Assuming OT exists, there is a protocol that 
solves any multi-party computation problem 
against semi-honest adversaries. 
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MPC Outline
Secret-sharing Invariant: For each wire of the circuit, the n 
parties have a bit each, whose XOR is the value at the wire.

Base case: input wires.

XOR gate: given input shares  s.t. 

 and  s.t. , 
compute the shares of the output of the XOR gate:  

(𝛼1, …, 𝛼𝑛)
⊕𝑛

𝑖=1 𝛼𝑖 = 𝑎 (𝛽1, …, 𝛽𝑛) ⊕𝑛
𝑖=1 𝛽𝑖 = 𝑏

(𝛼1 + 𝛽1, …, 𝛼𝑛 + 𝛽𝑛)
AND gate: given input shares as above, compute the shares of 
the output of the XOR gate:  

(𝑜1, …, 𝑜𝑛) s . t ⊕𝑛
𝑖=1 𝑜𝑖 = 𝑎𝑏 Exercise!
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