CIS 5560

Cryptography Lecture 24

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

Announcements

- HW10 due Thursday Apr 25 at 11:59PM on Gradescope
- HW11 will be released tomorrow evening

Recap of Last Lecture

- Complete proof of ZK for 3COL
- Succinct Arguments
- PCPs
- Kilian construction of succinct arguments from PCPs

Why is 3COL Protocol ZK? Simulator S works as follows:

1. First pick a random edge (i^*, j^*)

Color vertices i^* and j^* with random, different colors Color all other vertices red.

2. Feed the commitments of the colors to V^* and get edge (i, j)

3. If $(i, j) \neq (i^*, j^*)$, go back and repeat.

4. If $(i, j) = (i^*, j^*)$, output the commitments and openings r_i and r_j as the simulated transcript.

Why is this zero-knowledge? Simulator S works as follows (call this Hybrid 0)

1. First pick a random edge (i^*, j^*)

Color vertices i^* and j^* with random, different colors Color all other vertices red.

2. Feed the commitments of the colors to V^* and get edge (i, j)

3. If $(i, j) \neq (i^*, j^*)$, go back and repeat.

 $\{Com(\rho(k); r_k)\}_{k=1}^n$ edge (i, j)send openings r_i and r_j

4. If $(i, j) = (i^*, j^*)$, output the commitments and openings r_i and r_j as the simulated transcript.

Why is this zero-knowledge? Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (i^*, j^*) Permute a legal coloring and color all vertices correctly.

2. Feed the commitments of the colors to V^* and get edge (i, j)

3. If $(i, j) \neq (i^*, j^*)$, go back and repeat.

4. If $(i, j) = (i^*, j^*)$, output the commitments and openings r_i and r_j as the simulated transcript.

 $\bullet \operatorname{dge}(i,j)$

send openings r_i and r_j

 $\{Com(\rho(k); r_k)\}_{k=1}^n$

Why is this zero-knowledge? Here is the real view of V* (Hybrid 2)

1. First pick a random edge (i^*, j^*) Permute a legal coloring and color all edges correctly.

2. Feed the commitments of the colors to V^* and get edge (i, j)

3. If
$$(i, j) \neq (i^*, j^*)$$
, go back and repeat.

4. If $(i, j) = (i^*, j^*)$, output the commitments and openings r_i and r_j as the transcript.

 $\{Com(\rho(k); r_k)\}_{k=1}^n$

Today's Lecture

Secure Multi-party Computation

Secure Computation

Secure Two-Party Computation

Seminitgnest Security:

- Alice should not learn anything more than x and $F_A(x, y)$.
- Bob should not learn anything more than y and $F_B(x, y)$.

Secure Two-Party Computation

Malicious Security:

- No (PPT) Alice* can learn anything more than x^* and $F_A(x^*, y)$.
- No (PPT) Bob* can learn anything more than y^* and $F_B(x, y^*)$.

Tool 1: Secret Sharing

Any "authorized" subset of players can recover b.
 No other subset of players has any info about b.

• Threshold (or t-out-of-n) SS [Shamir'79, Blakley'79]:

"authorized" subset = has size \geq t.

share s_1 : random share s_2 : random share s_3 : random share s_4 : random

. . .

share
$$s_n = b - (s_1 + s_2 + ... + s_{n-1}) \mod p$$

DUH

- share $s_1 = b$
- share $s_2 = b$
- share $s_3 = b$
- share $s_4 = b$

. . .

share $s_n = b$

Here is a solution.

Repeat for every two-person subset $\{P_i, P_j\}$: Generate a 2-out-of-2 secret sharing (s_i, s_j) of b. Give s_i to P_i and s_j to P_j

What is the size of shares each party gets?

How does this scale to t-out-of-n?

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

Shamir's 2-out-of-n Secret Sharing

Shamir's 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose constant term is the secret *b*.

f(x) = ax + b where *a* is uniformly random mod *p*

2. Compute the shares: $s_1 = f(1), s_2 = f(2), ..., s_i = f(i), ..., s_n = f(n)$

Correctness: can recover secret from any two shares.

Proof: Parties *i* and *j*, given shares $s_i = ai + b$ and $s_j = aj + b$ can solve for $b \ (= \frac{js_i - is_j}{j - i})$.

Shamir's 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line (mod p) whose constant term is the secret *b*.

f(x) = ax + b where *a* is uniformly random mod *p*

2. Compute the shares:

 $s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$

Security: any single party has no information about the secret.

Proof: Party *i*'s share $s_i = a * i + b$ is uniformly random, independent of *b*, as *a* is random and so is a * i.

1. The dealer picks a uniformly random degree-(t-1) polynomial (mod p) whose constant term is the secret *b*.

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p

2. Compute the shares:

 $s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$

Correctness: can recover secret from any *t* shares.

Security: the distribution of any t - 1 shares is independent of the secret.

Note: need p to be larger than the number of parties n.

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p $s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$

Correctness: via Vandermonde matrices.

Let's look at shares of parties $P_1, P_2, ..., P_t$.

$$\begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \cdots \\ s_t \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 2^2 & \cdots & 2^{t-1} \\ 1 & 3 & 3^2 & \cdots & 3^{t-1} \\ 1 & \cdots & \cdots & \cdots \\ 1 & t & t^2 & \cdots & t^{t-1} \end{bmatrix} \begin{bmatrix} b \\ a_1 \\ a_2 \\ \cdots \\ a_{t-1} \end{bmatrix} \pmod{p}$$

t-by-t Vandermonde matrix which is invertible

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p $s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$

Correctness: Alternatively, *Lagrange interpolation* gives an explicit formula that recovers b.

$$b = f(0) = \sum_{i=1}^{t} f(i) \left(\prod_{1 \le j \le t, j \ne i} \frac{-x_j}{x_i - x_j} \right)$$

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p $s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$

Security:

Let's look at shares of parties $P_1, P_2, ..., P_{t-1}$.

$$\begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \cdots \\ s_{t-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 2^2 & \cdots & 2^{t-1} \\ 1 & 3 & 3^2 & \cdots & 3^{t-1} \\ 1 & \cdots & \cdots & \cdots \\ 1 & t-1 & (t-1)^2 & \cdots & (t-1)^{t-1} \end{bmatrix} \begin{bmatrix} b \\ a_1 \\ a_2 \\ \cdots \\ a_{t-1} \end{bmatrix} \pmod{p}$$

$$(\text{mod } p)$$

$$(t-1)-by-t \text{ Vandermonde matrix}$$

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p $s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$

Security: For every value of *b* there is a unique polynomial with constant term *b* and agrees with *f* on s_1, \ldots, s_{t-1} .

$$\begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ \cdots \\ s_{t-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 2^2 & \cdots & 2^{t-1} \\ 1 & 3 & 3^2 & \cdots & 3^{t-1} \\ 1 & \cdots & \cdots & \cdots \\ 1 & t-1 & (t-1)^2 & \cdots & (t-1)^{t-1} \end{bmatrix} \begin{bmatrix} b \\ a_1 \\ a_2 \\ \cdots \\ a_{t-1} \end{bmatrix} \pmod{p}$$

$$(\text{mod } p)$$

$$(t-1)-by-t \text{ Vandermonde matrix}$$

 $f(x) = a_{t-1}x^{t-1} + \dots + a_1x + b$ where a_i are uniformly random mod p $s_1 = f(1), s_2 = f(2), \dots, s_i = f(i), \dots, s_n = f(n)$

Security: For every value of *b* there is a unique polynomial with constant term *b* and agrees with *f* on s_1, \ldots, s_{t-1} .

Corollary: for every value of the secret *b* is equally likely given the shares $s_1, s_2, ..., s_{t-1}$. In other words, the secret *b* is perfectly hidden given t - 1 shares.

Tool 2: Oblivious Transfer

Oblivious Transfer (OT)

- Sender holds two bits/strings x_0 and x_1 .
- Receiver holds a choice bit *b*.
- Receiver should learn x_b, sender should learn nothing.
 (We will consider honest-but-curious adversaries; formal definition in a little bit...)

Why OT? Computing ANDs

compute the AND $lpha \wedge eta$.

Alice and Bob want to

Why OT? Computing ANDs

Bob gets α if $\beta = 1$, and 0 if $\beta = 0$

Here is a way to write the OT selection function: $x_1b + x_0(1-b)$ which, in this case is $= \alpha\beta$.

The Billionaires' Problem

Who is richer?

Unit Vector $u_X = 1$ in the X^{th} location and 0 elsewhere $f(X, Y) = \langle u_X, v_Y \rangle = \sum_{i=1}^{U} u_X[i] \wedge v_Y[i]$

Compute each AND individually and sum it up?

Detour: $OT \implies Secret-Shared-AND$

Alice outputs γ .

Bob gets $x_1b + x_0(1 \oplus b) = (x_1 \oplus x_0)b + x_0 = \alpha\beta \oplus \gamma := \delta$

1. Alice and Bob run many OTs to get (γ_i, δ_i) s.t. $\gamma_i \bigoplus \delta_i = u_{\chi}[i] \wedge v_{\gamma}[i]$

34

2. Alice computes $\gamma = \bigoplus_i \gamma_i$ and Bob computes $\delta = \bigoplus_i \delta_i$

3. Alice reveals γ and Bob reveals δ .

Check (correctness): $\gamma \oplus \delta = \langle u_X, v_Y \rangle = f(X, Y).$

1. Alice and Bob run many OTs to get (γ_i, δ_i) s.t. $\gamma_i \bigoplus \delta_i = u_{\chi}[i] \wedge v_{\gamma}[i]$

2. Alice computes $\gamma = \bigoplus_i \gamma_i$ and Bob computes $\delta = \bigoplus_i \delta_i$

3. Alice reveals γ and Bob reveals δ .

Check (privacy): Alice & Bob get a bunch of random bits.

35

"OT is Complete"

Theorem: OT can solve not just ANDs and money, but *any* two-party (and multi-party) problem efficiently.

Defining Security: The Ideal/Real Paradigm

OT Definition x₀ x₁ Choice bit: b

Receiver Security: Sender should not learn b.

Define Sender's view $View_S(x_0, x_1, b)$ = her random coins and the protocol messages.

OT Definition

Receiver Security: Sender should not learn b.

There exists a PPT simulator SIM_S such that for any x_0 , x_1 and b:

 $SIM_S(x_0, x_1) \cong View_S(x_0, x_1, b)$

OT Definition $\begin{array}{c} x_0 \\ x_1 \end{array}$ Choice bit: b

Sender Security: Receiver should not learn x_{1-b} .

Define Receiver's view $View_R(x_0, x_1, b)$ = his random coins and the protocol messages.

OT Definition

Sender Security: Receiver should not learn x_{1-b} .

There exists a PPT simulator SIM_R such that for any x_0 , x_1 and b:

 $SIM_R(b, x_b) \cong View_R(x_0, x_1, b)$

OT Protocols

For concreteness, let's use the RSA trapdoor permutation.

How about Bob's security

(a.k.a. Why does Alice not learn Bob's choice bit)?

Alice's view is s_0 , s_1 one of which is chosen randomly from Z_N^* and the other by raising a random number to the *e*-th power. They look exactly the same!

How about Bob's security

(a.k.a. Why does Alice not learn Bob's choice bit)?

Exercise: Show how to construct the simulator.

How about Alice's security

(a.k.a. Why does Bob not learn both of Alice's bits)?

Assuming Bob is semi-honest, he chose s_{1-b} uniformly at random, so the hardcore bit of $s_{1-b} = r_{1-b}^d$ is computationally hidden from him.

OT from Trapdoor Permutations

How about Alice's security

(a.k.a. Why does Bob not learn both of Alice's bits)?

Exercise: Show how to construct the simulator.

Many More Constructions of OT

Theorem: OT protocols can be constructed based on the hardness of the Diffie-Hellman problem, factoring, quadratic residuosity, LWE, elliptic curve isogeny problem etc. etc.

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]: OT can solve *any* two-party computation problem.

