CIS 5560

Cryptography Lecture 24

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

Announcements

- HW10 due Thursday Apr 25 at 11:59PM on Gradescope
- HW11 will be released tomorrow evening

Recap of Last Lecture

- Complete proof of ZK for 3COL
- Succinct Arguments
- PCPs
- Kilian construction of succinct arguments from PCPs

Why is 3COL Protocol ZK?

Simulator S works as follows:

1. First pick a random edge $\left(i^{*}, j^{*}\right)$

Color vertices i^{*} and j^{*} with
$\left\{\operatorname{Com}\left(\rho(k) ; r_{k}\right)\right\}_{k=1}^{n}$ random, different colors Color all other vertices red.
2. Feed the commitments of the colors to V^{*} and get edge (i, j)
3. If $(i, j) \neq\left(i^{*}, j^{*}\right)$, go back and send openings r_{i} and r_{j} repeat.
4. If $(i, j)=\left(i^{*}, j^{*}\right)$, output the commitments and openings r_{i} and r_{j} as the simulated transcript.

Why is this zero-knowledge?

Simulator S works as follows (call this Hybrid 0)

1. First pick a random edge $\left(i^{*}, j^{*}\right)$

Color vertices i^{*} and j^{*} with
$\left\{\operatorname{Com}\left(\rho(k) ; r_{k}\right)\right\}_{k=1}^{n}$ random, different colors Color all other vertices red.
2. Feed the commitments of the colors to V^{*} and get edge (i, j)
3. If $(i, j) \neq\left(i^{*}, j^{*}\right)$, go back and send openings r_{i} and r_{j} repeat.
4. If $(i, j)=\left(i^{*}, j^{*}\right)$, output the commitments and openings r_{i} and r_{j} as the simulated transcript.

Why is this zero-knowledge?

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge $\left(i^{*}, j^{*}\right)$

Permute a legal coloring and
$\left\{\operatorname{Com}\left(\rho(k) ; r_{k}\right)\right\}_{k=1}^{n}$ color all vertices correctly.
2. Feed the commitments of the colors to V^{*} and get edge (i, j)
3. If $(i, j) \neq\left(i^{*}, j^{*}\right)$, go back and repeat.
4. If $(i, j)=\left(i^{*}, j^{*}\right)$, output the commitments and openings r_{i} and r_{j} as the simulated transcript.

Why is this zero-knowledge?

Here is the real view of \mathbf{V}^{*} (Hybrid 2)

1. First pick a random edge $\left(i^{*}, j^{*}\right)$

Permute a legal coloring and
$\left\{\operatorname{Com}\left(\rho(k) ; r_{k}\right)\right\}_{k=1}^{n}$ color all edges correctly.
2. Feed the commitments of the colors to V^{*} and get edge (i, j)
3. f $(i, j) \neq\left(i^{*}, j^{*}\right)$, go back ane send openings r_{i} and r_{j} repeat.
4. If $(i, j)=\left(i^{*}, j^{*}\right)$,output the commitments and openings r_{i} and r_{j} as the transcript.

Today's Lecture

- Secure Multi-party Computation

Secure Computation

Input: x

Output: $F_{A}(x, y)$

Input: y

Output: $F_{B}(x, y)$

Secure Two-Party Computation

Input: x

Input: y

Output: $F_{B}(x, y)$

Semiftonest Security:

- Alice should not learn anything more than x and $F_{A}(x, y)$.
- Bob should not learn anything more than y and $F_{B}(x, y)$.

Secure Two-Party Computation

Input: x

Input: y

Output: $F_{A}(x, y)$
Output: $F_{B}(x, y)$

Malicious Security:

- No (PPT) Alice* can learn anything more than x^{*} and $F_{A}\left(x^{*}, y\right)$.
- No (PPT) Bob* can learn anything more than y^{*} and $F_{B}\left(x, y^{*}\right)$.

Tool 1: Secret Sharing

Dealer

Secret Sharing

[Any "authorized" subset of players can recover b.
] No other subset of players has any info about b.

- Threshold (or t-out-of-n) SS [Shamir'79, Blakley'79]:

$$
\text { "authorized" subset = has size } \geq \mathrm{t} \text {. }
$$

n-out-of- n Secret Sharing

Dealer

share s_{1} : random
share s_{2} : random
share s_{3} : random
share s_{4} : random

$$
\text { share } s_{n}=b-\left(s_{1}+s_{2}+\ldots+s_{n-1}\right) \bmod \mathrm{p}
$$

secret $\mathrm{b} \in Z_{p}$

1-out-of- n Secret Sharing

$$
\begin{aligned}
& \text { share } s_{1}=\mathrm{b} \\
& \text { share } s_{2}=\mathrm{b} \\
& \text { share } s_{3}=\mathrm{b} \\
& \text { share } s_{4}=\mathrm{b}
\end{aligned}
$$

share $s_{n}=b$

2-out-of-n Secret Sharing

Dealer

Here is a solution.
Repeat for every two-person subset $\left\{P_{i}, P_{j}\right\}$: Generate a 2-out-of-2 secret sharing $\left(s_{i}, s_{j}\right)$ of b . Give s_{i} to P_{i} and s_{j} to P_{j}

What is the size of shares each party gets?
How does this scale to t-out-of-n?

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

Shamir’s 2-out-of-n Secret Sharing

Each share S_{i} is truly random (independent of secret b)
Any two shares uniquely determine b.

Shamir's 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line $(\bmod p)$ whose constant term is the secret b.

$$
f(x)=a x+b \text { where } a \text { is uniformly random } \bmod p
$$

2. Compute the shares:
$s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)$
Correctness: can recover secret from any two shares.
Proof: Parties i and j, given shares $s_{i}=a i+b$ and
$s_{j}=a j+b$ can solve for $b\left(=\frac{j s_{i}-i s_{j}}{j-i}\right)$.

Shamir’s 2-out-of-n Secret Sharing

1. The dealer picks a uniformly random line $(\bmod p)$ whose constant term is the secret b.

$$
f(x)=a x+b \text { where } a \text { is uniformly random } \bmod p
$$

2. Compute the shares:
$s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)$
Security: any single party has no information about the secret.
Proof: Party i 's share $s_{i}=a * i+b$ is uniformly random, independent of b, as a is random and so is $a * i$.

Shamir's t-out-of-n Secret Sharing
 Key Idea: Polynomials are Amazing!

1. The dealer picks a uniformly random degree-(t-1) polynomial $(\bmod \mathbf{p})$ whose constant term is the secret b.

$$
\begin{aligned}
f(x)= & a_{t-1} x^{t-1}+\ldots+a_{1} x+b \\
& \text { where } a_{i} \text { are uniformly random } \bmod p
\end{aligned}
$$

2. Compute the shares:

$$
s_{1}=f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
$$

Correctness: can recover secret from any t shares.
Security: the distribution of anyt-1 shares is independent of the secret.

Note: need p to be larger than the number of parties n.

Shamir's t-out-of-n Secret Sharing
 Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
f(x)= & a_{t-1} x^{t-1}+\ldots+a_{1} x+b \\
& \text { where } a_{i} \text { are uniformly random mod } p \\
s_{1}= & f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
\end{aligned}
$$

Correctness: via Vandermonde matrices.
Let's look at shares of parties $P_{1}, P_{2}, \ldots, P_{t}$.

$$
\left[\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3} \\
\ldots \\
s_{t}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 2^{2} & \ldots & 2^{t-1} \\
1 & 3 & 3^{2} & \ldots & 3^{t-1} \\
1 & \ldots & \ldots & \ldots & \ldots \\
1 & t & t^{2} & \ldots & t^{t-1}
\end{array}\right]\left[\begin{array}{c}
b \\
a_{1} \\
a_{2} \\
\ldots \\
a_{t-1}
\end{array}\right](\bmod p)
$$

t-by- t Vandermonde matrix which is invertible

Shamir's t-out-of-n Secret Sharing
 Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
f(x)= & a_{t-1} x^{t-1}+\ldots+a_{1} x+b \\
& \text { where } a_{i} \text { are uniformly random } \bmod p \\
s_{1}= & f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
\end{aligned}
$$

Correctness: Alternatively, Lagrange interpolation gives an explicit formula that recovers b.

$$
b=f(0)=\sum_{i=1}^{t} f(i)\left(\prod_{1 \leq j \leq t, j \neq i} \frac{-x_{j}}{x_{i}-x_{j}}\right)
$$

Shamir's t-out-of-n Secret Sharing
 Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
f(x)= & a_{t-1} x^{t-1}+\ldots+a_{1} x+b \\
& \text { where } a_{i} \text { are uniformly random } \bmod p \\
s_{1}= & f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
\end{aligned}
$$

Security:

Let's look at shares of parties $P_{1}, P_{2}, \ldots, P_{t-1}$.

$$
\left[\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3} \\
\cdots \\
s_{t-1}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & 2 & 2^{2} & \ldots & 2^{t-1} \\
1 & 3 & 3^{2} & \cdots & 3^{t-1} \\
1 & \cdots & \cdots & \cdots & \cdots \\
1 & t-1 & (t-1)^{2} & \ldots & (t-1)^{t-1}
\end{array}\right]\left[\begin{array}{c}
b \\
a_{1} \\
a_{2} \\
\cdots \\
a_{t-1}
\end{array}\right](\bmod p)
$$

$(t-1)$-by- t Vandermonde matrix

Shamir's t-out-of-n Secret Sharing
 Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
f(x)= & a_{t-1} x^{t-1}+\ldots+a_{1} x+b \\
& \text { where } a_{i} \text { are uniformly random } \bmod p \\
s_{1}= & f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
\end{aligned}
$$

Security: For every value of b there is a unique polynomial with constant term b and agrees with f on s_{1}, \ldots, s_{t-1}.

$$
\left[\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3} \\
\cdots \\
s_{t-1}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & 2 & 2^{2} & \ldots & 2^{t-1} \\
1 & 3 & 3^{2} & \cdots & 3^{t-1} \\
1 & \cdots & \cdots & \cdots & \cdots \\
1 & t-1 & (t-1)^{2} & \ldots & (t-1)^{t-1}
\end{array}\right]\left[\begin{array}{c}
b \\
a_{1} \\
a_{2} \\
\cdots \\
a_{t-1}
\end{array}\right](\bmod p)
$$

$$
(t-1) \text {-by- } t \text { Vandermonde matrix }
$$

Shamir's t-out-of-n Secret Sharing

Key Idea: Polynomials are Amazing!

$$
\begin{aligned}
f(x)= & a_{t-1} x^{t-1}+\ldots+a_{1} x+b \\
& \quad \text { where } a_{i} \text { are uniformly random mod } p \\
s_{1}= & f(1), s_{2}=f(2), \ldots, s_{i}=f(i), \ldots, s_{n}=f(n)
\end{aligned}
$$

Security: For every value of b there is a unique polynomial with constant term b and agrees with f on s_{1}, \ldots, s_{t-1}.

Corollary: for every value of the secret b is equally likely given the shares $s_{1}, s_{2}, \ldots, s_{t-1}$. In other words, the secret b is perfectly hidden given $t-1$ shares.

Tool 2: Oblivious Transfer

Oblivious Transfer (OT)

x_{0}
x_{1}

Choice bit: b

Sender

- Sender holds two bits/strings x_{0} and x_{1}.
- Receiver holds a choice bit b.
- Receiver should learn x_{b}, sender should learn nothing.
(We will consider honest-but-curious adversaries; formal definition in a little bit...)

Why OT? Computing ANDs

Why OT? Computing ANDs

$$
\begin{array}{|c|}
\hline x_{0}=0 \\
x_{1}=\alpha \\
\hline
\end{array} \quad \text { Run an OT protocol } ~ C h o i c e ~ b i t ~ b=\beta
$$

Bob gets α if $\beta=1$, and 0 if $\beta=0$
Here is a way to write the OT selection function: $x_{1} b+x_{0}(1-b)$ which, in this case is $=\alpha \beta$.

The Billionaires' Problem

Who is richer?

The Billionaires' Problem

$$
\begin{array}{llllllll}
\hline \cdots & 0 & 1 & 0 & 0 & \cdots \\
\hline
\end{array}
$$

$f(X, Y)=1$
if and only if $X>Y$

Unit Vector $u_{X}=1$ in the $X^{\text {th }}$
Vector $v_{Y}=1$ from the location and 0 elsewhere $(Y+1)^{t h}$ location onwards

$$
f(X, Y)=\left\langle u_{X}, v_{Y}\right\rangle=\sum_{i=1}^{U} u_{X}[i] \wedge v_{Y}[i]
$$

Detour: OT \Longrightarrow Secret-Shared-AND

Output: γ
Alice gets random γ, Bob gets random δ s.t. $\gamma \oplus \delta=\alpha \beta$.

$$
\beta \in\{0,1\}
$$

Output: δ

Choice bit $b=\beta$

Alice outputs γ.
Bob gets $x_{1} b+x_{0}(1 \oplus b)=\left(x_{1} \oplus x_{0}\right) b+x_{0}=\alpha \beta \oplus \gamma:=\delta$

The Billionaires' Problem

$$
f(X, Y)=1
$$

Unit Vector u_{X}

$$
f(X, Y)=\left\langle u_{X}, v_{Y}\right\rangle=\sum_{i=1}^{U} u_{X}[i] \wedge v_{Y}[i]
$$

1. Alice and Bob run many OTs to get $\left(\gamma_{i}, \delta_{i}\right)$ s.t. $\gamma_{i} \bigoplus \delta_{i}=u_{X}[i] \wedge \boldsymbol{v}_{Y}[\boldsymbol{i}]$
2. Alice computes $\gamma=\oplus_{i} \gamma_{i}$ and Bob computes $\delta=\oplus_{i} \delta_{i}$
3. Alice reveals γ and Bob reveals δ.

Check (correctness): $\gamma \oplus \delta=\left\langle u_{X}, v_{Y}\right\rangle=f(X, Y)$.

The Billionaires' Problem

$$
f(X, Y)=1
$$ if and only if $X>Y$

Unit Vector u_{X}

$$
f(X, Y)=\left\langle u_{X}, v_{Y}\right\rangle=\sum_{i=1}^{U} u_{X}[i] \wedge v_{Y}[i]
$$

1. Alice and Bob run many OTs to get $\left(\gamma_{i}, \delta_{i}\right)$ s.t. $\gamma_{i} \bigoplus \delta_{i}=u_{X}[i] \wedge \boldsymbol{v}_{Y}[\boldsymbol{i}]$
2. Alice computes $\gamma=\oplus_{i} \gamma_{i}$ and Bob computes $\delta=\oplus_{i} \delta_{i}$
3. Alice reveals γ and Bob reveals δ.

Check (privacy): Alice \& Bob get a bunch of random bits.

"OT is Complete"

Theorem: OT can solve not just ANDs and money, but any two-party (and multi-party) problem efficiently.

Defining Security: The Ideal/Real Paradigm

OT Definition

x_{0}
x_{1}

Sender

Choice bit: b

Receiver

Receiver Security: Sender should not learn b.
Define Sender's view Views $\left(x_{0}, x_{1}, b\right)=$ her random coins and the protocol messages.

OT Definition

x_{0}
x_{1}

Sender

Choice bit: b

Receiver

Receiver Security: Sender should not learn b.
There exists a PPT simulator $S I M_{S}$ such that for any x_{0}, x_{1} and b :
$\operatorname{SIM}_{S}\left(x_{0}, x_{1}\right) \cong \operatorname{View}_{S}\left(x_{0}, x_{1}, b\right)$

OT Definition

x_{0}
x_{1}

Sender

Choice bit: b

Sender Security: Receiver should not learn x_{1-b}.
Define Receiver's view $\operatorname{View}_{R}\left(x_{0}, x_{1}, b\right)=$ his random coins and the protocol messages.

OT Definition

x_{0}
x_{1}

Sender

Choice bit: b

Sender Security: Receiver should not learn $x_{1-b^{*}}$
There exists a PPT simulator $S I M_{R}$ such that for any x_{0}, x_{1} and b :
$\operatorname{SIM}_{R}\left(b, x_{b}\right) \cong \operatorname{View}_{R}\left(x_{0}, x_{1}, b\right)$

OT Protocols

OT Protocol 1: Trapdoor Permutations

For concreteness, let's use the RSA trapdoor permutation.

Pick $N=P Q$ and RSA exponent e.

Choose random r_{b} and set $s_{b}=r_{b}^{e} \bmod N$

Choose random s_{1-b}
Compute r_{0}, r_{1} and XOR x_{0}, x_{1} using hardcore bits

$$
\xrightarrow[x_{1} \bigoplus H C B\left(r_{1}\right)]{x_{0} \bigoplus H C B\left(r_{0}\right)} \quad \begin{aligned}
& \text { Bob can recover } \\
& x_{b} \text { but not } x_{1-b}
\end{aligned}
$$

OT Protocol 1: Trapdoor Permutations

How about Bob's security

(a.k.a. Why does Alice not learn Bob's choice bit)?

Alice's view is s_{0}, s_{1} one of which is chosen randomly from Z_{N}^{*} and the other by raising a random number to the e-th power. They look exactly the same!

OT Protocol 1: Trapdoor Permutations

How about Bob's security (a.k.a. Why does Alice not learn Bob's choice bit)?

Exercise: Show how to construct the simulator.

OT Protocol 1: Trapdoor Permutations

Input bits: $\left(x_{0}, x_{1}\right)$

Choice bit: b

How about Alice's security

(a.k.a. Why does Bob not learn both of Alice's bits)?

Assuming Bob is semi-honest, he chose S_{1-b} uniformly at random, so the hardcore bit of $S_{1-b}=r_{1-b}^{d}$ is computationally hidden from him.

OT from Trapdoor Permutations

Input bits: $\left(x_{0}, x_{1}\right)$

$$
\begin{gathered}
x_{0} \because H C B\left(r_{0}\right) \\
x_{1} \because H C B\left(r_{1}\right)
\end{gathered}
$$

Choice bit: b

How about Alice's security (a.k.a. Why does Bob not learn both of Alice's bits)?

Exercise: Show how to construct the simulator.

OT Protocol 2: Additive HE

Encrypt choice bit b
$c \longleftarrow \operatorname{Enc}(s k, b)$
Homomorphically
evaluate the
selection function
$\underset{\left(\boldsymbol{x}_{1}\right.}{\boldsymbol{S E}} \boldsymbol{L}_{x_{0}, \boldsymbol{x}_{1}}(\boldsymbol{b})=\quad \boldsymbol{c}^{\prime}=\xrightarrow{\operatorname{Eval}\left(S E L_{x_{0}, x_{1}}(b), c\right)}$ Decrypt to get x_{b}
$\left.\bigoplus_{B} x_{0}\right) b+x_{0}$
Bob's security: computational, from CPA-security of Enc.
Alice's security: statistical, from function-privacy of Eval.

Many More Constructions of OT

Theorem: OT protocols can be constructed based on the hardness of the Diffie-Hellman problem, factoring, quadratic residuosity, LWE, elliptic curve isogeny problem etc. etc.

Secure 2PC from OT

Theorem [Goldreich-Micali-Wigderson'87]:
OT can solve any two-party computation problem.

