CIS 5560

Cryptography Lecture 25

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

Announcements

- HW10 due Thursday Apr 25 at 11:59PM on Gradescope
- HW11 due Wednesday May 1 at 11:59PM on Gradescope

Recap of Last Lecture

- Secure Multi-party Computation
- Secret Sharing
- Oblivious Transfer

Secure Computation

Seminitgnest Security:

- Alice should not learn anything more than x and $F_A(x, y)$.
- Bob should not learn anything more than y and $F_B(x, y)$.

Any "authorized" subset of players can recover b.
 No other subset of players has any info about b.

• Threshold (or t-out-of-n) SS [Shamir'79, Blakley'79]:

"authorized" subset = has size \geq t.

Shamir's t-out-of-n Secret Sharing Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1) polynomial (mod p) whose constant term is the secret *b*.

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p

2. Compute the shares:

 $s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$

Correctness: can recover secret from any *t* shares.

Security: the distribution of any t - 1 shares is independent of the secret.

Note: need p to be larger than the number of parties n.

Oblivious Transfer (OT)

- Sender holds two bits/strings x_0 and x_1 .
- Receiver holds a choice bit *b*.
- Receiver should learn x_b, sender should learn nothing.
 (We will consider honest-but-curious adversaries; formal definition in a little bit...)

Why OT? Computing ANDs

Bob gets α if $\beta = 1$, and 0 if $\beta = 0$

Here is a way to write the OT selection function: $x_1b + x_0(1-b)$ which, in this case is $= \alpha\beta$.

The Billionaires' Problem

Who is richer?

Unit Vector $u_X = 1$ in the X^{th} location and 0 elsewhere $f(X, Y) = \langle u_X, v_Y \rangle = \sum_{i=1}^{U} u_X[i] \wedge v_Y[i]$

Compute each AND individually and sum it up?

Today's Lecture

- OT for AND of secret-shared bits
- Definition of MPC
- Definition of OT
- Construction of OT from Trapdoor Permutations
- •

Detour: $OT \implies Secret-Shared-AND$

Alice outputs γ .

Bob gets $x_1b + x_0(1 \oplus b) = (x_1 \oplus x_0)b + x_0 = \alpha\beta \oplus \gamma := \delta$

1. Alice and Bob run many OTs to get (γ_i, δ_i) s.t. $\gamma_i \bigoplus \delta_i = u_{\chi}[i] \wedge v_{\gamma}[i]$

2. Alice computes $\gamma = \bigoplus_i \gamma_i$ and Bob computes $\delta = \bigoplus_i \delta_i$

3. Alice reveals γ and Bob reveals δ .

Check (correctness): $\gamma \oplus \delta = \langle u_X, v_Y \rangle = f(X, Y).$

1. Alice and Bob run many OTs to get (γ_i, δ_i) s.t. $\gamma_i \bigoplus \delta_i = u_{\gamma}[i] \wedge v_{\gamma}[i]$

2. Alice computes $\gamma = \bigoplus_i \gamma_i$ and Bob computes $\delta = \bigoplus_i \delta_i$

3. Alice reveals γ and Bob reveals δ .

Check (privacy): Alice & Bob get a bunch of random bits.

15

"OT is Complete"

Theorem: OT can solve not just ANDs and money, but *any* two-party (and multi-party) problem efficiently.

Defining Security: The Ideal/Real Paradigm

There exists a PPT simulator SIM_A such that for any x and y: $SIM_A(x, F(x, y)) \cong View_A(x, y)$

There exists a PPT simulator SIM_B such that for any x and y: $SIM_B(y, F(x, y)) \cong View_B(x, y)$

OT Definition x₀ x₁ Choice bit: b

Receiver Security: Sender should not learn b.

Define Sender's view $View_S(x_0, x_1, b)$ = her random coins and the protocol messages.

OT Definition

Receiver Security: Sender should not learn b.

There exists a PPT simulator SIM_S such that for any x_0 , x_1 and b:

 $SIM_S(x_0, x_1) \cong View_S(x_0, x_1, b)$

OT Definition x_0 x_1 Choice bit: **b**

Sender Security: Receiver should not learn x_{1-b} .

Define Receiver's view $View_R(x_0, x_1, b)$ = his random coins and the protocol messages.

OT Definition

Sender Security: Receiver should not learn x_{1-b} .

There exists a PPT simulator SIM_R such that for any x_0 , x_1 and b:

 $SIM_R(b, x_b) \cong View_R(x_0, x_1, b)$

OT Protocols

For concreteness, let's use the RSA trapdoor permutation.

How about Bob's security

(a.k.a. Why does Alice not learn Bob's choice bit)?

Alice's view is s_0 , s_1 one of which is chosen randomly from Z_N^* and the other by raising a random number to the *e*-th power. They look exactly the same!

How about Bob's security

(a.k.a. Why does Alice not learn Bob's choice bit)?

Exercise: Show how to construct the simulator.

How about Alice's security

(a.k.a. Why does Bob not learn both of Alice's bits)?

Assuming Bob is semi-honest, he chose s_{1-b} uniformly at random, so the hardcore bit of $s_{1-b} = r_{1-b}^d$ is computationally hidden from him.

Many More Constructions of OT

Theorem: OT protocols can be constructed based on the hardness of the Diffie-Hellman problem, factoring, quadratic residuosity, LWE, elliptic curve isogeny problem etc. etc.

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: OT can solve *any* two-party computation problem.

Computing Arbitrary Functions

For us, programs = functions = Boolean circuits with XOR (+ mod 2) and AND (× mod 2) gates.

Want: If you can compute XOR and AND *in the appropriate sense*, you can compute everything.

Recap: $OT \implies Secret-Shared-AND$

Alice outputs γ .

Bob gets $x_1b + x_0(1 \oplus b) = (x_1 \oplus x_0)b + x_0 = \alpha\beta \oplus \gamma := \delta$

Computing Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

Base Case: Input wires

Computing the XOR gate $x \oplus x'$ Alice has α and Bob has β s.t. $\alpha \oplus \beta = x$ ╋

Alice has α' and Bob has β' s.t. $\alpha' \oplus \beta' = x'$

Alice computes $\alpha \oplus \alpha'$ and Bob computes $\beta \oplus \beta'$.

So, we have:
$$(\alpha \oplus \alpha') \oplus (\beta \oplus \beta')$$

= $(\alpha \oplus \beta) \oplus (\alpha' \oplus \beta') = x \oplus x'$

Computing the AND gate

Alice has α and Bob has β s.t. $\alpha \oplus \beta = x$

Alice has α' and Bob has β' s.t. $\alpha' \oplus \beta' = x'$

Desired output (to maintain invariant): Alice wants α'' and Bob wants β'' s.t. $\alpha'' \oplus \beta'' = xx'$

Computing the AND gate

Computing Arbitrary Functions

Secret-sharing Invariant: For each wire of the circuit, Alice and Bob each have a bit whose XOR is the value at the wire.

Finally, Alice and Bob exchange the shares at the output wire, and XOR the shares together to obtain the output.

Security by Composition

Theorem:

If protocol Π securely realizes a function g in the "f-hybrid model" and protocol Π' securely realizes f, then $\Pi \circ \Pi'$ securely realizes g.

Imagine that the parties have access to an ss-AND angel.

Imagine that the parties have access to an ss-AND angel.

Input wires: can be simulated given Alice's input

Simulator for Alice's view:

AND gate: simulate given Alice's input shares & outputs from the ss-AND angel.

Simulator for Alice's view:

Output wire: need to know both Alice and Bob's output shares.

Bob's output share = Alice's output share \oplus function output

Simulator knows the function output, and can compute Bob's output share given Alice's output share.

Secret-Shared AND protocol

Using the RSA trapdoor permutation.

Secret-Shared AND protocol

Using the RSA trapdoor permutation.

Exercise: Construct simulators for Alice and Bob.

In summary: Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves **any** two-party computation problem against semi-honest adversaries.

In fact, GMW does more:

Theorem [Goldreich-Micali-Wigderson'87]: Assuming OT exists, there is a protocol that solves any *multi-party* computation problem against semi-honest adversaries.

MPC Outline

Secret-sharing Invariant: For each wire of the circuit, **the n parties have a bit each**, whose XOR is the value at the wire.

Base case: input wires.

XOR gate: given input shares
$$(\alpha_1, ..., \alpha_n)$$
 s.t.
 $\bigoplus_{i=1}^n \alpha_i = a$ and $(\beta_1, ..., \beta_n)$ s.t. $\bigoplus_{i=1}^n \beta_i = b$,
compute the share α_1 the β_1 output of the XOR gate:

AND gate: given input shares as above, compute the shares of the output of the XOR gate:

$$(o_1, \ldots, o_n)$$
 s.t $\bigoplus_{i=1}^n o_i = ab$ Exercise!