CIS 5560

Cryptography Lecture 25

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

Announcements

- HW10 due Thursday Apr 25 at 11:59PM on Gradescope
- HW11 due Wednesday May 1 at 11:59PM on Gradescope

Recap of Last Lecture

- Secure Multi-party Computation
- Secret Sharing
- Oblivious Transfer

Secure Computation

Input: x

Output: $F_{A}(x, y)$

Input: y

Output: $F_{B}(x, y)$

Secure Two-Party Computation

Input: x

Input: y

Output: $F_{B}(x, y)$

Semiftonest Security:

- Alice should not learn anything more than x and $F_{A}(x, y)$.
- Bob should not learn anything more than y and $F_{B}(x, y)$.

Dealer

Secret Sharing

[Any "authorized" subset of players can recover b.
] No other subset of players has any info about b.

- Threshold (or t-out-of-n) SS [Shamir'79, Blakley'79]:

$$
\text { "authorized" subset = has size } \geq \mathrm{t} \text {. }
$$

Shamir's t-out-of-n Secret Sharing
 Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1) polynomial $(\bmod \mathbf{p})$ whose constant term is the secret b.

$$
\begin{aligned}
f(x)= & a_{t-1} x^{t-1}+\ldots+a_{1} x+b \\
& \text { where } a_{i} \text { are uniformly random } \bmod p
\end{aligned}
$$

2. Compute the shares:

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Correctness: can recover secret from any t shares.
Security: the distribution of anyt-1 shares is independent of the secret.

Note: need p to be larger than the number of parties n.

Oblivious Transfer (OT)

x_{0}
x_{1}

Choice bit: b

Sender

- Sender holds two bits/strings x_{0} and x_{1}.
- Receiver holds a choice bit b.
- Receiver should learn x_{b}, sender should learn nothing.
(We will consider honest-but-curious adversaries; formal definition in a little bit...)

Why OT? Computing ANDs

$$
\begin{array}{|c|}
\hline x_{0}=0 \\
x_{1}=\alpha \\
\hline
\end{array} \quad \text { Run an OT protocol } ~ C h o i c e ~ b i t ~ b=\beta
$$

Bob gets α if $\beta=1$, and 0 if $\beta=0$

Here is a way to write the OT selection function: $x_{1} b+x_{0}(1-b)$ which, in this case is $=\alpha \beta$.

The Billionaires' Problem

Who is richer?

The Billionaires' Problem

$$
\begin{array}{llllllll}
\hline \cdots & 0 & 1 & 0 & 0 & \cdots \\
\hline
\end{array}
$$

$f(X, Y)=1$
if and only if $X>Y$

Unit Vector $u_{X}=1$ in the $X^{\text {th }}$
Vector $v_{Y}=1$ from the location and 0 elsewhere $(Y+1)^{t h}$ location onwards

$$
f(X, Y)=\left\langle u_{X}, v_{Y}\right\rangle=\sum_{i=1}^{U} u_{X}[i] \wedge v_{Y}[i]
$$

Today’s Lecture

- OT for AND of secret-shared bits
- Definition of MPC
- Definition of OT
- Construction of OT from Trapdoor Permutations

Detour: OT \Longrightarrow Secret-Shared-AND

Output: γ
Alice gets random γ, Bob gets random δ s.t. $\gamma \oplus \delta=\alpha \beta$.

$$
\beta \in\{0,1\}
$$

Output: δ

$$
\begin{aligned}
& x_{0}=\gamma \\
& x_{1}=a \oplus \gamma
\end{aligned}
$$

Choice bit $b=\beta$

Alice outputs γ.
Bob gets $x_{1} b+x_{0}(1 \oplus b)=\left(x_{1} \oplus x_{0}\right) b+x_{0}=\alpha \beta \oplus \gamma:=\delta$

The Billionaires' Problem

$$
f(X, Y)=1
$$

Unit Vector u_{X}

$$
f(X, Y)=\left\langle u_{X}, v_{Y}\right\rangle=\sum_{i=1}^{U} u_{X}[i] \wedge v_{Y}[i]
$$

1. Alice and Bob run many OTs to get $\left(\gamma_{i}, \delta_{i}\right)$ s.t. $\gamma_{i} \bigoplus \delta_{i}=u_{X}[i] \wedge \boldsymbol{v}_{Y}[\boldsymbol{i}]$
2. Alice computes $\gamma=\oplus_{i} \gamma_{i}$ and Bob computes $\delta=\oplus_{i} \delta_{i}$
3. Alice reveals γ and Bob reveals δ.

Check (correctness): $\gamma \oplus \delta=\left\langle u_{X}, v_{Y}\right\rangle=f(X, Y)$.

The Billionaires' Problem

$$
f(X, Y)=1
$$ if and only if $X>Y$

Unit Vector u_{X}

$$
f(\boldsymbol{X}, \boldsymbol{Y})=\left\langle u_{X}, v_{Y}\right\rangle=\sum_{i=1}^{U} u_{X}[i] \wedge \boldsymbol{v}_{Y}[i]
$$

1. Alice and Bob run many OTs to get $\left(\gamma_{i}, \delta_{i}\right)$ s.t. $\gamma_{i} \bigoplus \delta_{i}=u_{X}[i] \wedge \boldsymbol{v}_{Y}[\boldsymbol{i}]$
2. Alice computes $\gamma=\oplus_{i} \gamma_{i}$ and Bob computes $\delta=\oplus_{i} \delta_{i}$
3. Alice reveals γ and Bob reveals δ.

Check (privacy): Alice \& Bob get a bunch of random bits.

"OT is Complete"

Theorem: OT can solve not just ANDs and money, but any two-party (and multi-party) problem efficiently.

Defining Security: The Ideal/Real Paradigm

Secure Two-Party Computation

REAL Input: \boldsymbol{x}
Input: y
WORLD:

IDEAL WORLD:

Secure Two-Party Computation

Input: \boldsymbol{x}

Input: \boldsymbol{y}

There exists a PPT simulator $S I M_{A}$ such that for any x and y :
$S I M_{A}(x, F(x, y)) \cong \operatorname{View}_{A}(x, y)$

Secure Two-Party Computation

Input: \boldsymbol{x}

Input: \boldsymbol{y}

There exists a PPT simulator $S I M_{B}$ such that for any x and y :
$S I M_{B}(y, F(x, y)) \cong \operatorname{View}_{B}(x, y)$

OT Definition

x_{0}
x_{1}

Sender

Choice bit: b

Receiver

Receiver Security: Sender should not learn b.
Define Sender's view Views $\left(x_{0}, x_{1}, b\right)=$ her random coins and the protocol messages.

OT Definition

x_{0}
x_{1}

Sender

Choice bit: b

Receiver

Receiver Security: Sender should not learn b.
There exists a PPT simulator $S I M_{S}$ such that for any x_{0}, x_{1} and b :
$\operatorname{SIM}_{S}\left(x_{0}, x_{1}\right) \cong \operatorname{View}_{S}\left(x_{0}, x_{1}, b\right)$

OT Definition

x_{0}
x_{1}

Sender

Choice bit: b

Sender Security: Receiver should not learn x_{1-b}.
Define Receiver's view $\operatorname{View}_{R}\left(x_{0}, x_{1}, b\right)=$ his random coins and the protocol messages.

OT Definition

x_{0}
x_{1}

Sender

Choice bit: b

Sender Security: Receiver should not learn $x_{1-b^{*}}$
There exists a PPT simulator $S I M_{R}$ such that for any x_{0}, x_{1} and b :
$\operatorname{SIM}_{R}\left(b, x_{b}\right) \cong \operatorname{View}_{R}\left(x_{0}, x_{1}, b\right)$

OT Protocols

OT Protocol 1: Trapdoor Permutations

For concreteness, let's use the RSA trapdoor permutation.

Pick $N=P Q$ and RSA exponent e.

Choose random r_{b} and set $s_{b}=r_{b}^{e} \bmod N$

Choose random s_{1-b}
Compute r_{0}, r_{1} and XOR x_{0}, x_{1} using hardcore bits

$$
\xrightarrow[x_{1} \bigoplus H C B\left(r_{1}\right)]{x_{0} \bigoplus H C B\left(r_{0}\right)} \quad \begin{aligned}
& \text { Bob can recover } \\
& x_{b} \text { but not } x_{1-b}
\end{aligned}
$$

OT Protocol 1: Trapdoor Permutations

How about Bob's security

(a.k.a. Why does Alice not learn Bob's choice bit)?

Alice's view is s_{0}, s_{1} one of which is chosen randomly from Z_{N}^{*} and the other by raising a random number to the e-th power. They look exactly the same!

OT Protocol 1: Trapdoor Permutations

How about Bob's security
(a.k.a. Why does Alice not learn Bob's choice bit)?

Exercise: Show how to construct the simulator.

OT Protocol 1: Trapdoor Permutations

How about Alice's security

(a.k.a. Why does Bob not learn both of Alice's bits)?

Assuming Bob is semi-honest, he chose S_{1-b} uniformly at random, so the hardcore bit of $S_{1-b}=r_{1-b}^{d}$ is computationally hidden from him.

Many More Constructions of OT

Theorem: OT protocols can be constructed based on the hardness of the Diffie-Hellman problem, factoring, quadratic residuosity, LWE, elliptic curve isogeny problem etc. etc.

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]:
OT can solve any two-party computation problem.

Computing Arbitrary Functions

For us, programs $=$ functions $=$ Boolean circuits with XOR $(+\bmod 2)$ and AND $(\times \bmod 2)$ gates.

Want: If you can compute XOR and AND in the appropriate sense, you can compute everything.

Recap: OT \Longrightarrow Secret-Shared-AND

Output: γ
Alice gets random γ, Bob gets random δ s.t. $\gamma \oplus \delta=\alpha \beta$.

$$
\beta \in\{0,1\}
$$

Output: δ

$$
\begin{aligned}
& x_{0}=\gamma \\
& x_{1}=a \oplus \gamma
\end{aligned}
$$

Choice bit $b=\beta$

Alice outputs γ.
Bob gets $x_{1} b+x_{0}(1 \oplus b)=\left(x_{1} \oplus x_{0}\right) b+x_{0}=\alpha \beta \oplus \gamma:=\delta$

Computing Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

XOR gate:
AND gate?? Locally XOR the shares

Base Case: Input wires

Computing the XOR gate

Alice has α and Bob has β s.t. $\quad \alpha \oplus \beta=x$

Alice has α^{\prime} and Bob has β^{\prime} s.t. $\alpha^{\prime} \oplus \beta^{\prime}=x^{\prime}$

Alice computes $\alpha \oplus \alpha^{\prime}$ and Bob computes $\beta \oplus \beta^{\prime}$.
So, we have: $\left(\alpha \oplus \alpha^{\prime}\right) \oplus\left(\beta \oplus \beta^{\prime}\right)$

$$
=(\alpha \oplus \beta) \oplus\left(\alpha^{\prime} \oplus \beta^{\prime}\right)=\mathrm{x} \oplus \mathrm{x}^{\prime}
$$

Computing the AND gate

Alice has α and Bob has β s.t. $\quad \alpha \oplus \beta=x$

Alice has α^{\prime} and Bob has β^{\prime} s.t. $\alpha^{\prime} \oplus \beta^{\prime}=x^{\prime}$

Desired output (to maintain invariant):
Alice wants $\alpha^{\prime \prime}$ and Bob wants $\beta^{\prime \prime}$ s.t. $\alpha^{\prime \prime} \oplus \beta^{\prime \prime}=x x^{\prime}$

Computing the AND gate

$$
\begin{aligned}
& x x^{\prime}=(\alpha \oplus \beta)\left(\alpha^{\prime} \oplus \beta^{\prime}\right) \\
&=\alpha \alpha^{\prime} \oplus \gamma_{a} \oplus \delta_{a} \oplus \beta \beta^{\prime} \\
& \mathbf{\Omega} \oplus \quad \oplus
\end{aligned}
$$

$$
\alpha^{\prime \prime}=\alpha \alpha^{\prime} \oplus \gamma_{a} \oplus \delta_{a} \quad \beta^{\prime \prime}=\beta \beta^{\prime} \oplus \gamma_{b} \oplus \delta_{b}
$$

Computing Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

Finally, Alice and Bob exchange the shares at the output wire, and XOR the shares together to obtain the output.

Security by Composition

Theorem:

If protocol Π securely realizes a function g in the " f-hybrid model" and protocol Π^{\prime} securely realizes f, then $\Pi \circ \Pi^{\prime}$ securely realizes g.

Security: Intuition (ss-AND hybrid model)

Imagine that the parties have access to an ss-AND angel.

$$
r \bigoplus \delta=\mathrm{ab}
$$

Security: Intuition (ss-AND hybrid model)

 Imagine that the parties have access to an ss-AND angel.Simulator for Alice's view: XOR gate: simulate given Alice's input shares

Security: Intuition (ss-AND hybrid model)

Simulator for Alice's view:
AND gate: simulate given Alice's input shares \& outputs from the ss-AND angel.

$\gamma_{\text {alice }}$ and $\delta_{\text {alice }}$ are random, independent of b

Security: Intuition (ss-AND hybrid model)

Simulator for Alice's view:
Output wire: need to know both Alice and Bob's output shares.

Bob's output share = Alice's output share \oplus function output

Simulator knows the function output, and can compute Bob's output share given Alice's output share.

Secret-Shared AND protocol

Using the RSA trapdoor permutation.

Input bit: a
Pick $N=P Q$
and RSA
exponent e.
Let x_{0} be random and
$x_{1}=x_{0}$
Compute
$\overbrace{0}, r_{1}$ and
a one-time pad x_{0}, x_{1} using hardcore bits

Choose random r_{b} and

$$
s_{0}, s_{1}
$$

\longleftarrow Choose random S_{1-b}

Alice outputs x_{0}

Secret-Shared AND protocol

Using the RSA trapdoor permutation.

Input bit: b

Exercise: Construct simulators for Alice and Bob.

In summary: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves any two-party computation problem against semi-honest adversaries.

In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves any multi-party computation problem against semi-honest adversaries.

MPC Outline

Secret-sharing Invariant: For each wire of the circuit, the n parties have a bit each, whose XOR is the value at the wire.

Base case: input wires.
XOR gate: given input shares $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ s.t.

$$
\bigoplus_{i=1}^{n} \alpha_{i}=a \text { and }\left(\beta_{1}, \ldots, \beta_{n}\right) \text { s.t. } \bigoplus_{i=1}^{n} \beta_{i}=b
$$

AND gate: given input shares as above, compute the shares of the output of the XOR gate:

$$
\left(o_{1}, \ldots, o_{n}\right) \mathrm{s} . \mathrm{t} \oplus_{i=1}^{n} o_{i}=a b \quad \text { Exercise! }
$$

